The main motivation for this was the inconsistency in handling of partial reads/writes between the windows and posix implementations (windows was returning partial reads, posix was trying to fill the buffer completely). I settle on the windows implementation, as that's the more common behavior, and the "eager" version can be implemented on top of that (in most cases, it isn't necessary, since we're writing just a single byte). Since this also required auditing the callers to make sure they're handling partial reads/writes correctly, I used the opportunity to modernize the function signatures as a forcing function. They now use the `Timeout` class (basically an `optional<duration>`) to support both polls (timeout=0) and blocking (timeout=nullopt) operations in a single function, and use an `Expected` instead of a by-ref result to return the number of bytes read/written. As a drive-by, I also fix a problem with the windows implementation where we were rounding the timeout value down, which meant that calls could time out slightly sooner than expected.
359 lines
13 KiB
C++
359 lines
13 KiB
C++
//===-- PipeWindows.cpp ---------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "lldb/Host/windows/PipeWindows.h"
|
|
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/Support/Process.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
#include <fcntl.h>
|
|
#include <io.h>
|
|
#include <rpc.h>
|
|
|
|
#include <atomic>
|
|
#include <string>
|
|
|
|
using namespace lldb;
|
|
using namespace lldb_private;
|
|
|
|
static std::atomic<uint32_t> g_pipe_serial(0);
|
|
static constexpr llvm::StringLiteral g_pipe_name_prefix = "\\\\.\\Pipe\\";
|
|
|
|
PipeWindows::PipeWindows()
|
|
: m_read(INVALID_HANDLE_VALUE), m_write(INVALID_HANDLE_VALUE),
|
|
m_read_fd(PipeWindows::kInvalidDescriptor),
|
|
m_write_fd(PipeWindows::kInvalidDescriptor) {
|
|
ZeroMemory(&m_read_overlapped, sizeof(m_read_overlapped));
|
|
ZeroMemory(&m_write_overlapped, sizeof(m_write_overlapped));
|
|
}
|
|
|
|
PipeWindows::PipeWindows(pipe_t read, pipe_t write)
|
|
: m_read((HANDLE)read), m_write((HANDLE)write),
|
|
m_read_fd(PipeWindows::kInvalidDescriptor),
|
|
m_write_fd(PipeWindows::kInvalidDescriptor) {
|
|
assert(read != LLDB_INVALID_PIPE || write != LLDB_INVALID_PIPE);
|
|
|
|
// Don't risk in passing file descriptors and getting handles from them by
|
|
// _get_osfhandle since the retrieved handles are highly likely unrecognized
|
|
// in the current process and usually crashes the program. Pass handles
|
|
// instead since the handle can be inherited.
|
|
|
|
if (read != LLDB_INVALID_PIPE) {
|
|
m_read_fd = _open_osfhandle((intptr_t)read, _O_RDONLY);
|
|
// Make sure the fd and native handle are consistent.
|
|
if (m_read_fd < 0)
|
|
m_read = INVALID_HANDLE_VALUE;
|
|
}
|
|
|
|
if (write != LLDB_INVALID_PIPE) {
|
|
m_write_fd = _open_osfhandle((intptr_t)write, _O_WRONLY);
|
|
if (m_write_fd < 0)
|
|
m_write = INVALID_HANDLE_VALUE;
|
|
}
|
|
|
|
ZeroMemory(&m_read_overlapped, sizeof(m_read_overlapped));
|
|
m_read_overlapped.hEvent = ::CreateEventA(nullptr, TRUE, FALSE, nullptr);
|
|
|
|
ZeroMemory(&m_write_overlapped, sizeof(m_write_overlapped));
|
|
m_write_overlapped.hEvent = ::CreateEventA(nullptr, TRUE, FALSE, nullptr);
|
|
}
|
|
|
|
PipeWindows::~PipeWindows() { Close(); }
|
|
|
|
Status PipeWindows::CreateNew(bool child_process_inherit) {
|
|
// Even for anonymous pipes, we open a named pipe. This is because you
|
|
// cannot get overlapped i/o on Windows without using a named pipe. So we
|
|
// synthesize a unique name.
|
|
uint32_t serial = g_pipe_serial.fetch_add(1);
|
|
std::string pipe_name = llvm::formatv(
|
|
"lldb.pipe.{0}.{1}.{2}", GetCurrentProcessId(), &g_pipe_serial, serial);
|
|
|
|
return CreateNew(pipe_name.c_str(), child_process_inherit);
|
|
}
|
|
|
|
Status PipeWindows::CreateNew(llvm::StringRef name,
|
|
bool child_process_inherit) {
|
|
if (name.empty())
|
|
return Status(ERROR_INVALID_PARAMETER, eErrorTypeWin32);
|
|
|
|
if (CanRead() || CanWrite())
|
|
return Status(ERROR_ALREADY_EXISTS, eErrorTypeWin32);
|
|
|
|
std::string pipe_path = g_pipe_name_prefix.str();
|
|
pipe_path.append(name.str());
|
|
|
|
SECURITY_ATTRIBUTES sa{sizeof(SECURITY_ATTRIBUTES), 0,
|
|
child_process_inherit ? TRUE : FALSE};
|
|
|
|
// Always open for overlapped i/o. We implement blocking manually in Read
|
|
// and Write.
|
|
DWORD read_mode = FILE_FLAG_OVERLAPPED;
|
|
m_read =
|
|
::CreateNamedPipeA(pipe_path.c_str(), PIPE_ACCESS_INBOUND | read_mode,
|
|
PIPE_TYPE_BYTE | PIPE_WAIT, /*nMaxInstances=*/1,
|
|
/*nOutBufferSize=*/1024,
|
|
/*nInBufferSize=*/1024,
|
|
/*nDefaultTimeOut=*/0, &sa);
|
|
if (INVALID_HANDLE_VALUE == m_read)
|
|
return Status(::GetLastError(), eErrorTypeWin32);
|
|
m_read_fd = _open_osfhandle((intptr_t)m_read, _O_RDONLY);
|
|
ZeroMemory(&m_read_overlapped, sizeof(m_read_overlapped));
|
|
m_read_overlapped.hEvent = ::CreateEvent(nullptr, TRUE, FALSE, nullptr);
|
|
|
|
// Open the write end of the pipe. Note that closing either the read or
|
|
// write end of the pipe could directly close the pipe itself.
|
|
Status result = OpenNamedPipe(name, child_process_inherit, false);
|
|
if (!result.Success()) {
|
|
CloseReadFileDescriptor();
|
|
return result;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
Status PipeWindows::CreateWithUniqueName(llvm::StringRef prefix,
|
|
bool child_process_inherit,
|
|
llvm::SmallVectorImpl<char> &name) {
|
|
llvm::SmallString<128> pipe_name;
|
|
Status error;
|
|
::UUID unique_id;
|
|
RPC_CSTR unique_string;
|
|
RPC_STATUS status = ::UuidCreate(&unique_id);
|
|
if (status == RPC_S_OK || status == RPC_S_UUID_LOCAL_ONLY)
|
|
status = ::UuidToStringA(&unique_id, &unique_string);
|
|
if (status == RPC_S_OK) {
|
|
pipe_name = prefix;
|
|
pipe_name += "-";
|
|
pipe_name += reinterpret_cast<char *>(unique_string);
|
|
::RpcStringFreeA(&unique_string);
|
|
error = CreateNew(pipe_name, child_process_inherit);
|
|
} else {
|
|
error = Status(status, eErrorTypeWin32);
|
|
}
|
|
if (error.Success())
|
|
name = pipe_name;
|
|
return error;
|
|
}
|
|
|
|
Status PipeWindows::OpenAsReader(llvm::StringRef name,
|
|
bool child_process_inherit) {
|
|
if (CanRead())
|
|
return Status(); // Note the name is ignored.
|
|
|
|
return OpenNamedPipe(name, child_process_inherit, true);
|
|
}
|
|
|
|
llvm::Error PipeWindows::OpenAsWriter(llvm::StringRef name,
|
|
bool child_process_inherit,
|
|
const Timeout<std::micro> &timeout) {
|
|
if (CanWrite())
|
|
return llvm::Error::success(); // Note the name is ignored.
|
|
|
|
return OpenNamedPipe(name, child_process_inherit, false).takeError();
|
|
}
|
|
|
|
Status PipeWindows::OpenNamedPipe(llvm::StringRef name,
|
|
bool child_process_inherit, bool is_read) {
|
|
if (name.empty())
|
|
return Status(ERROR_INVALID_PARAMETER, eErrorTypeWin32);
|
|
|
|
assert(is_read ? !CanRead() : !CanWrite());
|
|
|
|
SECURITY_ATTRIBUTES attributes{sizeof(SECURITY_ATTRIBUTES), 0,
|
|
child_process_inherit ? TRUE : FALSE};
|
|
|
|
std::string pipe_path = g_pipe_name_prefix.str();
|
|
pipe_path.append(name.str());
|
|
|
|
if (is_read) {
|
|
m_read = ::CreateFileA(pipe_path.c_str(), GENERIC_READ, 0, &attributes,
|
|
OPEN_EXISTING, FILE_FLAG_OVERLAPPED, NULL);
|
|
if (INVALID_HANDLE_VALUE == m_read)
|
|
return Status(::GetLastError(), eErrorTypeWin32);
|
|
|
|
m_read_fd = _open_osfhandle((intptr_t)m_read, _O_RDONLY);
|
|
|
|
ZeroMemory(&m_read_overlapped, sizeof(m_read_overlapped));
|
|
m_read_overlapped.hEvent = ::CreateEvent(nullptr, TRUE, FALSE, nullptr);
|
|
} else {
|
|
m_write = ::CreateFileA(pipe_path.c_str(), GENERIC_WRITE, 0, &attributes,
|
|
OPEN_EXISTING, FILE_FLAG_OVERLAPPED, NULL);
|
|
if (INVALID_HANDLE_VALUE == m_write)
|
|
return Status(::GetLastError(), eErrorTypeWin32);
|
|
|
|
m_write_fd = _open_osfhandle((intptr_t)m_write, _O_WRONLY);
|
|
|
|
ZeroMemory(&m_write_overlapped, sizeof(m_write_overlapped));
|
|
m_write_overlapped.hEvent = ::CreateEventA(nullptr, TRUE, FALSE, nullptr);
|
|
}
|
|
|
|
return Status();
|
|
}
|
|
|
|
int PipeWindows::GetReadFileDescriptor() const { return m_read_fd; }
|
|
|
|
int PipeWindows::GetWriteFileDescriptor() const { return m_write_fd; }
|
|
|
|
int PipeWindows::ReleaseReadFileDescriptor() {
|
|
if (!CanRead())
|
|
return PipeWindows::kInvalidDescriptor;
|
|
int result = m_read_fd;
|
|
m_read_fd = PipeWindows::kInvalidDescriptor;
|
|
if (m_read_overlapped.hEvent)
|
|
::CloseHandle(m_read_overlapped.hEvent);
|
|
m_read = INVALID_HANDLE_VALUE;
|
|
ZeroMemory(&m_read_overlapped, sizeof(m_read_overlapped));
|
|
return result;
|
|
}
|
|
|
|
int PipeWindows::ReleaseWriteFileDescriptor() {
|
|
if (!CanWrite())
|
|
return PipeWindows::kInvalidDescriptor;
|
|
int result = m_write_fd;
|
|
m_write_fd = PipeWindows::kInvalidDescriptor;
|
|
if (m_write_overlapped.hEvent)
|
|
::CloseHandle(m_write_overlapped.hEvent);
|
|
m_write = INVALID_HANDLE_VALUE;
|
|
ZeroMemory(&m_write_overlapped, sizeof(m_write_overlapped));
|
|
return result;
|
|
}
|
|
|
|
void PipeWindows::CloseReadFileDescriptor() {
|
|
if (!CanRead())
|
|
return;
|
|
|
|
if (m_read_overlapped.hEvent)
|
|
::CloseHandle(m_read_overlapped.hEvent);
|
|
|
|
_close(m_read_fd);
|
|
m_read = INVALID_HANDLE_VALUE;
|
|
m_read_fd = PipeWindows::kInvalidDescriptor;
|
|
ZeroMemory(&m_read_overlapped, sizeof(m_read_overlapped));
|
|
}
|
|
|
|
void PipeWindows::CloseWriteFileDescriptor() {
|
|
if (!CanWrite())
|
|
return;
|
|
|
|
if (m_write_overlapped.hEvent)
|
|
::CloseHandle(m_write_overlapped.hEvent);
|
|
|
|
_close(m_write_fd);
|
|
m_write = INVALID_HANDLE_VALUE;
|
|
m_write_fd = PipeWindows::kInvalidDescriptor;
|
|
ZeroMemory(&m_write_overlapped, sizeof(m_write_overlapped));
|
|
}
|
|
|
|
void PipeWindows::Close() {
|
|
CloseReadFileDescriptor();
|
|
CloseWriteFileDescriptor();
|
|
}
|
|
|
|
Status PipeWindows::Delete(llvm::StringRef name) { return Status(); }
|
|
|
|
bool PipeWindows::CanRead() const { return (m_read != INVALID_HANDLE_VALUE); }
|
|
|
|
bool PipeWindows::CanWrite() const { return (m_write != INVALID_HANDLE_VALUE); }
|
|
|
|
HANDLE
|
|
PipeWindows::GetReadNativeHandle() { return m_read; }
|
|
|
|
HANDLE
|
|
PipeWindows::GetWriteNativeHandle() { return m_write; }
|
|
|
|
llvm::Expected<size_t> PipeWindows::Read(void *buf, size_t size,
|
|
const Timeout<std::micro> &timeout) {
|
|
if (!CanRead())
|
|
return Status(ERROR_INVALID_HANDLE, eErrorTypeWin32).takeError();
|
|
|
|
DWORD bytes_read = 0;
|
|
BOOL result = ::ReadFile(m_read, buf, size, &bytes_read, &m_read_overlapped);
|
|
if (result)
|
|
return bytes_read;
|
|
|
|
DWORD failure_error = ::GetLastError();
|
|
if (failure_error != ERROR_IO_PENDING)
|
|
return Status(failure_error, eErrorTypeWin32).takeError();
|
|
|
|
DWORD timeout_msec =
|
|
timeout ? ceil<std::chrono::milliseconds>(*timeout).count() : INFINITE;
|
|
DWORD wait_result =
|
|
::WaitForSingleObject(m_read_overlapped.hEvent, timeout_msec);
|
|
if (wait_result != WAIT_OBJECT_0) {
|
|
// The operation probably failed. However, if it timed out, we need to
|
|
// cancel the I/O. Between the time we returned from WaitForSingleObject
|
|
// and the time we call CancelIoEx, the operation may complete. If that
|
|
// hapens, CancelIoEx will fail and return ERROR_NOT_FOUND. If that
|
|
// happens, the original operation should be considered to have been
|
|
// successful.
|
|
bool failed = true;
|
|
failure_error = ::GetLastError();
|
|
if (wait_result == WAIT_TIMEOUT) {
|
|
BOOL cancel_result = ::CancelIoEx(m_read, &m_read_overlapped);
|
|
if (!cancel_result && ::GetLastError() == ERROR_NOT_FOUND)
|
|
failed = false;
|
|
}
|
|
if (failed)
|
|
return Status(failure_error, eErrorTypeWin32).takeError();
|
|
}
|
|
|
|
// Now we call GetOverlappedResult setting bWait to false, since we've
|
|
// already waited as long as we're willing to.
|
|
if (!::GetOverlappedResult(m_read, &m_read_overlapped, &bytes_read, FALSE))
|
|
return Status(::GetLastError(), eErrorTypeWin32).takeError();
|
|
|
|
return bytes_read;
|
|
}
|
|
|
|
llvm::Expected<size_t> PipeWindows::Write(const void *buf, size_t size,
|
|
const Timeout<std::micro> &timeout) {
|
|
if (!CanWrite())
|
|
return Status(ERROR_INVALID_HANDLE, eErrorTypeWin32).takeError();
|
|
|
|
DWORD bytes_written = 0;
|
|
BOOL result =
|
|
::WriteFile(m_write, buf, size, &bytes_written, &m_write_overlapped);
|
|
if (result)
|
|
return bytes_written;
|
|
|
|
DWORD failure_error = ::GetLastError();
|
|
if (failure_error != ERROR_IO_PENDING)
|
|
return Status(failure_error, eErrorTypeWin32).takeError();
|
|
|
|
DWORD timeout_msec =
|
|
timeout ? ceil<std::chrono::milliseconds>(*timeout).count() : INFINITE;
|
|
DWORD wait_result =
|
|
::WaitForSingleObject(m_write_overlapped.hEvent, timeout_msec);
|
|
if (wait_result != WAIT_OBJECT_0) {
|
|
// The operation probably failed. However, if it timed out, we need to
|
|
// cancel the I/O. Between the time we returned from WaitForSingleObject
|
|
// and the time we call CancelIoEx, the operation may complete. If that
|
|
// hapens, CancelIoEx will fail and return ERROR_NOT_FOUND. If that
|
|
// happens, the original operation should be considered to have been
|
|
// successful.
|
|
bool failed = true;
|
|
failure_error = ::GetLastError();
|
|
if (wait_result == WAIT_TIMEOUT) {
|
|
BOOL cancel_result = ::CancelIoEx(m_write, &m_write_overlapped);
|
|
if (!cancel_result && ::GetLastError() == ERROR_NOT_FOUND)
|
|
failed = false;
|
|
}
|
|
if (failed)
|
|
return Status(failure_error, eErrorTypeWin32).takeError();
|
|
}
|
|
|
|
// Now we call GetOverlappedResult setting bWait to false, since we've
|
|
// already waited as long as we're willing to.
|
|
if (!::GetOverlappedResult(m_write, &m_write_overlapped, &bytes_written,
|
|
FALSE))
|
|
return Status(::GetLastError(), eErrorTypeWin32).takeError();
|
|
|
|
return bytes_written;
|
|
}
|