Files
clang-p2996/mlir/lib/Dialect/Async/Transforms/AsyncParallelFor.cpp
Jacques Pienaar 09dfc5713d [mlir] Enable decoupling two kinds of greedy behavior. (#104649)
The greedy rewriter is used in many different flows and it has a lot of
convenience (work list management, debugging actions, tracing, etc). But
it combines two kinds of greedy behavior 1) how ops are matched, 2)
folding wherever it can.

These are independent forms of greedy and leads to inefficiency. E.g.,
cases where one need to create different phases in lowering and is
required to applying patterns in specific order split across different
passes. Using the driver one ends up needlessly retrying folding/having
multiple rounds of folding attempts, where one final run would have
sufficed.

Of course folks can locally avoid this behavior by just building their
own, but this is also a common requested feature that folks keep on
working around locally in suboptimal ways.

For downstream users, there should be no behavioral change. Updating
from the deprecated should just be a find and replace (e.g., `find ./
-type f -exec sed -i
's|applyPatternsAndFoldGreedily|applyPatternsGreedily|g' {} \;` variety)
as the API arguments hasn't changed between the two.
2024-12-20 08:15:48 -08:00

956 lines
40 KiB
C++

//===- AsyncParallelFor.cpp - Implementation of Async Parallel For --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements scf.parallel to scf.for + async.execute conversion pass.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Async/Passes.h"
#include "PassDetail.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Async/IR/Async.h"
#include "mlir/Dialect/Async/Transforms.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "mlir/Transforms/RegionUtils.h"
#include <utility>
namespace mlir {
#define GEN_PASS_DEF_ASYNCPARALLELFOR
#include "mlir/Dialect/Async/Passes.h.inc"
} // namespace mlir
using namespace mlir;
using namespace mlir::async;
#define DEBUG_TYPE "async-parallel-for"
namespace {
// Rewrite scf.parallel operation into multiple concurrent async.execute
// operations over non overlapping subranges of the original loop.
//
// Example:
//
// scf.parallel (%i, %j) = (%lbi, %lbj) to (%ubi, %ubj) step (%si, %sj) {
// "do_some_compute"(%i, %j): () -> ()
// }
//
// Converted to:
//
// // Parallel compute function that executes the parallel body region for
// // a subset of the parallel iteration space defined by the one-dimensional
// // compute block index.
// func parallel_compute_function(%block_index : index, %block_size : index,
// <parallel operation properties>, ...) {
// // Compute multi-dimensional loop bounds for %block_index.
// %block_lbi, %block_lbj = ...
// %block_ubi, %block_ubj = ...
//
// // Clone parallel operation body into the scf.for loop nest.
// scf.for %i = %blockLbi to %blockUbi {
// scf.for %j = block_lbj to %block_ubj {
// "do_some_compute"(%i, %j): () -> ()
// }
// }
// }
//
// And a dispatch function depending on the `asyncDispatch` option.
//
// When async dispatch is on: (pseudocode)
//
// %block_size = ... compute parallel compute block size
// %block_count = ... compute the number of compute blocks
//
// func @async_dispatch(%block_start : index, %block_end : index, ...) {
// // Keep splitting block range until we reached a range of size 1.
// while (%block_end - %block_start > 1) {
// %mid_index = block_start + (block_end - block_start) / 2;
// async.execute { call @async_dispatch(%mid_index, %block_end); }
// %block_end = %mid_index
// }
//
// // Call parallel compute function for a single block.
// call @parallel_compute_fn(%block_start, %block_size, ...);
// }
//
// // Launch async dispatch for [0, block_count) range.
// call @async_dispatch(%c0, %block_count);
//
// When async dispatch is off:
//
// %block_size = ... compute parallel compute block size
// %block_count = ... compute the number of compute blocks
//
// scf.for %block_index = %c0 to %block_count {
// call @parallel_compute_fn(%block_index, %block_size, ...)
// }
//
struct AsyncParallelForPass
: public impl::AsyncParallelForBase<AsyncParallelForPass> {
AsyncParallelForPass() = default;
AsyncParallelForPass(bool asyncDispatch, int32_t numWorkerThreads,
int32_t minTaskSize) {
this->asyncDispatch = asyncDispatch;
this->numWorkerThreads = numWorkerThreads;
this->minTaskSize = minTaskSize;
}
void runOnOperation() override;
};
struct AsyncParallelForRewrite : public OpRewritePattern<scf::ParallelOp> {
public:
AsyncParallelForRewrite(
MLIRContext *ctx, bool asyncDispatch, int32_t numWorkerThreads,
AsyncMinTaskSizeComputationFunction computeMinTaskSize)
: OpRewritePattern(ctx), asyncDispatch(asyncDispatch),
numWorkerThreads(numWorkerThreads),
computeMinTaskSize(std::move(computeMinTaskSize)) {}
LogicalResult matchAndRewrite(scf::ParallelOp op,
PatternRewriter &rewriter) const override;
private:
bool asyncDispatch;
int32_t numWorkerThreads;
AsyncMinTaskSizeComputationFunction computeMinTaskSize;
};
struct ParallelComputeFunctionType {
FunctionType type;
SmallVector<Value> captures;
};
// Helper struct to parse parallel compute function argument list.
struct ParallelComputeFunctionArgs {
BlockArgument blockIndex();
BlockArgument blockSize();
ArrayRef<BlockArgument> tripCounts();
ArrayRef<BlockArgument> lowerBounds();
ArrayRef<BlockArgument> steps();
ArrayRef<BlockArgument> captures();
unsigned numLoops;
ArrayRef<BlockArgument> args;
};
struct ParallelComputeFunctionBounds {
SmallVector<IntegerAttr> tripCounts;
SmallVector<IntegerAttr> lowerBounds;
SmallVector<IntegerAttr> upperBounds;
SmallVector<IntegerAttr> steps;
};
struct ParallelComputeFunction {
unsigned numLoops;
func::FuncOp func;
llvm::SmallVector<Value> captures;
};
} // namespace
BlockArgument ParallelComputeFunctionArgs::blockIndex() { return args[0]; }
BlockArgument ParallelComputeFunctionArgs::blockSize() { return args[1]; }
ArrayRef<BlockArgument> ParallelComputeFunctionArgs::tripCounts() {
return args.drop_front(2).take_front(numLoops);
}
ArrayRef<BlockArgument> ParallelComputeFunctionArgs::lowerBounds() {
return args.drop_front(2 + 1 * numLoops).take_front(numLoops);
}
ArrayRef<BlockArgument> ParallelComputeFunctionArgs::steps() {
return args.drop_front(2 + 3 * numLoops).take_front(numLoops);
}
ArrayRef<BlockArgument> ParallelComputeFunctionArgs::captures() {
return args.drop_front(2 + 4 * numLoops);
}
template <typename ValueRange>
static SmallVector<IntegerAttr> integerConstants(ValueRange values) {
SmallVector<IntegerAttr> attrs(values.size());
for (unsigned i = 0; i < values.size(); ++i)
matchPattern(values[i], m_Constant(&attrs[i]));
return attrs;
}
// Converts one-dimensional iteration index in the [0, tripCount) interval
// into multidimensional iteration coordinate.
static SmallVector<Value> delinearize(ImplicitLocOpBuilder &b, Value index,
ArrayRef<Value> tripCounts) {
SmallVector<Value> coords(tripCounts.size());
assert(!tripCounts.empty() && "tripCounts must be not empty");
for (ssize_t i = tripCounts.size() - 1; i >= 0; --i) {
coords[i] = b.create<arith::RemSIOp>(index, tripCounts[i]);
index = b.create<arith::DivSIOp>(index, tripCounts[i]);
}
return coords;
}
// Returns a function type and implicit captures for a parallel compute
// function. We'll need a list of implicit captures to setup block and value
// mapping when we'll clone the body of the parallel operation.
static ParallelComputeFunctionType
getParallelComputeFunctionType(scf::ParallelOp op, PatternRewriter &rewriter) {
// Values implicitly captured by the parallel operation.
llvm::SetVector<Value> captures;
getUsedValuesDefinedAbove(op.getRegion(), op.getRegion(), captures);
SmallVector<Type> inputs;
inputs.reserve(2 + 4 * op.getNumLoops() + captures.size());
Type indexTy = rewriter.getIndexType();
// One-dimensional iteration space defined by the block index and size.
inputs.push_back(indexTy); // blockIndex
inputs.push_back(indexTy); // blockSize
// Multi-dimensional parallel iteration space defined by the loop trip counts.
for (unsigned i = 0; i < op.getNumLoops(); ++i)
inputs.push_back(indexTy); // loop tripCount
// Parallel operation lower bound, upper bound and step. Lower bound, upper
// bound and step passed as contiguous arguments:
// call @compute(%lb0, %lb1, ..., %ub0, %ub1, ..., %step0, %step1, ...)
for (unsigned i = 0; i < op.getNumLoops(); ++i) {
inputs.push_back(indexTy); // lower bound
inputs.push_back(indexTy); // upper bound
inputs.push_back(indexTy); // step
}
// Types of the implicit captures.
for (Value capture : captures)
inputs.push_back(capture.getType());
// Convert captures to vector for later convenience.
SmallVector<Value> capturesVector(captures.begin(), captures.end());
return {rewriter.getFunctionType(inputs, TypeRange()), capturesVector};
}
// Create a parallel compute fuction from the parallel operation.
static ParallelComputeFunction createParallelComputeFunction(
scf::ParallelOp op, const ParallelComputeFunctionBounds &bounds,
unsigned numBlockAlignedInnerLoops, PatternRewriter &rewriter) {
OpBuilder::InsertionGuard guard(rewriter);
ImplicitLocOpBuilder b(op.getLoc(), rewriter);
ModuleOp module = op->getParentOfType<ModuleOp>();
ParallelComputeFunctionType computeFuncType =
getParallelComputeFunctionType(op, rewriter);
FunctionType type = computeFuncType.type;
func::FuncOp func = func::FuncOp::create(
op.getLoc(),
numBlockAlignedInnerLoops > 0 ? "parallel_compute_fn_with_aligned_loops"
: "parallel_compute_fn",
type);
func.setPrivate();
// Insert function into the module symbol table and assign it unique name.
SymbolTable symbolTable(module);
symbolTable.insert(func);
rewriter.getListener()->notifyOperationInserted(func, /*previous=*/{});
// Create function entry block.
Block *block =
b.createBlock(&func.getBody(), func.begin(), type.getInputs(),
SmallVector<Location>(type.getNumInputs(), op.getLoc()));
b.setInsertionPointToEnd(block);
ParallelComputeFunctionArgs args = {op.getNumLoops(), func.getArguments()};
// Block iteration position defined by the block index and size.
BlockArgument blockIndex = args.blockIndex();
BlockArgument blockSize = args.blockSize();
// Constants used below.
Value c0 = b.create<arith::ConstantIndexOp>(0);
Value c1 = b.create<arith::ConstantIndexOp>(1);
// Materialize known constants as constant operation in the function body.
auto values = [&](ArrayRef<BlockArgument> args, ArrayRef<IntegerAttr> attrs) {
return llvm::to_vector(
llvm::map_range(llvm::zip(args, attrs), [&](auto tuple) -> Value {
if (IntegerAttr attr = std::get<1>(tuple))
return b.create<arith::ConstantOp>(attr);
return std::get<0>(tuple);
}));
};
// Multi-dimensional parallel iteration space defined by the loop trip counts.
auto tripCounts = values(args.tripCounts(), bounds.tripCounts);
// Parallel operation lower bound and step.
auto lowerBounds = values(args.lowerBounds(), bounds.lowerBounds);
auto steps = values(args.steps(), bounds.steps);
// Remaining arguments are implicit captures of the parallel operation.
ArrayRef<BlockArgument> captures = args.captures();
// Compute a product of trip counts to get the size of the flattened
// one-dimensional iteration space.
Value tripCount = tripCounts[0];
for (unsigned i = 1; i < tripCounts.size(); ++i)
tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]);
// Find one-dimensional iteration bounds: [blockFirstIndex, blockLastIndex]:
// blockFirstIndex = blockIndex * blockSize
Value blockFirstIndex = b.create<arith::MulIOp>(blockIndex, blockSize);
// The last one-dimensional index in the block defined by the `blockIndex`:
// blockLastIndex = min(blockFirstIndex + blockSize, tripCount) - 1
Value blockEnd0 = b.create<arith::AddIOp>(blockFirstIndex, blockSize);
Value blockEnd1 = b.create<arith::MinSIOp>(blockEnd0, tripCount);
Value blockLastIndex = b.create<arith::SubIOp>(blockEnd1, c1);
// Convert one-dimensional indices to multi-dimensional coordinates.
auto blockFirstCoord = delinearize(b, blockFirstIndex, tripCounts);
auto blockLastCoord = delinearize(b, blockLastIndex, tripCounts);
// Compute loops upper bounds derived from the block last coordinates:
// blockEndCoord[i] = blockLastCoord[i] + 1
//
// Block first and last coordinates can be the same along the outer compute
// dimension when inner compute dimension contains multiple blocks.
SmallVector<Value> blockEndCoord(op.getNumLoops());
for (size_t i = 0; i < blockLastCoord.size(); ++i)
blockEndCoord[i] = b.create<arith::AddIOp>(blockLastCoord[i], c1);
// Construct a loop nest out of scf.for operations that will iterate over
// all coordinates in [blockFirstCoord, blockLastCoord] range.
using LoopBodyBuilder =
std::function<void(OpBuilder &, Location, Value, ValueRange)>;
using LoopNestBuilder = std::function<LoopBodyBuilder(size_t loopIdx)>;
// Parallel region induction variables computed from the multi-dimensional
// iteration coordinate using parallel operation bounds and step:
//
// computeBlockInductionVars[loopIdx] =
// lowerBound[loopIdx] + blockCoord[loopIdx] * step[loopIdx]
SmallVector<Value> computeBlockInductionVars(op.getNumLoops());
// We need to know if we are in the first or last iteration of the
// multi-dimensional loop for each loop in the nest, so we can decide what
// loop bounds should we use for the nested loops: bounds defined by compute
// block interval, or bounds defined by the parallel operation.
//
// Example: 2d parallel operation
// i j
// loop sizes: [50, 50]
// first coord: [25, 25]
// last coord: [30, 30]
//
// If `i` is equal to 25 then iteration over `j` should start at 25, when `i`
// is between 25 and 30 it should start at 0. The upper bound for `j` should
// be 50, except when `i` is equal to 30, then it should also be 30.
//
// Value at ith position specifies if all loops in [0, i) range of the loop
// nest are in the first/last iteration.
SmallVector<Value> isBlockFirstCoord(op.getNumLoops());
SmallVector<Value> isBlockLastCoord(op.getNumLoops());
// Builds inner loop nest inside async.execute operation that does all the
// work concurrently.
LoopNestBuilder workLoopBuilder = [&](size_t loopIdx) -> LoopBodyBuilder {
return [&, loopIdx](OpBuilder &nestedBuilder, Location loc, Value iv,
ValueRange args) {
ImplicitLocOpBuilder b(loc, nestedBuilder);
// Compute induction variable for `loopIdx`.
computeBlockInductionVars[loopIdx] = b.create<arith::AddIOp>(
lowerBounds[loopIdx], b.create<arith::MulIOp>(iv, steps[loopIdx]));
// Check if we are inside first or last iteration of the loop.
isBlockFirstCoord[loopIdx] = b.create<arith::CmpIOp>(
arith::CmpIPredicate::eq, iv, blockFirstCoord[loopIdx]);
isBlockLastCoord[loopIdx] = b.create<arith::CmpIOp>(
arith::CmpIPredicate::eq, iv, blockLastCoord[loopIdx]);
// Check if the previous loop is in its first or last iteration.
if (loopIdx > 0) {
isBlockFirstCoord[loopIdx] = b.create<arith::AndIOp>(
isBlockFirstCoord[loopIdx], isBlockFirstCoord[loopIdx - 1]);
isBlockLastCoord[loopIdx] = b.create<arith::AndIOp>(
isBlockLastCoord[loopIdx], isBlockLastCoord[loopIdx - 1]);
}
// Keep building loop nest.
if (loopIdx < op.getNumLoops() - 1) {
if (loopIdx + 1 >= op.getNumLoops() - numBlockAlignedInnerLoops) {
// For block aligned loops we always iterate starting from 0 up to
// the loop trip counts.
b.create<scf::ForOp>(c0, tripCounts[loopIdx + 1], c1, ValueRange(),
workLoopBuilder(loopIdx + 1));
} else {
// Select nested loop lower/upper bounds depending on our position in
// the multi-dimensional iteration space.
auto lb = b.create<arith::SelectOp>(isBlockFirstCoord[loopIdx],
blockFirstCoord[loopIdx + 1], c0);
auto ub = b.create<arith::SelectOp>(isBlockLastCoord[loopIdx],
blockEndCoord[loopIdx + 1],
tripCounts[loopIdx + 1]);
b.create<scf::ForOp>(lb, ub, c1, ValueRange(),
workLoopBuilder(loopIdx + 1));
}
b.create<scf::YieldOp>(loc);
return;
}
// Copy the body of the parallel op into the inner-most loop.
IRMapping mapping;
mapping.map(op.getInductionVars(), computeBlockInductionVars);
mapping.map(computeFuncType.captures, captures);
for (auto &bodyOp : op.getRegion().front().without_terminator())
b.clone(bodyOp, mapping);
b.create<scf::YieldOp>(loc);
};
};
b.create<scf::ForOp>(blockFirstCoord[0], blockEndCoord[0], c1, ValueRange(),
workLoopBuilder(0));
b.create<func::ReturnOp>(ValueRange());
return {op.getNumLoops(), func, std::move(computeFuncType.captures)};
}
// Creates recursive async dispatch function for the given parallel compute
// function. Dispatch function keeps splitting block range into halves until it
// reaches a single block, and then excecutes it inline.
//
// Function pseudocode (mix of C++ and MLIR):
//
// func @async_dispatch(%block_start : index, %block_end : index, ...) {
//
// // Keep splitting block range until we reached a range of size 1.
// while (%block_end - %block_start > 1) {
// %mid_index = block_start + (block_end - block_start) / 2;
// async.execute { call @async_dispatch(%mid_index, %block_end); }
// %block_end = %mid_index
// }
//
// // Call parallel compute function for a single block.
// call @parallel_compute_fn(%block_start, %block_size, ...);
// }
//
static func::FuncOp
createAsyncDispatchFunction(ParallelComputeFunction &computeFunc,
PatternRewriter &rewriter) {
OpBuilder::InsertionGuard guard(rewriter);
Location loc = computeFunc.func.getLoc();
ImplicitLocOpBuilder b(loc, rewriter);
ModuleOp module = computeFunc.func->getParentOfType<ModuleOp>();
ArrayRef<Type> computeFuncInputTypes =
computeFunc.func.getFunctionType().getInputs();
// Compared to the parallel compute function async dispatch function takes
// additional !async.group argument. Also instead of a single `blockIndex` it
// takes `blockStart` and `blockEnd` arguments to define the range of
// dispatched blocks.
SmallVector<Type> inputTypes;
inputTypes.push_back(async::GroupType::get(rewriter.getContext()));
inputTypes.push_back(rewriter.getIndexType()); // add blockStart argument
inputTypes.append(computeFuncInputTypes.begin(), computeFuncInputTypes.end());
FunctionType type = rewriter.getFunctionType(inputTypes, TypeRange());
func::FuncOp func = func::FuncOp::create(loc, "async_dispatch_fn", type);
func.setPrivate();
// Insert function into the module symbol table and assign it unique name.
SymbolTable symbolTable(module);
symbolTable.insert(func);
rewriter.getListener()->notifyOperationInserted(func, /*previous=*/{});
// Create function entry block.
Block *block = b.createBlock(&func.getBody(), func.begin(), type.getInputs(),
SmallVector<Location>(type.getNumInputs(), loc));
b.setInsertionPointToEnd(block);
Type indexTy = b.getIndexType();
Value c1 = b.create<arith::ConstantIndexOp>(1);
Value c2 = b.create<arith::ConstantIndexOp>(2);
// Get the async group that will track async dispatch completion.
Value group = block->getArgument(0);
// Get the block iteration range: [blockStart, blockEnd)
Value blockStart = block->getArgument(1);
Value blockEnd = block->getArgument(2);
// Create a work splitting while loop for the [blockStart, blockEnd) range.
SmallVector<Type> types = {indexTy, indexTy};
SmallVector<Value> operands = {blockStart, blockEnd};
SmallVector<Location> locations = {loc, loc};
// Create a recursive dispatch loop.
scf::WhileOp whileOp = b.create<scf::WhileOp>(types, operands);
Block *before = b.createBlock(&whileOp.getBefore(), {}, types, locations);
Block *after = b.createBlock(&whileOp.getAfter(), {}, types, locations);
// Setup dispatch loop condition block: decide if we need to go into the
// `after` block and launch one more async dispatch.
{
b.setInsertionPointToEnd(before);
Value start = before->getArgument(0);
Value end = before->getArgument(1);
Value distance = b.create<arith::SubIOp>(end, start);
Value dispatch =
b.create<arith::CmpIOp>(arith::CmpIPredicate::sgt, distance, c1);
b.create<scf::ConditionOp>(dispatch, before->getArguments());
}
// Setup the async dispatch loop body: recursively call dispatch function
// for the seconds half of the original range and go to the next iteration.
{
b.setInsertionPointToEnd(after);
Value start = after->getArgument(0);
Value end = after->getArgument(1);
Value distance = b.create<arith::SubIOp>(end, start);
Value halfDistance = b.create<arith::DivSIOp>(distance, c2);
Value midIndex = b.create<arith::AddIOp>(start, halfDistance);
// Call parallel compute function inside the async.execute region.
auto executeBodyBuilder = [&](OpBuilder &executeBuilder,
Location executeLoc, ValueRange executeArgs) {
// Update the original `blockStart` and `blockEnd` with new range.
SmallVector<Value> operands{block->getArguments().begin(),
block->getArguments().end()};
operands[1] = midIndex;
operands[2] = end;
executeBuilder.create<func::CallOp>(executeLoc, func.getSymName(),
func.getResultTypes(), operands);
executeBuilder.create<async::YieldOp>(executeLoc, ValueRange());
};
// Create async.execute operation to dispatch half of the block range.
auto execute = b.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(),
executeBodyBuilder);
b.create<AddToGroupOp>(indexTy, execute.getToken(), group);
b.create<scf::YieldOp>(ValueRange({start, midIndex}));
}
// After dispatching async operations to process the tail of the block range
// call the parallel compute function for the first block of the range.
b.setInsertionPointAfter(whileOp);
// Drop async dispatch specific arguments: async group, block start and end.
auto forwardedInputs = block->getArguments().drop_front(3);
SmallVector<Value> computeFuncOperands = {blockStart};
computeFuncOperands.append(forwardedInputs.begin(), forwardedInputs.end());
b.create<func::CallOp>(computeFunc.func.getSymName(),
computeFunc.func.getResultTypes(),
computeFuncOperands);
b.create<func::ReturnOp>(ValueRange());
return func;
}
// Launch async dispatch of the parallel compute function.
static void doAsyncDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter,
ParallelComputeFunction &parallelComputeFunction,
scf::ParallelOp op, Value blockSize,
Value blockCount,
const SmallVector<Value> &tripCounts) {
MLIRContext *ctx = op->getContext();
// Add one more level of indirection to dispatch parallel compute functions
// using async operations and recursive work splitting.
func::FuncOp asyncDispatchFunction =
createAsyncDispatchFunction(parallelComputeFunction, rewriter);
Value c0 = b.create<arith::ConstantIndexOp>(0);
Value c1 = b.create<arith::ConstantIndexOp>(1);
// Appends operands shared by async dispatch and parallel compute functions to
// the given operands vector.
auto appendBlockComputeOperands = [&](SmallVector<Value> &operands) {
operands.append(tripCounts);
operands.append(op.getLowerBound().begin(), op.getLowerBound().end());
operands.append(op.getUpperBound().begin(), op.getUpperBound().end());
operands.append(op.getStep().begin(), op.getStep().end());
operands.append(parallelComputeFunction.captures);
};
// Check if the block size is one, in this case we can skip the async dispatch
// completely. If this will be known statically, then canonicalization will
// erase async group operations.
Value isSingleBlock =
b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, blockCount, c1);
auto syncDispatch = [&](OpBuilder &nestedBuilder, Location loc) {
ImplicitLocOpBuilder b(loc, nestedBuilder);
// Call parallel compute function for the single block.
SmallVector<Value> operands = {c0, blockSize};
appendBlockComputeOperands(operands);
b.create<func::CallOp>(parallelComputeFunction.func.getSymName(),
parallelComputeFunction.func.getResultTypes(),
operands);
b.create<scf::YieldOp>();
};
auto asyncDispatch = [&](OpBuilder &nestedBuilder, Location loc) {
ImplicitLocOpBuilder b(loc, nestedBuilder);
// Create an async.group to wait on all async tokens from the concurrent
// execution of multiple parallel compute function. First block will be
// executed synchronously in the caller thread.
Value groupSize = b.create<arith::SubIOp>(blockCount, c1);
Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize);
// Launch async dispatch function for [0, blockCount) range.
SmallVector<Value> operands = {group, c0, blockCount, blockSize};
appendBlockComputeOperands(operands);
b.create<func::CallOp>(asyncDispatchFunction.getSymName(),
asyncDispatchFunction.getResultTypes(), operands);
// Wait for the completion of all parallel compute operations.
b.create<AwaitAllOp>(group);
b.create<scf::YieldOp>();
};
// Dispatch either single block compute function, or launch async dispatch.
b.create<scf::IfOp>(isSingleBlock, syncDispatch, asyncDispatch);
}
// Dispatch parallel compute functions by submitting all async compute tasks
// from a simple for loop in the caller thread.
static void
doSequentialDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter,
ParallelComputeFunction &parallelComputeFunction,
scf::ParallelOp op, Value blockSize, Value blockCount,
const SmallVector<Value> &tripCounts) {
MLIRContext *ctx = op->getContext();
func::FuncOp compute = parallelComputeFunction.func;
Value c0 = b.create<arith::ConstantIndexOp>(0);
Value c1 = b.create<arith::ConstantIndexOp>(1);
// Create an async.group to wait on all async tokens from the concurrent
// execution of multiple parallel compute function. First block will be
// executed synchronously in the caller thread.
Value groupSize = b.create<arith::SubIOp>(blockCount, c1);
Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize);
// Call parallel compute function for all blocks.
using LoopBodyBuilder =
std::function<void(OpBuilder &, Location, Value, ValueRange)>;
// Returns parallel compute function operands to process the given block.
auto computeFuncOperands = [&](Value blockIndex) -> SmallVector<Value> {
SmallVector<Value> computeFuncOperands = {blockIndex, blockSize};
computeFuncOperands.append(tripCounts);
computeFuncOperands.append(op.getLowerBound().begin(),
op.getLowerBound().end());
computeFuncOperands.append(op.getUpperBound().begin(),
op.getUpperBound().end());
computeFuncOperands.append(op.getStep().begin(), op.getStep().end());
computeFuncOperands.append(parallelComputeFunction.captures);
return computeFuncOperands;
};
// Induction variable is the index of the block: [0, blockCount).
LoopBodyBuilder loopBuilder = [&](OpBuilder &loopBuilder, Location loc,
Value iv, ValueRange args) {
ImplicitLocOpBuilder b(loc, loopBuilder);
// Call parallel compute function inside the async.execute region.
auto executeBodyBuilder = [&](OpBuilder &executeBuilder,
Location executeLoc, ValueRange executeArgs) {
executeBuilder.create<func::CallOp>(executeLoc, compute.getSymName(),
compute.getResultTypes(),
computeFuncOperands(iv));
executeBuilder.create<async::YieldOp>(executeLoc, ValueRange());
};
// Create async.execute operation to launch parallel computate function.
auto execute = b.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(),
executeBodyBuilder);
b.create<AddToGroupOp>(rewriter.getIndexType(), execute.getToken(), group);
b.create<scf::YieldOp>();
};
// Iterate over all compute blocks and launch parallel compute operations.
b.create<scf::ForOp>(c1, blockCount, c1, ValueRange(), loopBuilder);
// Call parallel compute function for the first block in the caller thread.
b.create<func::CallOp>(compute.getSymName(), compute.getResultTypes(),
computeFuncOperands(c0));
// Wait for the completion of all async compute operations.
b.create<AwaitAllOp>(group);
}
LogicalResult
AsyncParallelForRewrite::matchAndRewrite(scf::ParallelOp op,
PatternRewriter &rewriter) const {
// We do not currently support rewrite for parallel op with reductions.
if (op.getNumReductions() != 0)
return failure();
ImplicitLocOpBuilder b(op.getLoc(), rewriter);
// Computing minTaskSize emits IR and can be implemented as executing a cost
// model on the body of the scf.parallel. Thus it needs to be computed before
// the body of the scf.parallel has been manipulated.
Value minTaskSize = computeMinTaskSize(b, op);
// Make sure that all constants will be inside the parallel operation body to
// reduce the number of parallel compute function arguments.
cloneConstantsIntoTheRegion(op.getRegion(), rewriter);
// Compute trip count for each loop induction variable:
// tripCount = ceil_div(upperBound - lowerBound, step);
SmallVector<Value> tripCounts(op.getNumLoops());
for (size_t i = 0; i < op.getNumLoops(); ++i) {
auto lb = op.getLowerBound()[i];
auto ub = op.getUpperBound()[i];
auto step = op.getStep()[i];
auto range = b.createOrFold<arith::SubIOp>(ub, lb);
tripCounts[i] = b.createOrFold<arith::CeilDivSIOp>(range, step);
}
// Compute a product of trip counts to get the 1-dimensional iteration space
// for the scf.parallel operation.
Value tripCount = tripCounts[0];
for (size_t i = 1; i < tripCounts.size(); ++i)
tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]);
// Short circuit no-op parallel loops (zero iterations) that can arise from
// the memrefs with dynamic dimension(s) equal to zero.
Value c0 = b.create<arith::ConstantIndexOp>(0);
Value isZeroIterations =
b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, tripCount, c0);
// Do absolutely nothing if the trip count is zero.
auto noOp = [&](OpBuilder &nestedBuilder, Location loc) {
nestedBuilder.create<scf::YieldOp>(loc);
};
// Compute the parallel block size and dispatch concurrent tasks computing
// results for each block.
auto dispatch = [&](OpBuilder &nestedBuilder, Location loc) {
ImplicitLocOpBuilder b(loc, nestedBuilder);
// Collect statically known constants defining the loop nest in the parallel
// compute function. LLVM can't always push constants across the non-trivial
// async dispatch call graph, by providing these values explicitly we can
// choose to build more efficient loop nest, and rely on a better constant
// folding, loop unrolling and vectorization.
ParallelComputeFunctionBounds staticBounds = {
integerConstants(tripCounts),
integerConstants(op.getLowerBound()),
integerConstants(op.getUpperBound()),
integerConstants(op.getStep()),
};
// Find how many inner iteration dimensions are statically known, and their
// product is smaller than the `512`. We align the parallel compute block
// size by the product of statically known dimensions, so that we can
// guarantee that the inner loops executes from 0 to the loop trip counts
// and we can elide dynamic loop boundaries, and give LLVM an opportunity to
// unroll the loops. The constant `512` is arbitrary, it should depend on
// how many iterations LLVM will typically decide to unroll.
static constexpr int64_t maxUnrollableIterations = 512;
// The number of inner loops with statically known number of iterations less
// than the `maxUnrollableIterations` value.
int numUnrollableLoops = 0;
auto getInt = [](IntegerAttr attr) { return attr ? attr.getInt() : 0; };
SmallVector<int64_t> numIterations(op.getNumLoops());
numIterations.back() = getInt(staticBounds.tripCounts.back());
for (int i = op.getNumLoops() - 2; i >= 0; --i) {
int64_t tripCount = getInt(staticBounds.tripCounts[i]);
int64_t innerIterations = numIterations[i + 1];
numIterations[i] = tripCount * innerIterations;
// Update the number of inner loops that we can potentially unroll.
if (innerIterations > 0 && innerIterations <= maxUnrollableIterations)
numUnrollableLoops++;
}
Value numWorkerThreadsVal;
if (numWorkerThreads >= 0)
numWorkerThreadsVal = b.create<arith::ConstantIndexOp>(numWorkerThreads);
else
numWorkerThreadsVal = b.create<async::RuntimeNumWorkerThreadsOp>();
// With large number of threads the value of creating many compute blocks
// is reduced because the problem typically becomes memory bound. For this
// reason we scale the number of workers using an equivalent to the
// following logic:
// float overshardingFactor = numWorkerThreads <= 4 ? 8.0
// : numWorkerThreads <= 8 ? 4.0
// : numWorkerThreads <= 16 ? 2.0
// : numWorkerThreads <= 32 ? 1.0
// : numWorkerThreads <= 64 ? 0.8
// : 0.6;
// Pairs of non-inclusive lower end of the bracket and factor that the
// number of workers needs to be scaled with if it falls in that bucket.
const SmallVector<std::pair<int, float>> overshardingBrackets = {
{4, 4.0f}, {8, 2.0f}, {16, 1.0f}, {32, 0.8f}, {64, 0.6f}};
const float initialOvershardingFactor = 8.0f;
Value scalingFactor = b.create<arith::ConstantFloatOp>(
llvm::APFloat(initialOvershardingFactor), b.getF32Type());
for (const std::pair<int, float> &p : overshardingBrackets) {
Value bracketBegin = b.create<arith::ConstantIndexOp>(p.first);
Value inBracket = b.create<arith::CmpIOp>(
arith::CmpIPredicate::sgt, numWorkerThreadsVal, bracketBegin);
Value bracketScalingFactor = b.create<arith::ConstantFloatOp>(
llvm::APFloat(p.second), b.getF32Type());
scalingFactor = b.create<arith::SelectOp>(inBracket, bracketScalingFactor,
scalingFactor);
}
Value numWorkersIndex =
b.create<arith::IndexCastOp>(b.getI32Type(), numWorkerThreadsVal);
Value numWorkersFloat =
b.create<arith::SIToFPOp>(b.getF32Type(), numWorkersIndex);
Value scaledNumWorkers =
b.create<arith::MulFOp>(scalingFactor, numWorkersFloat);
Value scaledNumInt =
b.create<arith::FPToSIOp>(b.getI32Type(), scaledNumWorkers);
Value scaledWorkers =
b.create<arith::IndexCastOp>(b.getIndexType(), scaledNumInt);
Value maxComputeBlocks = b.create<arith::MaxSIOp>(
b.create<arith::ConstantIndexOp>(1), scaledWorkers);
// Compute parallel block size from the parallel problem size:
// blockSize = min(tripCount,
// max(ceil_div(tripCount, maxComputeBlocks),
// minTaskSize))
Value bs0 = b.create<arith::CeilDivSIOp>(tripCount, maxComputeBlocks);
Value bs1 = b.create<arith::MaxSIOp>(bs0, minTaskSize);
Value blockSize = b.create<arith::MinSIOp>(tripCount, bs1);
// Dispatch parallel compute function using async recursive work splitting,
// or by submitting compute task sequentially from a caller thread.
auto doDispatch = asyncDispatch ? doAsyncDispatch : doSequentialDispatch;
// Create a parallel compute function that takes a block id and computes
// the parallel operation body for a subset of iteration space.
// Compute the number of parallel compute blocks.
Value blockCount = b.create<arith::CeilDivSIOp>(tripCount, blockSize);
// Dispatch parallel compute function without hints to unroll inner loops.
auto dispatchDefault = [&](OpBuilder &nestedBuilder, Location loc) {
ParallelComputeFunction compute =
createParallelComputeFunction(op, staticBounds, 0, rewriter);
ImplicitLocOpBuilder b(loc, nestedBuilder);
doDispatch(b, rewriter, compute, op, blockSize, blockCount, tripCounts);
b.create<scf::YieldOp>();
};
// Dispatch parallel compute function with hints for unrolling inner loops.
auto dispatchBlockAligned = [&](OpBuilder &nestedBuilder, Location loc) {
ParallelComputeFunction compute = createParallelComputeFunction(
op, staticBounds, numUnrollableLoops, rewriter);
ImplicitLocOpBuilder b(loc, nestedBuilder);
// Align the block size to be a multiple of the statically known
// number of iterations in the inner loops.
Value numIters = b.create<arith::ConstantIndexOp>(
numIterations[op.getNumLoops() - numUnrollableLoops]);
Value alignedBlockSize = b.create<arith::MulIOp>(
b.create<arith::CeilDivSIOp>(blockSize, numIters), numIters);
doDispatch(b, rewriter, compute, op, alignedBlockSize, blockCount,
tripCounts);
b.create<scf::YieldOp>();
};
// Dispatch to block aligned compute function only if the computed block
// size is larger than the number of iterations in the unrollable inner
// loops, because otherwise it can reduce the available parallelism.
if (numUnrollableLoops > 0) {
Value numIters = b.create<arith::ConstantIndexOp>(
numIterations[op.getNumLoops() - numUnrollableLoops]);
Value useBlockAlignedComputeFn = b.create<arith::CmpIOp>(
arith::CmpIPredicate::sge, blockSize, numIters);
b.create<scf::IfOp>(useBlockAlignedComputeFn, dispatchBlockAligned,
dispatchDefault);
b.create<scf::YieldOp>();
} else {
dispatchDefault(b, loc);
}
};
// Replace the `scf.parallel` operation with the parallel compute function.
b.create<scf::IfOp>(isZeroIterations, noOp, dispatch);
// Parallel operation was replaced with a block iteration loop.
rewriter.eraseOp(op);
return success();
}
void AsyncParallelForPass::runOnOperation() {
MLIRContext *ctx = &getContext();
RewritePatternSet patterns(ctx);
populateAsyncParallelForPatterns(
patterns, asyncDispatch, numWorkerThreads,
[&](ImplicitLocOpBuilder builder, scf::ParallelOp op) {
return builder.create<arith::ConstantIndexOp>(minTaskSize);
});
if (failed(applyPatternsGreedily(getOperation(), std::move(patterns))))
signalPassFailure();
}
std::unique_ptr<Pass> mlir::createAsyncParallelForPass() {
return std::make_unique<AsyncParallelForPass>();
}
std::unique_ptr<Pass> mlir::createAsyncParallelForPass(bool asyncDispatch,
int32_t numWorkerThreads,
int32_t minTaskSize) {
return std::make_unique<AsyncParallelForPass>(asyncDispatch, numWorkerThreads,
minTaskSize);
}
void mlir::async::populateAsyncParallelForPatterns(
RewritePatternSet &patterns, bool asyncDispatch, int32_t numWorkerThreads,
const AsyncMinTaskSizeComputationFunction &computeMinTaskSize) {
MLIRContext *ctx = patterns.getContext();
patterns.add<AsyncParallelForRewrite>(ctx, asyncDispatch, numWorkerThreads,
computeMinTaskSize);
}