Files
clang-p2996/lldb/source/Plugins/OperatingSystem/Python/OperatingSystemPython.cpp
Greg Clayton 99558cc424 Final bit of type system cleanup that abstracts declaration contexts into lldb_private::CompilerDeclContext and renames ClangType to CompilerType in many accessors and functions.
Create a new "lldb_private::CompilerDeclContext" class that will replace all direct uses of "clang::DeclContext" when used in compiler agnostic code, yet still allow for conversion to clang::DeclContext subclasses by clang specific code. This completes the abstraction of type parsing by removing all "clang::" references from the SymbolFileDWARF. The new "lldb_private::CompilerDeclContext" class abstracts decl contexts found in compiler type systems so they can be used in internal API calls. The TypeSystem is required to support CompilerDeclContexts with new pure virtual functions that start with "DeclContext" in the member function names. Converted all code that used lldb_private::ClangNamespaceDecl over to use the new CompilerDeclContext class and removed the ClangNamespaceDecl.cpp and ClangNamespaceDecl.h files.

Removed direct use of clang APIs from SBType and now use the abstract type systems to correctly explore types.

Bulk renames for things that used to return a ClangASTType which is now CompilerType:

    "Type::GetClangFullType()" to "Type::GetFullCompilerType()"
    "Type::GetClangLayoutType()" to "Type::GetLayoutCompilerType()"
    "Type::GetClangForwardType()" to "Type::GetForwardCompilerType()"
    "Value::GetClangType()" to "Value::GetCompilerType()"
    "Value::SetClangType (const CompilerType &)" to "Value::SetCompilerType (const CompilerType &)"
    "ValueObject::GetClangType ()" to "ValueObject::GetCompilerType()"
    many more renames that are similar.

llvm-svn: 245905
2015-08-24 23:46:31 +00:00

426 lines
16 KiB
C++

//===-- OperatingSystemPython.cpp --------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLDB_DISABLE_PYTHON
#include "OperatingSystemPython.h"
// C Includes
// C++ Includes
// Other libraries and framework includes
#include "lldb/Core/ArchSpec.h"
#include "lldb/Core/DataBufferHeap.h"
#include "lldb/Core/Debugger.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/RegisterValue.h"
#include "lldb/Core/StreamString.h"
#include "lldb/Core/StructuredData.h"
#include "lldb/Core/ValueObjectVariable.h"
#include "lldb/Interpreter/CommandInterpreter.h"
#include "lldb/Interpreter/ScriptInterpreter.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Symbol/VariableList.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/StopInfo.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/ThreadList.h"
#include "lldb/Target/Thread.h"
#include "Plugins/Process/Utility/DynamicRegisterInfo.h"
#include "Plugins/Process/Utility/RegisterContextDummy.h"
#include "Plugins/Process/Utility/RegisterContextMemory.h"
#include "Plugins/Process/Utility/ThreadMemory.h"
using namespace lldb;
using namespace lldb_private;
void
OperatingSystemPython::Initialize()
{
PluginManager::RegisterPlugin (GetPluginNameStatic(),
GetPluginDescriptionStatic(),
CreateInstance);
}
void
OperatingSystemPython::Terminate()
{
PluginManager::UnregisterPlugin (CreateInstance);
}
OperatingSystem *
OperatingSystemPython::CreateInstance (Process *process, bool force)
{
// Python OperatingSystem plug-ins must be requested by name, so force must be true
FileSpec python_os_plugin_spec (process->GetPythonOSPluginPath());
if (python_os_plugin_spec && python_os_plugin_spec.Exists())
{
std::unique_ptr<OperatingSystemPython> os_ap (new OperatingSystemPython (process, python_os_plugin_spec));
if (os_ap.get() && os_ap->IsValid())
return os_ap.release();
}
return NULL;
}
ConstString
OperatingSystemPython::GetPluginNameStatic()
{
static ConstString g_name("python");
return g_name;
}
const char *
OperatingSystemPython::GetPluginDescriptionStatic()
{
return "Operating system plug-in that gathers OS information from a python class that implements the necessary OperatingSystem functionality.";
}
OperatingSystemPython::OperatingSystemPython (lldb_private::Process *process, const FileSpec &python_module_path) :
OperatingSystem (process),
m_thread_list_valobj_sp (),
m_register_info_ap (),
m_interpreter (NULL),
m_python_object_sp ()
{
if (!process)
return;
TargetSP target_sp = process->CalculateTarget();
if (!target_sp)
return;
m_interpreter = target_sp->GetDebugger().GetCommandInterpreter().GetScriptInterpreter();
if (m_interpreter)
{
std::string os_plugin_class_name (python_module_path.GetFilename().AsCString(""));
if (!os_plugin_class_name.empty())
{
const bool init_session = false;
const bool allow_reload = true;
char python_module_path_cstr[PATH_MAX];
python_module_path.GetPath(python_module_path_cstr, sizeof(python_module_path_cstr));
Error error;
if (m_interpreter->LoadScriptingModule (python_module_path_cstr, allow_reload, init_session, error))
{
// Strip the ".py" extension if there is one
size_t py_extension_pos = os_plugin_class_name.rfind(".py");
if (py_extension_pos != std::string::npos)
os_plugin_class_name.erase (py_extension_pos);
// Add ".OperatingSystemPlugIn" to the module name to get a string like "modulename.OperatingSystemPlugIn"
os_plugin_class_name += ".OperatingSystemPlugIn";
StructuredData::ObjectSP object_sp =
m_interpreter->OSPlugin_CreatePluginObject(os_plugin_class_name.c_str(), process->CalculateProcess());
if (object_sp && object_sp->IsValid())
m_python_object_sp = object_sp;
}
}
}
}
OperatingSystemPython::~OperatingSystemPython ()
{
}
DynamicRegisterInfo *
OperatingSystemPython::GetDynamicRegisterInfo ()
{
if (m_register_info_ap.get() == NULL)
{
if (!m_interpreter || !m_python_object_sp)
return NULL;
Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_OS));
if (log)
log->Printf ("OperatingSystemPython::GetDynamicRegisterInfo() fetching thread register definitions from python for pid %" PRIu64, m_process->GetID());
StructuredData::DictionarySP dictionary = m_interpreter->OSPlugin_RegisterInfo(m_python_object_sp);
if (!dictionary)
return NULL;
m_register_info_ap.reset(new DynamicRegisterInfo(*dictionary, m_process->GetTarget().GetArchitecture()));
assert (m_register_info_ap->GetNumRegisters() > 0);
assert (m_register_info_ap->GetNumRegisterSets() > 0);
}
return m_register_info_ap.get();
}
//------------------------------------------------------------------
// PluginInterface protocol
//------------------------------------------------------------------
ConstString
OperatingSystemPython::GetPluginName()
{
return GetPluginNameStatic();
}
uint32_t
OperatingSystemPython::GetPluginVersion()
{
return 1;
}
bool
OperatingSystemPython::UpdateThreadList (ThreadList &old_thread_list,
ThreadList &core_thread_list,
ThreadList &new_thread_list)
{
if (!m_interpreter || !m_python_object_sp)
return false;
Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_OS));
// First thing we have to do is to try to get the API lock, and the run lock.
// We're going to change the thread content of the process, and we're going
// to use python, which requires the API lock to do it.
//
// If someone already has the API lock, that is ok, we just want to avoid
// external code from making new API calls while this call is happening.
//
// This is a recursive lock so we can grant it to any Python code called on
// the stack below us.
Target &target = m_process->GetTarget();
Mutex::Locker api_locker;
api_locker.TryLock(target.GetAPIMutex());
if (log)
log->Printf ("OperatingSystemPython::UpdateThreadList() fetching thread data from python for pid %" PRIu64, m_process->GetID());
// The threads that are in "new_thread_list" upon entry are the threads from the
// lldb_private::Process subclass, no memory threads will be in this list.
auto lock = m_interpreter->AcquireInterpreterLock(); // to make sure threads_list stays alive
StructuredData::ArraySP threads_list = m_interpreter->OSPlugin_ThreadsInfo(m_python_object_sp);
const uint32_t num_cores = core_thread_list.GetSize(false);
// Make a map so we can keep track of which cores were used from the
// core_thread list. Any real threads/cores that weren't used should
// later be put back into the "new_thread_list".
std::vector<bool> core_used_map(num_cores, false);
if (threads_list)
{
if (log)
{
StreamString strm;
threads_list->Dump(strm);
log->Printf("threads_list = %s", strm.GetString().c_str());
}
const uint32_t num_threads = threads_list->GetSize();
for (uint32_t i = 0; i < num_threads; ++i)
{
StructuredData::ObjectSP thread_dict_obj = threads_list->GetItemAtIndex(i);
if (auto thread_dict = thread_dict_obj->GetAsDictionary())
{
ThreadSP thread_sp(CreateThreadFromThreadInfo(*thread_dict, core_thread_list, old_thread_list, core_used_map, NULL));
if (thread_sp)
new_thread_list.AddThread(thread_sp);
}
}
}
// Any real core threads that didn't end up backing a memory thread should
// still be in the main thread list, and they should be inserted at the beginning
// of the list
uint32_t insert_idx = 0;
for (uint32_t core_idx = 0; core_idx < num_cores; ++core_idx)
{
if (core_used_map[core_idx] == false)
{
new_thread_list.InsertThread (core_thread_list.GetThreadAtIndex(core_idx, false), insert_idx);
++insert_idx;
}
}
return new_thread_list.GetSize(false) > 0;
}
ThreadSP
OperatingSystemPython::CreateThreadFromThreadInfo(StructuredData::Dictionary &thread_dict, ThreadList &core_thread_list,
ThreadList &old_thread_list, std::vector<bool> &core_used_map, bool *did_create_ptr)
{
ThreadSP thread_sp;
tid_t tid = LLDB_INVALID_THREAD_ID;
if (!thread_dict.GetValueForKeyAsInteger("tid", tid))
return ThreadSP();
uint32_t core_number;
addr_t reg_data_addr;
std::string name;
std::string queue;
thread_dict.GetValueForKeyAsInteger("core", core_number, UINT32_MAX);
thread_dict.GetValueForKeyAsInteger("register_data_addr", reg_data_addr, LLDB_INVALID_ADDRESS);
thread_dict.GetValueForKeyAsString("name", name);
thread_dict.GetValueForKeyAsString("queue", queue);
// See if a thread already exists for "tid"
thread_sp = old_thread_list.FindThreadByID(tid, false);
if (thread_sp)
{
// A thread already does exist for "tid", make sure it was an operating system
// plug-in generated thread.
if (!IsOperatingSystemPluginThread(thread_sp))
{
// We have thread ID overlap between the protocol threads and the
// operating system threads, clear the thread so we create an
// operating system thread for this.
thread_sp.reset();
}
}
if (!thread_sp)
{
if (did_create_ptr)
*did_create_ptr = true;
thread_sp.reset(new ThreadMemory(*m_process, tid, name.c_str(), queue.c_str(), reg_data_addr));
}
if (core_number < core_thread_list.GetSize(false))
{
ThreadSP core_thread_sp(core_thread_list.GetThreadAtIndex(core_number, false));
if (core_thread_sp)
{
// Keep track of which cores were set as the backing thread for memory threads...
if (core_number < core_used_map.size())
core_used_map[core_number] = true;
ThreadSP backing_core_thread_sp(core_thread_sp->GetBackingThread());
if (backing_core_thread_sp)
{
thread_sp->SetBackingThread(backing_core_thread_sp);
}
else
{
thread_sp->SetBackingThread(core_thread_sp);
}
}
}
return thread_sp;
}
void
OperatingSystemPython::ThreadWasSelected (Thread *thread)
{
}
RegisterContextSP
OperatingSystemPython::CreateRegisterContextForThread (Thread *thread, addr_t reg_data_addr)
{
RegisterContextSP reg_ctx_sp;
if (!m_interpreter || !m_python_object_sp || !thread)
return reg_ctx_sp;
if (!IsOperatingSystemPluginThread(thread->shared_from_this()))
return reg_ctx_sp;
// First thing we have to do is get the API lock, and the run lock. We're going to change the thread
// content of the process, and we're going to use python, which requires the API lock to do it.
// So get & hold that. This is a recursive lock so we can grant it to any Python code called on the stack below us.
Target &target = m_process->GetTarget();
Mutex::Locker api_locker (target.GetAPIMutex());
Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
auto lock = m_interpreter->AcquireInterpreterLock(); // to make sure python objects stays alive
if (reg_data_addr != LLDB_INVALID_ADDRESS)
{
// The registers data is in contiguous memory, just create the register
// context using the address provided
if (log)
log->Printf ("OperatingSystemPython::CreateRegisterContextForThread (tid = 0x%" PRIx64 ", 0x%" PRIx64 ", reg_data_addr = 0x%" PRIx64 ") creating memory register context",
thread->GetID(),
thread->GetProtocolID(),
reg_data_addr);
reg_ctx_sp.reset (new RegisterContextMemory (*thread, 0, *GetDynamicRegisterInfo (), reg_data_addr));
}
else
{
// No register data address is provided, query the python plug-in to let
// it make up the data as it sees fit
if (log)
log->Printf ("OperatingSystemPython::CreateRegisterContextForThread (tid = 0x%" PRIx64 ", 0x%" PRIx64 ") fetching register data from python",
thread->GetID(),
thread->GetProtocolID());
StructuredData::StringSP reg_context_data = m_interpreter->OSPlugin_RegisterContextData(m_python_object_sp, thread->GetID());
if (reg_context_data)
{
std::string value = reg_context_data->GetValue();
DataBufferSP data_sp(new DataBufferHeap(value.c_str(), value.length()));
if (data_sp->GetByteSize())
{
RegisterContextMemory *reg_ctx_memory = new RegisterContextMemory (*thread, 0, *GetDynamicRegisterInfo (), LLDB_INVALID_ADDRESS);
if (reg_ctx_memory)
{
reg_ctx_sp.reset(reg_ctx_memory);
reg_ctx_memory->SetAllRegisterData (data_sp);
}
}
}
}
// if we still have no register data, fallback on a dummy context to avoid crashing
if (!reg_ctx_sp)
{
if (log)
log->Printf ("OperatingSystemPython::CreateRegisterContextForThread (tid = 0x%" PRIx64 ") forcing a dummy register context", thread->GetID());
reg_ctx_sp.reset(new RegisterContextDummy(*thread,0,target.GetArchitecture().GetAddressByteSize()));
}
return reg_ctx_sp;
}
StopInfoSP
OperatingSystemPython::CreateThreadStopReason (lldb_private::Thread *thread)
{
// We should have gotten the thread stop info from the dictionary of data for
// the thread in the initial call to get_thread_info(), this should have been
// cached so we can return it here
StopInfoSP stop_info_sp; //(StopInfo::CreateStopReasonWithSignal (*thread, SIGSTOP));
return stop_info_sp;
}
lldb::ThreadSP
OperatingSystemPython::CreateThread (lldb::tid_t tid, addr_t context)
{
Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
if (log)
log->Printf ("OperatingSystemPython::CreateThread (tid = 0x%" PRIx64 ", context = 0x%" PRIx64 ") fetching register data from python", tid, context);
if (m_interpreter && m_python_object_sp)
{
// First thing we have to do is get the API lock, and the run lock. We're going to change the thread
// content of the process, and we're going to use python, which requires the API lock to do it.
// So get & hold that. This is a recursive lock so we can grant it to any Python code called on the stack below us.
Target &target = m_process->GetTarget();
Mutex::Locker api_locker (target.GetAPIMutex());
auto lock = m_interpreter->AcquireInterpreterLock(); // to make sure thread_info_dict stays alive
StructuredData::DictionarySP thread_info_dict = m_interpreter->OSPlugin_CreateThread(m_python_object_sp, tid, context);
std::vector<bool> core_used_map;
if (thread_info_dict)
{
ThreadList core_threads(m_process);
ThreadList &thread_list = m_process->GetThreadList();
bool did_create = false;
ThreadSP thread_sp(CreateThreadFromThreadInfo(*thread_info_dict, core_threads, thread_list, core_used_map, &did_create));
if (did_create)
thread_list.AddThread(thread_sp);
return thread_sp;
}
}
return ThreadSP();
}
#endif // #ifndef LLDB_DISABLE_PYTHON