Files
clang-p2996/mlir/test/lib/Transforms/TestLoopMapping.cpp
Nicolas Vasilache db4cd1c8dc Utility function to map a loop on a parametric grid of virtual processors
This CL introduces a simple loop utility function which rewrites the bounds and step of a loop so as to become mappable on a regular grid of processors whose identifiers are given by SSA values.

A corresponding unit test is added.

For example, using CUDA terminology, and assuming a 2-d grid with processorIds = [blockIdx.x, threadIdx.x] and numProcessors = [gridDim.x, blockDim.x], the loop:
```
   loop.for %i = %lb to %ub step %step {
     ...
   }
```
is rewritten into a version resembling the following pseudo-IR:
```
   loop.for %i = %lb + threadIdx.x + blockIdx.x * blockDim.x to %ub
      step %gridDim.x * blockDim.x {
     ...
   }
```

PiperOrigin-RevId: 258945942
2019-07-19 11:40:31 -07:00

66 lines
2.3 KiB
C++

//===- TestLoopMapping.cpp --- Parametric loop mapping pass ---------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements a pass to parametrically map loop.for loops to virtual
// processing element dimensions.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/LoopOps/LoopOps.h"
#include "mlir/IR/Builders.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/LoopUtils.h"
#include "mlir/Transforms/Passes.h"
#include "llvm/ADT/SetVector.h"
using namespace mlir;
namespace {
class TestLoopMappingPass : public FunctionPass<TestLoopMappingPass> {
public:
explicit TestLoopMappingPass() {}
void runOnFunction() override {
FuncOp func = getFunction();
// SSA values for the transformation are created out of thin air by
// unregistered "new_processor_id_and_range" operations. This is enough to
// emulate mapping conditions.
SmallVector<Value *, 8> processorIds, numProcessors;
func.walk([&processorIds, &numProcessors](Operation *op) {
if (op->getName().getStringRef() != "new_processor_id_and_range")
return;
processorIds.push_back(op->getResult(0));
numProcessors.push_back(op->getResult(1));
});
func.walk<loop::ForOp>([&processorIds, &numProcessors](loop::ForOp op) {
// Ignore nested loops.
if (op.getContainingRegion()->getParentOfType<loop::ForOp>())
return;
mapLoopToProcessorIds(op, processorIds, numProcessors);
});
}
};
} // end namespace
static PassRegistration<TestLoopMappingPass>
reg("test-mapping-to-processing-elements",
"test mapping a single loop on a virtual processor grid",
[] { return new TestLoopMappingPass(); });