Files
clang-p2996/lld/lib/ReaderWriter/Native/WriterNative.cpp
Nick Kledzik e555277780 [lld] Introduce registry and Reference kind tuple
The main changes are in:
  include/lld/Core/Reference.h
  include/lld/ReaderWriter/Reader.h
Everything else is details to support the main change.

1) Registration based Readers
Previously, lld had a tangled interdependency with all the Readers.  It would
have been impossible to make a streamlined linker (say for a JIT) which
just supported one file format and one architecture (no yaml, no archives, etc).
The old model also required a LinkingContext to read an object file, which
would have made .o inspection tools awkward.

The new model is that there is a global Registry object. You programmatically 
register the Readers you want with the registry object. Whenever you need to 
read/parse a file, you ask the registry to do it, and the registry tries each 
registered reader.

For ease of use with the existing lld code base, there is one Registry
object inside the LinkingContext object. 


2) Changing kind value to be a tuple
Beside Readers, the registry also keeps track of the mapping for Reference
Kind values to and from strings.  Along with that, this patch also fixes
an ambiguity with the previous Reference::Kind values.  The problem was that
we wanted to reuse existing relocation type values as Reference::Kind values.
But then how can the YAML write know how to convert a value to a string? The
fix is to change the 32-bit Reference::Kind into a tuple with an 8-bit namespace
(e.g. ELF, COFFF, etc), an 8-bit architecture (e.g. x86_64, PowerPC, etc), and
a 16-bit value.  This tuple system allows conversion to and from strings with 
no ambiguities.

llvm-svn: 197727
2013-12-19 21:58:00 +00:00

556 lines
20 KiB
C++

//===- lib/ReaderWriter/Native/WriterNative.cpp ---------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lld/ReaderWriter/Writer.h"
#include "lld/Core/File.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/system_error.h"
#include "NativeFileFormat.h"
#include <cstdint>
#include <set>
#include <vector>
namespace lld {
namespace native {
///
/// Class for writing native object files.
///
class Writer : public lld::Writer {
public:
Writer(const LinkingContext &context) {}
virtual error_code writeFile(const lld::File &file, StringRef outPath) {
// reserve first byte for unnamed atoms
_stringPool.push_back('\0');
// visit all atoms
for ( const DefinedAtom *defAtom : file.defined() ) {
this->addIVarsForDefinedAtom(*defAtom);
}
for ( const UndefinedAtom *undefAtom : file.undefined() ) {
this->addIVarsForUndefinedAtom(*undefAtom);
}
for ( const SharedLibraryAtom *shlibAtom : file.sharedLibrary() ) {
this->addIVarsForSharedLibraryAtom(*shlibAtom);
}
for ( const AbsoluteAtom *absAtom : file.absolute() ) {
this->addIVarsForAbsoluteAtom(*absAtom);
}
maybeConvertReferencesToV1();
// construct file header based on atom information accumulated
this->makeHeader();
std::string errorInfo;
llvm::raw_fd_ostream out(outPath.data(), errorInfo,
llvm::sys::fs::F_Binary);
if (!errorInfo.empty())
return error_code::success(); // FIXME
this->write(out);
return error_code::success();
}
virtual ~Writer() {
}
private:
// write the lld::File in native format to the specified stream
void write(raw_ostream &out) {
assert(out.tell() == 0);
out.write((char*)_headerBuffer, _headerBufferSize);
writeChunk(out, _definedAtomIvars, NCS_DefinedAtomsV1);
writeChunk(out, _attributes, NCS_AttributesArrayV1);
writeChunk(out, _undefinedAtomIvars, NCS_UndefinedAtomsV1);
writeChunk(out, _sharedLibraryAtomIvars, NCS_SharedLibraryAtomsV1);
writeChunk(out, _absoluteAtomIvars, NCS_AbsoluteAtomsV1);
writeChunk(out, _absAttributes, NCS_AbsoluteAttributesV1);
writeChunk(out, _stringPool, NCS_Strings);
writeChunk(out, _referencesV1, NCS_ReferencesArrayV1);
writeChunk(out, _referencesV2, NCS_ReferencesArrayV2);
if (!_targetsTableIndex.empty()) {
assert(out.tell() == findChunk(NCS_TargetsTable).fileOffset);
writeTargetTable(out);
}
if (!_addendsTableIndex.empty()) {
assert(out.tell() == findChunk(NCS_AddendsTable).fileOffset);
writeAddendTable(out);
}
writeChunk(out, _contentPool, NCS_Content);
}
template<class T>
void writeChunk(raw_ostream &out, std::vector<T> &vector, uint32_t signature) {
if (vector.empty())
return;
assert(out.tell() == findChunk(signature).fileOffset);
out.write((char*)&vector[0], vector.size() * sizeof(T));
}
void addIVarsForDefinedAtom(const DefinedAtom& atom) {
_definedAtomIndex[&atom] = _definedAtomIvars.size();
NativeDefinedAtomIvarsV1 ivar;
unsigned refsCount;
ivar.nameOffset = getNameOffset(atom);
ivar.attributesOffset = getAttributeOffset(atom);
ivar.referencesStartIndex = getReferencesIndex(atom, refsCount);
ivar.referencesCount = refsCount;
ivar.contentOffset = getContentOffset(atom);
ivar.contentSize = atom.size();
_definedAtomIvars.push_back(ivar);
}
void addIVarsForUndefinedAtom(const UndefinedAtom& atom) {
_undefinedAtomIndex[&atom] = _undefinedAtomIvars.size();
NativeUndefinedAtomIvarsV1 ivar;
ivar.nameOffset = getNameOffset(atom);
ivar.flags = (atom.canBeNull() & 0x03);
ivar.fallbackNameOffset = 0;
if (atom.fallback())
ivar.fallbackNameOffset = getNameOffset(*atom.fallback());
_undefinedAtomIvars.push_back(ivar);
}
void addIVarsForSharedLibraryAtom(const SharedLibraryAtom& atom) {
_sharedLibraryAtomIndex[&atom] = _sharedLibraryAtomIvars.size();
NativeSharedLibraryAtomIvarsV1 ivar;
ivar.size = atom.size();
ivar.nameOffset = getNameOffset(atom);
ivar.loadNameOffset = getSharedLibraryNameOffset(atom.loadName());
ivar.type = (uint32_t)atom.type();
ivar.flags = atom.canBeNullAtRuntime();
_sharedLibraryAtomIvars.push_back(ivar);
}
void addIVarsForAbsoluteAtom(const AbsoluteAtom& atom) {
_absoluteAtomIndex[&atom] = _absoluteAtomIvars.size();
NativeAbsoluteAtomIvarsV1 ivar;
ivar.nameOffset = getNameOffset(atom);
ivar.attributesOffset = getAttributeOffset(atom);
ivar.reserved = 0;
ivar.value = atom.value();
_absoluteAtomIvars.push_back(ivar);
}
void convertReferencesToV1() {
for (const NativeReferenceIvarsV2 &v2 : _referencesV2) {
NativeReferenceIvarsV1 v1;
v1.offsetInAtom = v2.offsetInAtom;
v1.kindNamespace = v2.kindNamespace;
v1.kindArch = v2.kindArch;
v1.kindValue = v2.kindValue;
v1.targetIndex = (v2.targetIndex == NativeReferenceIvarsV2::noTarget) ?
NativeReferenceIvarsV1::noTarget : v2.targetIndex;
v1.addendIndex = this->getAddendIndex(v2.addend);
_referencesV1.push_back(v1);
}
_referencesV2.clear();
}
bool canConvertReferenceToV1(const NativeReferenceIvarsV2 &ref) {
bool validOffset = (ref.offsetInAtom == NativeReferenceIvarsV2::noTarget) ||
ref.offsetInAtom < NativeReferenceIvarsV1::noTarget;
return validOffset && ref.targetIndex < UINT16_MAX;
}
// Convert vector of NativeReferenceIvarsV2 to NativeReferenceIvarsV1 if
// possible.
void maybeConvertReferencesToV1() {
std::set<int64_t> addends;
for (const NativeReferenceIvarsV2 &ref : _referencesV2) {
if (!canConvertReferenceToV1(ref))
return;
addends.insert(ref.addend);
if (addends.size() >= UINT16_MAX)
return;
}
convertReferencesToV1();
}
// fill out native file header and chunk directory
void makeHeader() {
const bool hasDefines = !_definedAtomIvars.empty();
const bool hasUndefines = !_undefinedAtomIvars.empty();
const bool hasSharedLibraries = !_sharedLibraryAtomIvars.empty();
const bool hasAbsolutes = !_absoluteAtomIvars.empty();
const bool hasReferencesV1 = !_referencesV1.empty();
const bool hasReferencesV2 = !_referencesV2.empty();
const bool hasTargetsTable = !_targetsTableIndex.empty();
const bool hasAddendTable = !_addendsTableIndex.empty();
const bool hasContent = !_contentPool.empty();
int chunkCount = 1; // always have string pool chunk
if ( hasDefines ) chunkCount += 2;
if ( hasUndefines ) ++chunkCount;
if ( hasSharedLibraries ) ++chunkCount;
if ( hasAbsolutes ) chunkCount += 2;
if ( hasReferencesV1 ) ++chunkCount;
if ( hasReferencesV2 ) ++chunkCount;
if ( hasTargetsTable ) ++chunkCount;
if ( hasAddendTable ) ++chunkCount;
if ( hasContent ) ++chunkCount;
_headerBufferSize = sizeof(NativeFileHeader)
+ chunkCount*sizeof(NativeChunk);
_headerBuffer = reinterpret_cast<NativeFileHeader*>
(operator new(_headerBufferSize, std::nothrow));
NativeChunk *chunks =
reinterpret_cast<NativeChunk*>(reinterpret_cast<char*>(_headerBuffer)
+ sizeof(NativeFileHeader));
memcpy(_headerBuffer->magic, NATIVE_FILE_HEADER_MAGIC,
sizeof(_headerBuffer->magic));
_headerBuffer->endian = NFH_LittleEndian;
_headerBuffer->architecture = 0;
_headerBuffer->fileSize = 0;
_headerBuffer->chunkCount = chunkCount;
// create chunk for defined atom ivar array
int nextIndex = 0;
uint32_t nextFileOffset = _headerBufferSize;
if (hasDefines) {
fillChunkHeader(chunks[nextIndex++], nextFileOffset, _definedAtomIvars,
NCS_DefinedAtomsV1);
// create chunk for attributes
fillChunkHeader(chunks[nextIndex++], nextFileOffset, _attributes,
NCS_AttributesArrayV1);
}
// create chunk for undefined atom array
if (hasUndefines)
fillChunkHeader(chunks[nextIndex++], nextFileOffset, _undefinedAtomIvars,
NCS_UndefinedAtomsV1);
// create chunk for shared library atom array
if (hasSharedLibraries)
fillChunkHeader(chunks[nextIndex++], nextFileOffset,
_sharedLibraryAtomIvars, NCS_SharedLibraryAtomsV1);
// create chunk for shared library atom array
if (hasAbsolutes) {
fillChunkHeader(chunks[nextIndex++], nextFileOffset, _absoluteAtomIvars,
NCS_AbsoluteAtomsV1);
// create chunk for attributes
fillChunkHeader(chunks[nextIndex++], nextFileOffset, _absAttributes,
NCS_AbsoluteAttributesV1);
}
// create chunk for symbol strings
// pad end of string pool to 4-bytes
while ((_stringPool.size() % 4) != 0)
_stringPool.push_back('\0');
fillChunkHeader(chunks[nextIndex++], nextFileOffset, _stringPool,
NCS_Strings);
// create chunk for referencesV2
if (hasReferencesV1)
fillChunkHeader(chunks[nextIndex++], nextFileOffset, _referencesV1,
NCS_ReferencesArrayV1);
// create chunk for referencesV2
if (hasReferencesV2)
fillChunkHeader(chunks[nextIndex++], nextFileOffset, _referencesV2,
NCS_ReferencesArrayV2);
// create chunk for target table
if (hasTargetsTable) {
NativeChunk& cht = chunks[nextIndex++];
cht.signature = NCS_TargetsTable;
cht.fileOffset = nextFileOffset;
cht.fileSize = _targetsTableIndex.size() * sizeof(uint32_t);
cht.elementCount = _targetsTableIndex.size();
nextFileOffset = cht.fileOffset + cht.fileSize;
}
// create chunk for addend table
if (hasAddendTable) {
NativeChunk& chad = chunks[nextIndex++];
chad.signature = NCS_AddendsTable;
chad.fileOffset = nextFileOffset;
chad.fileSize = _addendsTableIndex.size() * sizeof(Reference::Addend);
chad.elementCount = _addendsTableIndex.size();
nextFileOffset = chad.fileOffset + chad.fileSize;
}
// create chunk for content
if (hasContent)
fillChunkHeader(chunks[nextIndex++], nextFileOffset, _contentPool,
NCS_Content);
_headerBuffer->fileSize = nextFileOffset;
}
template<class T>
void fillChunkHeader(NativeChunk &chunk, uint32_t &nextFileOffset,
const std::vector<T> &data, uint32_t signature) {
chunk.signature = signature;
chunk.fileOffset = nextFileOffset;
chunk.fileSize = data.size() * sizeof(T);
chunk.elementCount = data.size();
nextFileOffset = chunk.fileOffset + chunk.fileSize;
}
// scan header to find particular chunk
NativeChunk& findChunk(uint32_t signature) {
const uint32_t chunkCount = _headerBuffer->chunkCount;
NativeChunk* chunks =
reinterpret_cast<NativeChunk*>(reinterpret_cast<char*>(_headerBuffer)
+ sizeof(NativeFileHeader));
for (uint32_t i=0; i < chunkCount; ++i) {
if ( chunks[i].signature == signature )
return chunks[i];
}
llvm_unreachable("findChunk() signature not found");
}
// append atom name to string pool and return offset
uint32_t getNameOffset(const Atom& atom) {
return this->getNameOffset(atom.name());
}
// check if name is already in pool or append and return offset
uint32_t getSharedLibraryNameOffset(StringRef name) {
assert(!name.empty());
// look to see if this library name was used by another atom
for (auto &it : _sharedLibraryNames)
if (name.equals(it.first))
return it.second;
// first use of this library name
uint32_t result = this->getNameOffset(name);
_sharedLibraryNames.push_back(std::make_pair(name, result));
return result;
}
// append atom name to string pool and return offset
uint32_t getNameOffset(StringRef name) {
if ( name.empty() )
return 0;
uint32_t result = _stringPool.size();
_stringPool.insert(_stringPool.end(), name.begin(), name.end());
_stringPool.push_back(0);
return result;
}
// append atom cotent to content pool and return offset
uint32_t getContentOffset(const DefinedAtom& atom) {
if (!atom.occupiesDiskSpace())
return 0;
uint32_t result = _contentPool.size();
ArrayRef<uint8_t> cont = atom.rawContent();
_contentPool.insert(_contentPool.end(), cont.begin(), cont.end());
return result;
}
// reuse existing attributes entry or create a new one and return offet
uint32_t getAttributeOffset(const DefinedAtom& atom) {
NativeAtomAttributesV1 attrs = computeAttributesV1(atom);
return getOrPushAttribute(_attributes, attrs);
}
uint32_t getAttributeOffset(const AbsoluteAtom& atom) {
NativeAtomAttributesV1 attrs = computeAbsoluteAttributes(atom);
return getOrPushAttribute(_absAttributes, attrs);
}
uint32_t getOrPushAttribute(std::vector<NativeAtomAttributesV1> &dest,
const NativeAtomAttributesV1 &attrs) {
for (size_t i = 0, e = dest.size(); i < e; ++i) {
if (!memcmp(&dest[i], &attrs, sizeof(attrs))) {
// found that this set of attributes already used, so re-use
return i * sizeof(attrs);
}
}
// append new attribute set to end
uint32_t result = dest.size() * sizeof(attrs);
dest.push_back(attrs);
return result;
}
uint32_t sectionNameOffset(const DefinedAtom& atom) {
// if section based on content, then no custom section name available
if (atom.sectionChoice() == DefinedAtom::sectionBasedOnContent)
return 0;
StringRef name = atom.customSectionName();
assert(!name.empty());
// look to see if this section name was used by another atom
for (auto &it : _sectionNames)
if (name.equals(it.first))
return it.second;
// first use of this section name
uint32_t result = this->getNameOffset(name);
_sectionNames.push_back(std::make_pair(name, result));
return result;
}
NativeAtomAttributesV1 computeAttributesV1(const DefinedAtom& atom) {
NativeAtomAttributesV1 attrs;
attrs.sectionNameOffset = sectionNameOffset(atom);
attrs.align2 = atom.alignment().powerOf2;
attrs.alignModulus = atom.alignment().modulus;
attrs.scope = atom.scope();
attrs.interposable = atom.interposable();
attrs.merge = atom.merge();
attrs.contentType = atom.contentType();
attrs.sectionChoiceAndPosition
= atom.sectionChoice() << 4 | atom.sectionPosition();
attrs.deadStrip = atom.deadStrip();
attrs.dynamicExport = atom.dynamicExport();
attrs.permissions = atom.permissions();
attrs.alias = atom.isAlias();
return attrs;
}
NativeAtomAttributesV1 computeAbsoluteAttributes(const AbsoluteAtom& atom) {
NativeAtomAttributesV1 attrs;
attrs.scope = atom.scope();
return attrs;
}
// add references for this atom in a contiguous block in NCS_ReferencesArrayV2
uint32_t getReferencesIndex(const DefinedAtom& atom, unsigned& refsCount) {
size_t startRefSize = _referencesV2.size();
uint32_t result = startRefSize;
for (const Reference *ref : atom) {
NativeReferenceIvarsV2 nref;
nref.offsetInAtom = ref->offsetInAtom();
nref.kindNamespace = (uint8_t)ref->kindNamespace();
nref.kindArch = (uint8_t)ref->kindArch();
nref.kindValue = ref->kindValue();
nref.targetIndex = this->getTargetIndex(ref->target());
nref.addend = ref->addend();
_referencesV2.push_back(nref);
}
refsCount = _referencesV2.size() - startRefSize;
return (refsCount == 0) ? 0 : result;
}
uint32_t getTargetIndex(const Atom* target) {
if ( target == nullptr )
return NativeReferenceIvarsV2::noTarget;
TargetToIndex::const_iterator pos = _targetsTableIndex.find(target);
if ( pos != _targetsTableIndex.end() ) {
return pos->second;
}
uint32_t result = _targetsTableIndex.size();
_targetsTableIndex[target] = result;
return result;
}
void writeTargetTable(raw_ostream &out) {
// Build table of target indexes
uint32_t maxTargetIndex = _targetsTableIndex.size();
assert(maxTargetIndex > 0);
std::vector<uint32_t> targetIndexes(maxTargetIndex);
for (auto &it : _targetsTableIndex) {
const Atom* atom = it.first;
uint32_t targetIndex = it.second;
assert(targetIndex < maxTargetIndex);
TargetToIndex::iterator pos = _definedAtomIndex.find(atom);
if (pos != _definedAtomIndex.end()) {
targetIndexes[targetIndex] = pos->second;
continue;
}
uint32_t base = _definedAtomIvars.size();
pos = _undefinedAtomIndex.find(atom);
if (pos != _undefinedAtomIndex.end()) {
targetIndexes[targetIndex] = pos->second + base;
continue;
}
base += _undefinedAtomIndex.size();
pos = _sharedLibraryAtomIndex.find(atom);
if (pos != _sharedLibraryAtomIndex.end()) {
targetIndexes[targetIndex] = pos->second + base;
continue;
}
base += _sharedLibraryAtomIndex.size();
pos = _absoluteAtomIndex.find(atom);
assert(pos != _absoluteAtomIndex.end());
targetIndexes[targetIndex] = pos->second + base;
}
// write table
out.write((char*)&targetIndexes[0], maxTargetIndex * sizeof(uint32_t));
}
uint32_t getAddendIndex(Reference::Addend addend) {
if ( addend == 0 )
return 0; // addend index zero is used to mean "no addend"
AddendToIndex::const_iterator pos = _addendsTableIndex.find(addend);
if ( pos != _addendsTableIndex.end() ) {
return pos->second;
}
uint32_t result = _addendsTableIndex.size() + 1; // one-based index
_addendsTableIndex[addend] = result;
return result;
}
void writeAddendTable(raw_ostream &out) {
// Build table of addends
uint32_t maxAddendIndex = _addendsTableIndex.size();
std::vector<Reference::Addend> addends(maxAddendIndex);
for (auto &it : _addendsTableIndex) {
Reference::Addend addend = it.first;
uint32_t index = it.second;
assert(index <= maxAddendIndex);
addends[index-1] = addend;
}
// write table
out.write((char*)&addends[0], maxAddendIndex*sizeof(Reference::Addend));
}
typedef std::vector<std::pair<StringRef, uint32_t>> NameToOffsetVector;
typedef llvm::DenseMap<const Atom*, uint32_t> TargetToIndex;
typedef llvm::DenseMap<Reference::Addend, uint32_t> AddendToIndex;
NativeFileHeader* _headerBuffer;
size_t _headerBufferSize;
std::vector<char> _stringPool;
std::vector<uint8_t> _contentPool;
std::vector<NativeDefinedAtomIvarsV1> _definedAtomIvars;
std::vector<NativeAtomAttributesV1> _attributes;
std::vector<NativeAtomAttributesV1> _absAttributes;
std::vector<NativeUndefinedAtomIvarsV1> _undefinedAtomIvars;
std::vector<NativeSharedLibraryAtomIvarsV1> _sharedLibraryAtomIvars;
std::vector<NativeAbsoluteAtomIvarsV1> _absoluteAtomIvars;
std::vector<NativeReferenceIvarsV1> _referencesV1;
std::vector<NativeReferenceIvarsV2> _referencesV2;
TargetToIndex _targetsTableIndex;
TargetToIndex _definedAtomIndex;
TargetToIndex _undefinedAtomIndex;
TargetToIndex _sharedLibraryAtomIndex;
TargetToIndex _absoluteAtomIndex;
AddendToIndex _addendsTableIndex;
NameToOffsetVector _sectionNames;
NameToOffsetVector _sharedLibraryNames;
};
} // end namespace native
std::unique_ptr<Writer> createWriterNative(const LinkingContext &context) {
return std::unique_ptr<Writer>(new native::Writer(context));
}
} // end namespace lld