Files
clang-p2996/lldb/tools/debugserver/source/MacOSX/ppc/DNBArchImpl.cpp
Jason Molenda 1c73911d42 Change debugserver from using the mach port number (in debugserver's
own port namepsace) as the thread identifier to using the system-wide
globally unique thread id as the thread identifier number.

MachThread.cpp keeps both the unique id and the mach port number
for each thread.  All layers outside MachThread class use the unique
id with three exceptions: (1) Mach exceptions come in with the port
number (thread_port) which needs to be translated, (2) any calls to
low-level thread_get_state/thread_set_state/thread_suspend etc need
to use the mach port number, (3) MachThreadList::UpdateThreadList 
which creates the MachThread objects gets the unique id and passes
it to the MachThread ctor as an argument.

In general, any time nub_thread_t is used, it is now referring to a
unique thread id.  Any time a thread_t is used, it is now referring
to a mach port number.  There was some interchangability of these 
types previously.  nub_thread_t has also been changed to a 64-bit
type which necessitated some printf specification string changes.

I haven't been able to test these changes extensively yet but want
to checkpoint the work.  The scenarios I've been testing are all
working correctly so while there may be some corner cases I haven't
hit yet, I think it is substantially correct.

<rdar://problem/12931414> 

llvm-svn: 175870
2013-02-22 07:27:08 +00:00

570 lines
17 KiB
C++

//===-- DNBArchImpl.cpp -----------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Created by Greg Clayton on 6/25/07.
//
//===----------------------------------------------------------------------===//
#if defined (__powerpc__) || defined (__ppc__) || defined (__ppc64__)
#if __DARWIN_UNIX03
#define PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(reg) __##reg
#else
#define PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(reg) reg
#endif
#include "MacOSX/ppc/DNBArchImpl.h"
#include "MacOSX/MachThread.h"
#include "DNBBreakpoint.h"
#include "DNBLog.h"
#include "DNBRegisterInfo.h"
static const uint8_t g_breakpoint_opcode[] = { 0x7F, 0xC0, 0x00, 0x08 };
const uint8_t * const
DNBArchMachPPC::SoftwareBreakpointOpcode (nub_size_t size)
{
if (size == 4)
return g_breakpoint_opcode;
return NULL;
}
uint32_t
DNBArchMachPPC::GetCPUType()
{
return CPU_TYPE_POWERPC;
}
uint64_t
DNBArchMachPPC::GetPC(uint64_t failValue)
{
// Get program counter
if (GetGPRState(false) == KERN_SUCCESS)
return m_state.gpr.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(srr0);
return failValue;
}
kern_return_t
DNBArchMachPPC::SetPC(uint64_t value)
{
// Get program counter
kern_return_t err = GetGPRState(false);
if (err == KERN_SUCCESS)
{
m_state.gpr.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(srr0) = value;
err = SetGPRState();
}
return err == KERN_SUCCESS;
}
uint64_t
DNBArchMachPPC::GetSP(uint64_t failValue)
{
// Get stack pointer
if (GetGPRState(false) == KERN_SUCCESS)
return m_state.gpr.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(r1);
return failValue;
}
kern_return_t
DNBArchMachPPC::GetGPRState(bool force)
{
if (force || m_state.GetError(e_regSetGPR, Read))
{
mach_msg_type_number_t count = e_regSetWordSizeGPR;
m_state.SetError(e_regSetGPR, Read, ::thread_get_state(m_thread->MachPortNumber(), e_regSetGPR, (thread_state_t)&m_state.gpr, &count));
}
return m_state.GetError(e_regSetGPR, Read);
}
kern_return_t
DNBArchMachPPC::GetFPRState(bool force)
{
if (force || m_state.GetError(e_regSetFPR, Read))
{
mach_msg_type_number_t count = e_regSetWordSizeFPR;
m_state.SetError(e_regSetFPR, Read, ::thread_get_state(m_thread->MachPortNumber(), e_regSetFPR, (thread_state_t)&m_state.fpr, &count));
}
return m_state.GetError(e_regSetFPR, Read);
}
kern_return_t
DNBArchMachPPC::GetEXCState(bool force)
{
if (force || m_state.GetError(e_regSetEXC, Read))
{
mach_msg_type_number_t count = e_regSetWordSizeEXC;
m_state.SetError(e_regSetEXC, Read, ::thread_get_state(m_thread->MachPortNumber(), e_regSetEXC, (thread_state_t)&m_state.exc, &count));
}
return m_state.GetError(e_regSetEXC, Read);
}
kern_return_t
DNBArchMachPPC::GetVECState(bool force)
{
if (force || m_state.GetError(e_regSetVEC, Read))
{
mach_msg_type_number_t count = e_regSetWordSizeVEC;
m_state.SetError(e_regSetVEC, Read, ::thread_get_state(m_thread->MachPortNumber(), e_regSetVEC, (thread_state_t)&m_state.vec, &count));
}
return m_state.GetError(e_regSetVEC, Read);
}
kern_return_t
DNBArchMachPPC::SetGPRState()
{
m_state.SetError(e_regSetGPR, Write, ::thread_set_state(m_thread->MachPortNumber(), e_regSetGPR, (thread_state_t)&m_state.gpr, e_regSetWordSizeGPR));
return m_state.GetError(e_regSetGPR, Write);
}
kern_return_t
DNBArchMachPPC::SetFPRState()
{
m_state.SetError(e_regSetFPR, Write, ::thread_set_state(m_thread->MachPortNumber(), e_regSetFPR, (thread_state_t)&m_state.fpr, e_regSetWordSizeFPR));
return m_state.GetError(e_regSetFPR, Write);
}
kern_return_t
DNBArchMachPPC::SetEXCState()
{
m_state.SetError(e_regSetEXC, Write, ::thread_set_state(m_thread->MachPortNumber(), e_regSetEXC, (thread_state_t)&m_state.exc, e_regSetWordSizeEXC));
return m_state.GetError(e_regSetEXC, Write);
}
kern_return_t
DNBArchMachPPC::SetVECState()
{
m_state.SetError(e_regSetVEC, Write, ::thread_set_state(m_thread->MachPortNumber(), e_regSetVEC, (thread_state_t)&m_state.vec, e_regSetWordSizeVEC));
return m_state.GetError(e_regSetVEC, Write);
}
bool
DNBArchMachPPC::ThreadWillResume()
{
bool success = true;
// Do we need to step this thread? If so, let the mach thread tell us so.
if (m_thread->IsStepping())
{
// This is the primary thread, let the arch do anything it needs
success = EnableHardwareSingleStep(true) == KERN_SUCCESS;
}
return success;
}
bool
DNBArchMachPPC::ThreadDidStop()
{
bool success = true;
m_state.InvalidateAllRegisterStates();
// Are we stepping a single instruction?
if (GetGPRState(true) == KERN_SUCCESS)
{
// We are single stepping, was this the primary thread?
if (m_thread->IsStepping())
{
// This was the primary thread, we need to clear the trace
// bit if so.
success = EnableHardwareSingleStep(false) == KERN_SUCCESS;
}
else
{
// The MachThread will automatically restore the suspend count
// in ThreadDidStop(), so we don't need to do anything here if
// we weren't the primary thread the last time
}
}
return success;
}
// Set the single step bit in the processor status register.
kern_return_t
DNBArchMachPPC::EnableHardwareSingleStep (bool enable)
{
DNBLogThreadedIf(LOG_STEP, "DNBArchMachPPC::EnableHardwareSingleStep( enable = %d )", enable);
if (GetGPRState(false) == KERN_SUCCESS)
{
const uint32_t trace_bit = 0x400;
if (enable)
m_state.gpr.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(srr1) |= trace_bit;
else
m_state.gpr.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(srr1) &= ~trace_bit;
return SetGPRState();
}
return m_state.GetError(e_regSetGPR, Read);
}
//----------------------------------------------------------------------
// Register information defintions for 32 bit PowerPC.
//----------------------------------------------------------------------
enum gpr_regnums
{
e_regNumGPR_srr0,
e_regNumGPR_srr1,
e_regNumGPR_r0,
e_regNumGPR_r1,
e_regNumGPR_r2,
e_regNumGPR_r3,
e_regNumGPR_r4,
e_regNumGPR_r5,
e_regNumGPR_r6,
e_regNumGPR_r7,
e_regNumGPR_r8,
e_regNumGPR_r9,
e_regNumGPR_r10,
e_regNumGPR_r11,
e_regNumGPR_r12,
e_regNumGPR_r13,
e_regNumGPR_r14,
e_regNumGPR_r15,
e_regNumGPR_r16,
e_regNumGPR_r17,
e_regNumGPR_r18,
e_regNumGPR_r19,
e_regNumGPR_r20,
e_regNumGPR_r21,
e_regNumGPR_r22,
e_regNumGPR_r23,
e_regNumGPR_r24,
e_regNumGPR_r25,
e_regNumGPR_r26,
e_regNumGPR_r27,
e_regNumGPR_r28,
e_regNumGPR_r29,
e_regNumGPR_r30,
e_regNumGPR_r31,
e_regNumGPR_cr,
e_regNumGPR_xer,
e_regNumGPR_lr,
e_regNumGPR_ctr,
e_regNumGPR_mq,
e_regNumGPR_vrsave
};
// General purpose registers
static DNBRegisterInfo g_gpr_registers[] =
{
{ "srr0" , Uint, 4, Hex },
{ "srr1" , Uint, 4, Hex },
{ "r0" , Uint, 4, Hex },
{ "r1" , Uint, 4, Hex },
{ "r2" , Uint, 4, Hex },
{ "r3" , Uint, 4, Hex },
{ "r4" , Uint, 4, Hex },
{ "r5" , Uint, 4, Hex },
{ "r6" , Uint, 4, Hex },
{ "r7" , Uint, 4, Hex },
{ "r8" , Uint, 4, Hex },
{ "r9" , Uint, 4, Hex },
{ "r10" , Uint, 4, Hex },
{ "r11" , Uint, 4, Hex },
{ "r12" , Uint, 4, Hex },
{ "r13" , Uint, 4, Hex },
{ "r14" , Uint, 4, Hex },
{ "r15" , Uint, 4, Hex },
{ "r16" , Uint, 4, Hex },
{ "r17" , Uint, 4, Hex },
{ "r18" , Uint, 4, Hex },
{ "r19" , Uint, 4, Hex },
{ "r20" , Uint, 4, Hex },
{ "r21" , Uint, 4, Hex },
{ "r22" , Uint, 4, Hex },
{ "r23" , Uint, 4, Hex },
{ "r24" , Uint, 4, Hex },
{ "r25" , Uint, 4, Hex },
{ "r26" , Uint, 4, Hex },
{ "r27" , Uint, 4, Hex },
{ "r28" , Uint, 4, Hex },
{ "r29" , Uint, 4, Hex },
{ "r30" , Uint, 4, Hex },
{ "r31" , Uint, 4, Hex },
{ "cr" , Uint, 4, Hex },
{ "xer" , Uint, 4, Hex },
{ "lr" , Uint, 4, Hex },
{ "ctr" , Uint, 4, Hex },
{ "mq" , Uint, 4, Hex },
{ "vrsave", Uint, 4, Hex },
};
// Floating point registers
static DNBRegisterInfo g_fpr_registers[] =
{
{ "fp0" , IEEE754, 8, Float },
{ "fp1" , IEEE754, 8, Float },
{ "fp2" , IEEE754, 8, Float },
{ "fp3" , IEEE754, 8, Float },
{ "fp4" , IEEE754, 8, Float },
{ "fp5" , IEEE754, 8, Float },
{ "fp6" , IEEE754, 8, Float },
{ "fp7" , IEEE754, 8, Float },
{ "fp8" , IEEE754, 8, Float },
{ "fp9" , IEEE754, 8, Float },
{ "fp10" , IEEE754, 8, Float },
{ "fp11" , IEEE754, 8, Float },
{ "fp12" , IEEE754, 8, Float },
{ "fp13" , IEEE754, 8, Float },
{ "fp14" , IEEE754, 8, Float },
{ "fp15" , IEEE754, 8, Float },
{ "fp16" , IEEE754, 8, Float },
{ "fp17" , IEEE754, 8, Float },
{ "fp18" , IEEE754, 8, Float },
{ "fp19" , IEEE754, 8, Float },
{ "fp20" , IEEE754, 8, Float },
{ "fp21" , IEEE754, 8, Float },
{ "fp22" , IEEE754, 8, Float },
{ "fp23" , IEEE754, 8, Float },
{ "fp24" , IEEE754, 8, Float },
{ "fp25" , IEEE754, 8, Float },
{ "fp26" , IEEE754, 8, Float },
{ "fp27" , IEEE754, 8, Float },
{ "fp28" , IEEE754, 8, Float },
{ "fp29" , IEEE754, 8, Float },
{ "fp30" , IEEE754, 8, Float },
{ "fp31" , IEEE754, 8, Float },
{ "fpscr" , Uint, 4, Hex }
};
// Exception registers
static DNBRegisterInfo g_exc_registers[] =
{
{ "dar" , Uint, 4, Hex },
{ "dsisr" , Uint, 4, Hex },
{ "exception" , Uint, 4, Hex }
};
// Altivec registers
static DNBRegisterInfo g_vec_registers[] =
{
{ "vr0" , Vector, 16, VectorOfFloat32 },
{ "vr1" , Vector, 16, VectorOfFloat32 },
{ "vr2" , Vector, 16, VectorOfFloat32 },
{ "vr3" , Vector, 16, VectorOfFloat32 },
{ "vr4" , Vector, 16, VectorOfFloat32 },
{ "vr5" , Vector, 16, VectorOfFloat32 },
{ "vr6" , Vector, 16, VectorOfFloat32 },
{ "vr7" , Vector, 16, VectorOfFloat32 },
{ "vr8" , Vector, 16, VectorOfFloat32 },
{ "vr9" , Vector, 16, VectorOfFloat32 },
{ "vr10" , Vector, 16, VectorOfFloat32 },
{ "vr11" , Vector, 16, VectorOfFloat32 },
{ "vr12" , Vector, 16, VectorOfFloat32 },
{ "vr13" , Vector, 16, VectorOfFloat32 },
{ "vr14" , Vector, 16, VectorOfFloat32 },
{ "vr15" , Vector, 16, VectorOfFloat32 },
{ "vr16" , Vector, 16, VectorOfFloat32 },
{ "vr17" , Vector, 16, VectorOfFloat32 },
{ "vr18" , Vector, 16, VectorOfFloat32 },
{ "vr19" , Vector, 16, VectorOfFloat32 },
{ "vr20" , Vector, 16, VectorOfFloat32 },
{ "vr21" , Vector, 16, VectorOfFloat32 },
{ "vr22" , Vector, 16, VectorOfFloat32 },
{ "vr23" , Vector, 16, VectorOfFloat32 },
{ "vr24" , Vector, 16, VectorOfFloat32 },
{ "vr25" , Vector, 16, VectorOfFloat32 },
{ "vr26" , Vector, 16, VectorOfFloat32 },
{ "vr27" , Vector, 16, VectorOfFloat32 },
{ "vr28" , Vector, 16, VectorOfFloat32 },
{ "vr29" , Vector, 16, VectorOfFloat32 },
{ "vr30" , Vector, 16, VectorOfFloat32 },
{ "vr31" , Vector, 16, VectorOfFloat32 },
{ "vscr" , Uint, 16, Hex },
{ "vrvalid" , Uint, 4, Hex }
};
// Number of registers in each register set
const size_t k_num_gpr_registers = sizeof(g_gpr_registers)/sizeof(DNBRegisterInfo);
const size_t k_num_fpr_registers = sizeof(g_fpr_registers)/sizeof(DNBRegisterInfo);
const size_t k_num_exc_registers = sizeof(g_exc_registers)/sizeof(DNBRegisterInfo);
const size_t k_num_vec_registers = sizeof(g_vec_registers)/sizeof(DNBRegisterInfo);
// Total number of registers for this architecture
const size_t k_num_ppc_registers = k_num_gpr_registers + k_num_fpr_registers + k_num_exc_registers + k_num_vec_registers;
//----------------------------------------------------------------------
// Register set definitions. The first definitions at register set index
// of zero is for all registers, followed by other registers sets. The
// register information for the all register set need not be filled in.
//----------------------------------------------------------------------
static const DNBRegisterSetInfo g_reg_sets[] =
{
{ "PowerPC Registers", NULL, k_num_ppc_registers },
{ "General Purpose Registers", g_gpr_registers, k_num_gpr_registers },
{ "Floating Point Registers", g_fpr_registers, k_num_fpr_registers },
{ "Exception State Registers", g_exc_registers, k_num_exc_registers },
{ "Altivec Registers", g_vec_registers, k_num_vec_registers }
};
// Total number of register sets for this architecture
const size_t k_num_register_sets = sizeof(g_reg_sets)/sizeof(DNBRegisterSetInfo);
const DNBRegisterSetInfo *
DNBArchMachPPC::GetRegisterSetInfo(nub_size_t *num_reg_sets) const
{
*num_reg_sets = k_num_register_sets;
return g_reg_sets;
}
bool
DNBArchMachPPC::GetRegisterValue(int set, int reg, DNBRegisterValue *value) const
{
if (set == REGISTER_SET_GENERIC)
{
switch (reg)
{
case GENERIC_REGNUM_PC: // Program Counter
set = e_regSetGPR;
reg = e_regNumGPR_srr0;
break;
case GENERIC_REGNUM_SP: // Stack Pointer
set = e_regSetGPR;
reg = e_regNumGPR_r1;
break;
case GENERIC_REGNUM_FP: // Frame Pointer
// Return false for now instead of returning r30 as gcc 3.x would
// use a variety of registers for the FP and it takes inspecting
// the stack to make sure there is a frame pointer before we can
// determine the FP.
return false;
case GENERIC_REGNUM_RA: // Return Address
set = e_regSetGPR;
reg = e_regNumGPR_lr;
break;
case GENERIC_REGNUM_FLAGS: // Processor flags register
set = e_regSetGPR;
reg = e_regNumGPR_srr1;
break;
default:
return false;
}
}
if (!m_state.RegsAreValid(set))
return false;
const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
if (regInfo)
{
value->info = *regInfo;
switch (set)
{
case e_regSetGPR:
if (reg < k_num_gpr_registers)
{
value->value.uint32 = (&m_state.gpr.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(srr0))[reg];
return true;
}
break;
case e_regSetFPR:
if (reg < 32)
{
value->value.float64 = m_state.fpr.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(fpregs)[reg];
return true;
}
else if (reg == 32)
{
value->value.uint32 = m_state.fpr.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(fpscr);
return true;
}
break;
case e_regSetEXC:
if (reg < k_num_exc_registers)
{
value->value.uint32 = (&m_state.exc.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(dar))[reg];
return true;
}
break;
case e_regSetVEC:
if (reg < k_num_vec_registers)
{
if (reg < 33) // FP0 - FP31 and VSCR
{
// Copy all 4 uint32 values for this vector register
value->value.v_uint32[0] = m_state.vec.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(save_vr)[reg][0];
value->value.v_uint32[1] = m_state.vec.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(save_vr)[reg][1];
value->value.v_uint32[2] = m_state.vec.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(save_vr)[reg][2];
value->value.v_uint32[3] = m_state.vec.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(save_vr)[reg][3];
return true;
}
else if (reg == 34) // VRVALID
{
value->value.uint32 = m_state.vec.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(save_vrvalid);
return true;
}
}
break;
}
}
return false;
}
kern_return_t
DNBArchMachPPC::GetRegisterState(int set, bool force)
{
switch (set)
{
case e_regSetALL:
return GetGPRState(force) |
GetFPRState(force) |
GetEXCState(force) |
GetVECState(force);
case e_regSetGPR: return GetGPRState(force);
case e_regSetFPR: return GetFPRState(force);
case e_regSetEXC: return GetEXCState(force);
case e_regSetVEC: return GetVECState(force);
default: break;
}
return KERN_INVALID_ARGUMENT;
}
kern_return_t
DNBArchMachPPC::SetRegisterState(int set)
{
// Make sure we have a valid context to set.
kern_return_t err = GetRegisterState(set, false);
if (err != KERN_SUCCESS)
return err;
switch (set)
{
case e_regSetALL: return SetGPRState() | SetFPRState() | SetEXCState() | SetVECState();
case e_regSetGPR: return SetGPRState();
case e_regSetFPR: return SetFPRState();
case e_regSetEXC: return SetEXCState();
case e_regSetVEC: return SetVECState();
default: break;
}
return KERN_INVALID_ARGUMENT;
}
bool
DNBArchMachPPC::RegisterSetStateIsValid (int set) const
{
return m_state.RegsAreValid(set);
}
#endif // #if defined (__powerpc__) || defined (__ppc__) || defined (__ppc64__)