Files
clang-p2996/bolt/lib/Passes/RegAnalysis.cpp
Amir Ayupov 52cf07116b [BOLT][NFC] Log through JournalingStreams (#81524)
Make core BOLT functionality more friendly to being used as a
library instead of in our standalone driver llvm-bolt. To
accomplish this, we augment BinaryContext with journaling streams
that are to be used by most BOLT code whenever something needs to
be logged to the screen. Users of the library can decide if logs
should be printed to a file, no file or to the screen, as
before. To illustrate this, this patch adds a new option
`--log-file` that allows the user to redirect BOLT logging to a
file on disk or completely hide it by using
`--log-file=/dev/null`. Future BOLT code should now use
`BinaryContext::outs()` for printing important messages instead of
`llvm::outs()`. A new test log.test enforces this by verifying that
no strings are print to screen once the `--log-file` option is
used.

In previous patches we also added a new BOLTError class to report
common and fatal errors, so code shouldn't call exit(1) now. To
easily handle problems as before (by quitting with exit(1)),
callers can now use
`BinaryContext::logBOLTErrorsAndQuitOnFatal(Error)` whenever code
needs to deal with BOLT errors. To test this, we have fatal.s
that checks we are correctly quitting and printing a fatal error
to the screen.

Because this is a significant change by itself, not all code was
yet ported. Code from Profiler libs (DataAggregator and friends)
still print errors directly to screen.

Co-authored-by: Rafael Auler <rafaelauler@fb.com>

Test Plan: NFC
2024-02-12 14:53:53 -08:00

244 lines
6.9 KiB
C++

//===- bolt/Passes/RegAnalysis.cpp ----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the RegAnalysis class.
//
//===----------------------------------------------------------------------===//
#include "bolt/Passes/RegAnalysis.h"
#include "bolt/Core/BinaryFunction.h"
#include "bolt/Passes/CallGraphWalker.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/CommandLine.h"
#define DEBUG_TYPE "ra"
using namespace llvm;
namespace opts {
extern cl::opt<unsigned> Verbosity;
extern cl::OptionCategory BoltOptCategory;
cl::opt<bool> AssumeABI("assume-abi",
cl::desc("assume the ABI is never violated"),
cl::cat(BoltOptCategory));
}
namespace llvm {
namespace bolt {
RegAnalysis::RegAnalysis(BinaryContext &BC,
std::map<uint64_t, BinaryFunction> *BFs,
BinaryFunctionCallGraph *CG)
: BC(BC), CS(opts::AssumeABI ? ConservativeStrategy::CLOBBERS_ABI
: ConservativeStrategy::CLOBBERS_ALL) {
if (!CG)
return;
CallGraphWalker CGWalker(*CG);
CGWalker.registerVisitor([&](BinaryFunction *Func) -> bool {
BitVector RegsKilled = getFunctionClobberList(Func);
bool Updated = RegsKilledMap.find(Func) == RegsKilledMap.end() ||
RegsKilledMap[Func] != RegsKilled;
if (Updated)
RegsKilledMap[Func] = std::move(RegsKilled);
return Updated;
});
CGWalker.registerVisitor([&](BinaryFunction *Func) -> bool {
BitVector RegsGen = getFunctionUsedRegsList(Func);
bool Updated = RegsGenMap.find(Func) == RegsGenMap.end() ||
RegsGenMap[Func] != RegsGen;
if (Updated)
RegsGenMap[Func] = std::move(RegsGen);
return Updated;
});
CGWalker.walk();
if (opts::Verbosity == 0) {
#ifndef NDEBUG
if (!DebugFlag || !isCurrentDebugType(DEBUG_TYPE))
return;
#else
return;
#endif
}
if (!BFs)
return;
// This loop is for computing statistics only
for (auto &MapEntry : *BFs) {
BinaryFunction *Func = &MapEntry.second;
auto Iter = RegsKilledMap.find(Func);
assert(Iter != RegsKilledMap.end() &&
"Failed to compute all clobbers list");
if (Iter->second.all()) {
uint64_t Count = Func->getExecutionCount();
if (Count != BinaryFunction::COUNT_NO_PROFILE)
CountFunctionsAllClobber += Count;
++NumFunctionsAllClobber;
}
DEBUG_WITH_TYPE("ra",
dbgs() << "Killed regs set for func: " << Func->getPrintName() << "\n";
const BitVector &RegsKilled = Iter->second;
int RegIdx = RegsKilled.find_first();
while (RegIdx != -1) {
dbgs() << "\tREG" << RegIdx;
RegIdx = RegsKilled.find_next(RegIdx);
};
dbgs() << "\nUsed regs set for func: " << Func->getPrintName() << "\n";
const BitVector &RegsUsed = RegsGenMap.find(Func)->second;
RegIdx = RegsUsed.find_first();
while (RegIdx != -1) {
dbgs() << "\tREG" << RegIdx;
RegIdx = RegsUsed.find_next(RegIdx);
};
dbgs() << "\n";
);
}
}
void RegAnalysis::beConservative(BitVector &Result) const {
switch (CS) {
case ConservativeStrategy::CLOBBERS_ALL:
Result.set();
break;
case ConservativeStrategy::CLOBBERS_ABI: {
BitVector BV(BC.MRI->getNumRegs(), false);
BC.MIB->getCalleeSavedRegs(BV);
BV.flip();
Result |= BV;
break;
}
case ConservativeStrategy::CLOBBERS_NONE:
Result.reset();
break;
}
}
bool RegAnalysis::isConservative(BitVector &Vec) const {
switch (CS) {
case ConservativeStrategy::CLOBBERS_ALL:
return Vec.all();
case ConservativeStrategy::CLOBBERS_ABI: {
BitVector BV(BC.MRI->getNumRegs(), false);
BC.MIB->getCalleeSavedRegs(BV);
BV |= Vec;
return BV.all();
}
case ConservativeStrategy::CLOBBERS_NONE:
return Vec.none();
}
return false;
}
void RegAnalysis::getInstUsedRegsList(const MCInst &Inst, BitVector &RegSet,
bool GetClobbers) const {
if (!BC.MIB->isCall(Inst)) {
if (GetClobbers)
BC.MIB->getClobberedRegs(Inst, RegSet);
else
BC.MIB->getUsedRegs(Inst, RegSet);
return;
}
// If no call graph supplied...
if (RegsKilledMap.size() == 0) {
beConservative(RegSet);
return;
}
const MCSymbol *TargetSymbol = BC.MIB->getTargetSymbol(Inst);
// If indirect call, we know nothing
if (TargetSymbol == nullptr) {
beConservative(RegSet);
return;
}
const BinaryFunction *Function = BC.getFunctionForSymbol(TargetSymbol);
if (Function == nullptr) {
// Call to a function without a BinaryFunction object.
// This should be a call to a PLT entry, and since it is a trampoline to
// a DSO, we can't really know the code in advance.
beConservative(RegSet);
return;
}
if (GetClobbers) {
auto BV = RegsKilledMap.find(Function);
if (BV != RegsKilledMap.end()) {
RegSet |= BV->second;
return;
}
// Ignore calls to function whose clobber list wasn't yet calculated. This
// instruction will be evaluated again once we have info for the callee.
return;
}
auto BV = RegsGenMap.find(Function);
if (BV != RegsGenMap.end()) {
RegSet |= BV->second;
return;
}
}
void RegAnalysis::getInstClobberList(const MCInst &Inst,
BitVector &KillSet) const {
return getInstUsedRegsList(Inst, KillSet, /*GetClobbers*/ true);
}
BitVector RegAnalysis::getFunctionUsedRegsList(const BinaryFunction *Func) {
BitVector UsedRegs = BitVector(BC.MRI->getNumRegs(), false);
if (!Func->isSimple() || !Func->hasCFG()) {
beConservative(UsedRegs);
return UsedRegs;
}
for (const BinaryBasicBlock &BB : *Func) {
for (const MCInst &Inst : BB) {
getInstUsedRegsList(Inst, UsedRegs, /*GetClobbers*/ false);
if (UsedRegs.all())
return UsedRegs;
}
}
return UsedRegs;
}
BitVector RegAnalysis::getFunctionClobberList(const BinaryFunction *Func) {
BitVector RegsKilled = BitVector(BC.MRI->getNumRegs(), false);
if (!Func->isSimple() || !Func->hasCFG()) {
beConservative(RegsKilled);
return RegsKilled;
}
for (const BinaryBasicBlock &BB : *Func) {
for (const MCInst &Inst : BB) {
getInstClobberList(Inst, RegsKilled);
if (RegsKilled.all())
return RegsKilled;
}
}
return RegsKilled;
}
void RegAnalysis::printStats() {
BC.outs() << "BOLT-INFO REG ANALYSIS: Number of functions conservatively "
"treated as clobbering all registers: "
<< NumFunctionsAllClobber
<< format(" (%.1lf%% dyn cov)\n",
(100.0 * CountFunctionsAllClobber / CountDenominator));
}
} // namespace bolt
} // namespace llvm