Files
clang-p2996/bolt/lib/Passes/RetpolineInsertion.cpp
Amir Ayupov 52cf07116b [BOLT][NFC] Log through JournalingStreams (#81524)
Make core BOLT functionality more friendly to being used as a
library instead of in our standalone driver llvm-bolt. To
accomplish this, we augment BinaryContext with journaling streams
that are to be used by most BOLT code whenever something needs to
be logged to the screen. Users of the library can decide if logs
should be printed to a file, no file or to the screen, as
before. To illustrate this, this patch adds a new option
`--log-file` that allows the user to redirect BOLT logging to a
file on disk or completely hide it by using
`--log-file=/dev/null`. Future BOLT code should now use
`BinaryContext::outs()` for printing important messages instead of
`llvm::outs()`. A new test log.test enforces this by verifying that
no strings are print to screen once the `--log-file` option is
used.

In previous patches we also added a new BOLTError class to report
common and fatal errors, so code shouldn't call exit(1) now. To
easily handle problems as before (by quitting with exit(1)),
callers can now use
`BinaryContext::logBOLTErrorsAndQuitOnFatal(Error)` whenever code
needs to deal with BOLT errors. To test this, we have fatal.s
that checks we are correctly quitting and printing a fatal error
to the screen.

Because this is a significant change by itself, not all code was
yet ported. Code from Profiler libs (DataAggregator and friends)
still print errors directly to screen.

Co-authored-by: Rafael Auler <rafaelauler@fb.com>

Test Plan: NFC
2024-02-12 14:53:53 -08:00

339 lines
11 KiB
C++

//===- bolt/Passes/RetpolineInsertion.cpp ---------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements RetpolineInsertion class, which replaces indirect
// branches (calls and jumps) with calls to retpolines to protect against branch
// target injection attacks.
// A unique retpoline is created for each register holding the address of the
// callee, if the callee address is in memory %r11 is used if available to
// hold the address of the callee before calling the retpoline, otherwise an
// address pattern specific retpoline is called where the callee address is
// loaded inside the retpoline.
// The user can determine when to assume %r11 available using r11-availability
// option, by default %r11 is assumed not available.
// Adding lfence instruction to the body of the speculate code is enabled by
// default and can be controlled by the user using retpoline-lfence option.
//
//===----------------------------------------------------------------------===//
#include "bolt/Passes/RetpolineInsertion.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "bolt-retpoline"
using namespace llvm;
using namespace bolt;
namespace opts {
extern cl::OptionCategory BoltCategory;
llvm::cl::opt<bool> InsertRetpolines("insert-retpolines",
cl::desc("run retpoline insertion pass"),
cl::cat(BoltCategory));
llvm::cl::opt<bool>
RetpolineLfence("retpoline-lfence",
cl::desc("determine if lfence instruction should exist in the retpoline"),
cl::init(true),
cl::ZeroOrMore,
cl::Hidden,
cl::cat(BoltCategory));
cl::opt<RetpolineInsertion::AvailabilityOptions> R11Availability(
"r11-availability",
cl::desc("determine the availability of r11 before indirect branches"),
cl::init(RetpolineInsertion::AvailabilityOptions::NEVER),
cl::values(clEnumValN(RetpolineInsertion::AvailabilityOptions::NEVER,
"never", "r11 not available"),
clEnumValN(RetpolineInsertion::AvailabilityOptions::ALWAYS,
"always", "r11 available before calls and jumps"),
clEnumValN(RetpolineInsertion::AvailabilityOptions::ABI, "abi",
"r11 available before calls but not before jumps")),
cl::ZeroOrMore, cl::cat(BoltCategory));
} // namespace opts
namespace llvm {
namespace bolt {
// Retpoline function structure:
// BB0: call BB2
// BB1: pause
// lfence
// jmp BB1
// BB2: mov %reg, (%rsp)
// ret
// or
// BB2: push %r11
// mov Address, %r11
// mov %r11, 8(%rsp)
// pop %r11
// ret
BinaryFunction *createNewRetpoline(BinaryContext &BC,
const std::string &RetpolineTag,
const IndirectBranchInfo &BrInfo,
bool R11Available) {
auto &MIB = *BC.MIB;
MCContext &Ctx = *BC.Ctx.get();
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Creating a new retpoline function["
<< RetpolineTag << "]\n");
BinaryFunction *NewRetpoline =
BC.createInjectedBinaryFunction(RetpolineTag, true);
std::vector<std::unique_ptr<BinaryBasicBlock>> NewBlocks(3);
for (int I = 0; I < 3; I++) {
MCSymbol *Symbol =
Ctx.createNamedTempSymbol(Twine(RetpolineTag + "_BB" + to_string(I)));
NewBlocks[I] = NewRetpoline->createBasicBlock(Symbol);
NewBlocks[I].get()->setCFIState(0);
}
BinaryBasicBlock &BB0 = *NewBlocks[0].get();
BinaryBasicBlock &BB1 = *NewBlocks[1].get();
BinaryBasicBlock &BB2 = *NewBlocks[2].get();
BB0.addSuccessor(&BB2, 0, 0);
BB1.addSuccessor(&BB1, 0, 0);
// Build BB0
MCInst DirectCall;
MIB.createDirectCall(DirectCall, BB2.getLabel(), &Ctx, /*IsTailCall*/ false);
BB0.addInstruction(DirectCall);
// Build BB1
MCInst Pause;
MIB.createPause(Pause);
BB1.addInstruction(Pause);
if (opts::RetpolineLfence) {
MCInst Lfence;
MIB.createLfence(Lfence);
BB1.addInstruction(Lfence);
}
InstructionListType Seq;
MIB.createShortJmp(Seq, BB1.getLabel(), &Ctx);
BB1.addInstructions(Seq.begin(), Seq.end());
// Build BB2
if (BrInfo.isMem()) {
if (R11Available) {
MCInst StoreToStack;
MIB.createSaveToStack(StoreToStack, MIB.getStackPointer(), 0,
MIB.getX86R11(), 8);
BB2.addInstruction(StoreToStack);
} else {
MCInst PushR11;
MIB.createPushRegister(PushR11, MIB.getX86R11(), 8);
BB2.addInstruction(PushR11);
MCInst LoadCalleeAddrs;
const IndirectBranchInfo::MemOpInfo &MemRef = BrInfo.Memory;
MIB.createLoad(LoadCalleeAddrs, MemRef.BaseRegNum, MemRef.ScaleImm,
MemRef.IndexRegNum, MemRef.DispImm, MemRef.DispExpr,
MemRef.SegRegNum, MIB.getX86R11(), 8);
BB2.addInstruction(LoadCalleeAddrs);
MCInst StoreToStack;
MIB.createSaveToStack(StoreToStack, MIB.getStackPointer(), 8,
MIB.getX86R11(), 8);
BB2.addInstruction(StoreToStack);
MCInst PopR11;
MIB.createPopRegister(PopR11, MIB.getX86R11(), 8);
BB2.addInstruction(PopR11);
}
} else if (BrInfo.isReg()) {
MCInst StoreToStack;
MIB.createSaveToStack(StoreToStack, MIB.getStackPointer(), 0,
BrInfo.BranchReg, 8);
BB2.addInstruction(StoreToStack);
} else {
llvm_unreachable("not expected");
}
// return
MCInst Return;
MIB.createReturn(Return);
BB2.addInstruction(Return);
NewRetpoline->insertBasicBlocks(nullptr, std::move(NewBlocks),
/* UpdateLayout */ true,
/* UpdateCFIState */ false);
NewRetpoline->updateState(BinaryFunction::State::CFG_Finalized);
return NewRetpoline;
}
std::string createRetpolineFunctionTag(BinaryContext &BC,
const IndirectBranchInfo &BrInfo,
bool R11Available) {
std::string Tag;
llvm::raw_string_ostream TagOS(Tag);
TagOS << "__retpoline_";
if (BrInfo.isReg()) {
BC.InstPrinter->printRegName(TagOS, BrInfo.BranchReg);
TagOS << "_";
TagOS.flush();
return Tag;
}
// Memory Branch
if (R11Available)
return "__retpoline_r11";
const IndirectBranchInfo::MemOpInfo &MemRef = BrInfo.Memory;
TagOS << "mem_";
if (MemRef.BaseRegNum != BC.MIB->getNoRegister())
BC.InstPrinter->printRegName(TagOS, MemRef.BaseRegNum);
TagOS << "+";
if (MemRef.DispExpr)
MemRef.DispExpr->print(TagOS, BC.AsmInfo.get());
else
TagOS << MemRef.DispImm;
if (MemRef.IndexRegNum != BC.MIB->getNoRegister()) {
TagOS << "+" << MemRef.ScaleImm << "*";
BC.InstPrinter->printRegName(TagOS, MemRef.IndexRegNum);
}
if (MemRef.SegRegNum != BC.MIB->getNoRegister()) {
TagOS << "_seg_";
BC.InstPrinter->printRegName(TagOS, MemRef.SegRegNum);
}
TagOS.flush();
return Tag;
}
BinaryFunction *RetpolineInsertion::getOrCreateRetpoline(
BinaryContext &BC, const IndirectBranchInfo &BrInfo, bool R11Available) {
const std::string RetpolineTag =
createRetpolineFunctionTag(BC, BrInfo, R11Available);
if (CreatedRetpolines.count(RetpolineTag))
return CreatedRetpolines[RetpolineTag];
return CreatedRetpolines[RetpolineTag] =
createNewRetpoline(BC, RetpolineTag, BrInfo, R11Available);
}
void createBranchReplacement(BinaryContext &BC,
const IndirectBranchInfo &BrInfo,
bool R11Available,
InstructionListType &Replacement,
const MCSymbol *RetpolineSymbol) {
auto &MIB = *BC.MIB;
// Load the branch address in r11 if available
if (BrInfo.isMem() && R11Available) {
const IndirectBranchInfo::MemOpInfo &MemRef = BrInfo.Memory;
MCInst LoadCalleeAddrs;
MIB.createLoad(LoadCalleeAddrs, MemRef.BaseRegNum, MemRef.ScaleImm,
MemRef.IndexRegNum, MemRef.DispImm, MemRef.DispExpr,
MemRef.SegRegNum, MIB.getX86R11(), 8);
Replacement.push_back(LoadCalleeAddrs);
}
// Call the retpoline
MCInst RetpolineCall;
MIB.createDirectCall(RetpolineCall, RetpolineSymbol, BC.Ctx.get(),
BrInfo.isJump() || BrInfo.isTailCall());
Replacement.push_back(RetpolineCall);
}
IndirectBranchInfo::IndirectBranchInfo(MCInst &Inst, MCPlusBuilder &MIB) {
IsCall = MIB.isCall(Inst);
IsTailCall = MIB.isTailCall(Inst);
if (MIB.isBranchOnMem(Inst)) {
IsMem = true;
std::optional<MCPlusBuilder::X86MemOperand> MO =
MIB.evaluateX86MemoryOperand(Inst);
if (!MO)
llvm_unreachable("not expected");
Memory = MO.value();
} else if (MIB.isBranchOnReg(Inst)) {
assert(MCPlus::getNumPrimeOperands(Inst) == 1 && "expect 1 operand");
BranchReg = Inst.getOperand(0).getReg();
} else {
llvm_unreachable("unexpected instruction");
}
}
Error RetpolineInsertion::runOnFunctions(BinaryContext &BC) {
if (!opts::InsertRetpolines)
return Error::success();
assert(BC.isX86() &&
"retpoline insertion not supported for target architecture");
assert(BC.HasRelocations && "retpoline mode not supported in non-reloc");
auto &MIB = *BC.MIB;
uint32_t RetpolinedBranches = 0;
for (auto &It : BC.getBinaryFunctions()) {
BinaryFunction &Function = It.second;
for (BinaryBasicBlock &BB : Function) {
for (auto It = BB.begin(); It != BB.end(); ++It) {
MCInst &Inst = *It;
if (!MIB.isIndirectCall(Inst) && !MIB.isIndirectBranch(Inst))
continue;
IndirectBranchInfo BrInfo(Inst, MIB);
bool R11Available = false;
BinaryFunction *TargetRetpoline;
InstructionListType Replacement;
// Determine if r11 is available before this instruction
if (BrInfo.isMem()) {
if (MIB.hasAnnotation(Inst, "PLTCall"))
R11Available = true;
else if (opts::R11Availability == AvailabilityOptions::ALWAYS)
R11Available = true;
else if (opts::R11Availability == AvailabilityOptions::ABI)
R11Available = BrInfo.isCall();
}
// If the instruction addressing pattern uses rsp and the retpoline
// loads the callee address then displacement needs to be updated
if (BrInfo.isMem() && !R11Available) {
IndirectBranchInfo::MemOpInfo &MemRef = BrInfo.Memory;
int Addend = (BrInfo.isJump() || BrInfo.isTailCall()) ? 8 : 16;
if (MemRef.BaseRegNum == MIB.getStackPointer())
MemRef.DispImm += Addend;
if (MemRef.IndexRegNum == MIB.getStackPointer())
MemRef.DispImm += Addend * MemRef.ScaleImm;
}
TargetRetpoline = getOrCreateRetpoline(BC, BrInfo, R11Available);
createBranchReplacement(BC, BrInfo, R11Available, Replacement,
TargetRetpoline->getSymbol());
It = BB.replaceInstruction(It, Replacement.begin(), Replacement.end());
RetpolinedBranches++;
}
}
}
BC.outs() << "BOLT-INFO: The number of created retpoline functions is : "
<< CreatedRetpolines.size()
<< "\nBOLT-INFO: The number of retpolined branches is : "
<< RetpolinedBranches << "\n";
return Error::success();
}
} // namespace bolt
} // namespace llvm