To authenticate pointers, CodeGen needs access to the key and
discriminators that were used to sign the pointer. That information is
sometimes known from the context, but not always, which is why `Address`
needs to hold that information.
This patch adds methods and data members to `Address`, which will be
needed in subsequent patches to authenticate signed pointers, and uses
the newly added methods throughout CodeGen. Although this patch isn't
strictly NFC as it causes CodeGen to use different code paths in some
cases (e.g., `mergeAddressesInConditionalExpr`), it doesn't cause any
changes in functionality as it doesn't add any information needed for
authentication.
In addition to the changes mentioned above, this patch introduces class
`RawAddress`, which contains a pointer that we know is unsigned, and
adds several new functions for creating `Address` and `LValue` objects.
This reapplies d9a685a9dd, which was
reverted because it broke ubsan bots. There seems to be a bug in
coroutine code-gen, which is causing EmitTypeCheck to use the wrong
alignment. For now, pass alignment zero to EmitTypeCheck so that it can
compute the correct alignment based on the passed type (see function
EmitCXXMemberOrOperatorMemberCallExpr).
410 lines
13 KiB
C++
410 lines
13 KiB
C++
//===- Sparc.cpp ----------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ABIInfoImpl.h"
|
|
#include "TargetInfo.h"
|
|
|
|
using namespace clang;
|
|
using namespace clang::CodeGen;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SPARC v8 ABI Implementation.
|
|
// Based on the SPARC Compliance Definition version 2.4.1.
|
|
//
|
|
// Ensures that complex values are passed in registers.
|
|
//
|
|
namespace {
|
|
class SparcV8ABIInfo : public DefaultABIInfo {
|
|
public:
|
|
SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
|
|
|
|
private:
|
|
ABIArgInfo classifyReturnType(QualType RetTy) const;
|
|
void computeInfo(CGFunctionInfo &FI) const override;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
|
|
ABIArgInfo
|
|
SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
|
|
if (Ty->isAnyComplexType()) {
|
|
return ABIArgInfo::getDirect();
|
|
}
|
|
else {
|
|
return DefaultABIInfo::classifyReturnType(Ty);
|
|
}
|
|
}
|
|
|
|
void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
|
|
|
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
|
|
for (auto &Arg : FI.arguments())
|
|
Arg.info = classifyArgumentType(Arg.type);
|
|
}
|
|
|
|
namespace {
|
|
class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
|
|
: TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {}
|
|
|
|
llvm::Value *decodeReturnAddress(CodeGen::CodeGenFunction &CGF,
|
|
llvm::Value *Address) const override {
|
|
int Offset;
|
|
if (isAggregateTypeForABI(CGF.CurFnInfo->getReturnType()))
|
|
Offset = 12;
|
|
else
|
|
Offset = 8;
|
|
return CGF.Builder.CreateGEP(CGF.Int8Ty, Address,
|
|
llvm::ConstantInt::get(CGF.Int32Ty, Offset));
|
|
}
|
|
|
|
llvm::Value *encodeReturnAddress(CodeGen::CodeGenFunction &CGF,
|
|
llvm::Value *Address) const override {
|
|
int Offset;
|
|
if (isAggregateTypeForABI(CGF.CurFnInfo->getReturnType()))
|
|
Offset = -12;
|
|
else
|
|
Offset = -8;
|
|
return CGF.Builder.CreateGEP(CGF.Int8Ty, Address,
|
|
llvm::ConstantInt::get(CGF.Int32Ty, Offset));
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SPARC v9 ABI Implementation.
|
|
// Based on the SPARC Compliance Definition version 2.4.1.
|
|
//
|
|
// Function arguments a mapped to a nominal "parameter array" and promoted to
|
|
// registers depending on their type. Each argument occupies 8 or 16 bytes in
|
|
// the array, structs larger than 16 bytes are passed indirectly.
|
|
//
|
|
// One case requires special care:
|
|
//
|
|
// struct mixed {
|
|
// int i;
|
|
// float f;
|
|
// };
|
|
//
|
|
// When a struct mixed is passed by value, it only occupies 8 bytes in the
|
|
// parameter array, but the int is passed in an integer register, and the float
|
|
// is passed in a floating point register. This is represented as two arguments
|
|
// with the LLVM IR inreg attribute:
|
|
//
|
|
// declare void f(i32 inreg %i, float inreg %f)
|
|
//
|
|
// The code generator will only allocate 4 bytes from the parameter array for
|
|
// the inreg arguments. All other arguments are allocated a multiple of 8
|
|
// bytes.
|
|
//
|
|
namespace {
|
|
class SparcV9ABIInfo : public ABIInfo {
|
|
public:
|
|
SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
|
|
|
|
private:
|
|
ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
|
|
void computeInfo(CGFunctionInfo &FI) const override;
|
|
Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
|
QualType Ty) const override;
|
|
|
|
// Coercion type builder for structs passed in registers. The coercion type
|
|
// serves two purposes:
|
|
//
|
|
// 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
|
|
// in registers.
|
|
// 2. Expose aligned floating point elements as first-level elements, so the
|
|
// code generator knows to pass them in floating point registers.
|
|
//
|
|
// We also compute the InReg flag which indicates that the struct contains
|
|
// aligned 32-bit floats.
|
|
//
|
|
struct CoerceBuilder {
|
|
llvm::LLVMContext &Context;
|
|
const llvm::DataLayout &DL;
|
|
SmallVector<llvm::Type*, 8> Elems;
|
|
uint64_t Size;
|
|
bool InReg;
|
|
|
|
CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
|
|
: Context(c), DL(dl), Size(0), InReg(false) {}
|
|
|
|
// Pad Elems with integers until Size is ToSize.
|
|
void pad(uint64_t ToSize) {
|
|
assert(ToSize >= Size && "Cannot remove elements");
|
|
if (ToSize == Size)
|
|
return;
|
|
|
|
// Finish the current 64-bit word.
|
|
uint64_t Aligned = llvm::alignTo(Size, 64);
|
|
if (Aligned > Size && Aligned <= ToSize) {
|
|
Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
|
|
Size = Aligned;
|
|
}
|
|
|
|
// Add whole 64-bit words.
|
|
while (Size + 64 <= ToSize) {
|
|
Elems.push_back(llvm::Type::getInt64Ty(Context));
|
|
Size += 64;
|
|
}
|
|
|
|
// Final in-word padding.
|
|
if (Size < ToSize) {
|
|
Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
|
|
Size = ToSize;
|
|
}
|
|
}
|
|
|
|
// Add a floating point element at Offset.
|
|
void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
|
|
// Unaligned floats are treated as integers.
|
|
if (Offset % Bits)
|
|
return;
|
|
// The InReg flag is only required if there are any floats < 64 bits.
|
|
if (Bits < 64)
|
|
InReg = true;
|
|
pad(Offset);
|
|
Elems.push_back(Ty);
|
|
Size = Offset + Bits;
|
|
}
|
|
|
|
// Add a struct type to the coercion type, starting at Offset (in bits).
|
|
void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
|
|
const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
|
|
for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
|
|
llvm::Type *ElemTy = StrTy->getElementType(i);
|
|
uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
|
|
switch (ElemTy->getTypeID()) {
|
|
case llvm::Type::StructTyID:
|
|
addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
|
|
break;
|
|
case llvm::Type::FloatTyID:
|
|
addFloat(ElemOffset, ElemTy, 32);
|
|
break;
|
|
case llvm::Type::DoubleTyID:
|
|
addFloat(ElemOffset, ElemTy, 64);
|
|
break;
|
|
case llvm::Type::FP128TyID:
|
|
addFloat(ElemOffset, ElemTy, 128);
|
|
break;
|
|
case llvm::Type::PointerTyID:
|
|
if (ElemOffset % 64 == 0) {
|
|
pad(ElemOffset);
|
|
Elems.push_back(ElemTy);
|
|
Size += 64;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check if Ty is a usable substitute for the coercion type.
|
|
bool isUsableType(llvm::StructType *Ty) const {
|
|
return llvm::ArrayRef(Elems) == Ty->elements();
|
|
}
|
|
|
|
// Get the coercion type as a literal struct type.
|
|
llvm::Type *getType() const {
|
|
if (Elems.size() == 1)
|
|
return Elems.front();
|
|
else
|
|
return llvm::StructType::get(Context, Elems);
|
|
}
|
|
};
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
ABIArgInfo
|
|
SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
|
|
if (Ty->isVoidType())
|
|
return ABIArgInfo::getIgnore();
|
|
|
|
uint64_t Size = getContext().getTypeSize(Ty);
|
|
|
|
// Anything too big to fit in registers is passed with an explicit indirect
|
|
// pointer / sret pointer.
|
|
if (Size > SizeLimit)
|
|
return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
|
|
|
|
// Treat an enum type as its underlying type.
|
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
|
Ty = EnumTy->getDecl()->getIntegerType();
|
|
|
|
// Integer types smaller than a register are extended.
|
|
if (Size < 64 && Ty->isIntegerType())
|
|
return ABIArgInfo::getExtend(Ty);
|
|
|
|
if (const auto *EIT = Ty->getAs<BitIntType>())
|
|
if (EIT->getNumBits() < 64)
|
|
return ABIArgInfo::getExtend(Ty);
|
|
|
|
// Other non-aggregates go in registers.
|
|
if (!isAggregateTypeForABI(Ty))
|
|
return ABIArgInfo::getDirect();
|
|
|
|
// If a C++ object has either a non-trivial copy constructor or a non-trivial
|
|
// destructor, it is passed with an explicit indirect pointer / sret pointer.
|
|
if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
|
|
return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
|
|
|
|
// This is a small aggregate type that should be passed in registers.
|
|
// Build a coercion type from the LLVM struct type.
|
|
llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
|
|
if (!StrTy)
|
|
return ABIArgInfo::getDirect();
|
|
|
|
CoerceBuilder CB(getVMContext(), getDataLayout());
|
|
CB.addStruct(0, StrTy);
|
|
CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
|
|
|
|
// Try to use the original type for coercion.
|
|
llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
|
|
|
|
if (CB.InReg)
|
|
return ABIArgInfo::getDirectInReg(CoerceTy);
|
|
else
|
|
return ABIArgInfo::getDirect(CoerceTy);
|
|
}
|
|
|
|
Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
|
QualType Ty) const {
|
|
ABIArgInfo AI = classifyType(Ty, 16 * 8);
|
|
llvm::Type *ArgTy = CGT.ConvertType(Ty);
|
|
if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
|
|
AI.setCoerceToType(ArgTy);
|
|
|
|
CharUnits SlotSize = CharUnits::fromQuantity(8);
|
|
|
|
CGBuilderTy &Builder = CGF.Builder;
|
|
Address Addr = Address(Builder.CreateLoad(VAListAddr, "ap.cur"),
|
|
getVAListElementType(CGF), SlotSize);
|
|
llvm::Type *ArgPtrTy = CGF.UnqualPtrTy;
|
|
|
|
auto TypeInfo = getContext().getTypeInfoInChars(Ty);
|
|
|
|
Address ArgAddr = Address::invalid();
|
|
CharUnits Stride;
|
|
switch (AI.getKind()) {
|
|
case ABIArgInfo::Expand:
|
|
case ABIArgInfo::CoerceAndExpand:
|
|
case ABIArgInfo::InAlloca:
|
|
llvm_unreachable("Unsupported ABI kind for va_arg");
|
|
|
|
case ABIArgInfo::Extend: {
|
|
Stride = SlotSize;
|
|
CharUnits Offset = SlotSize - TypeInfo.Width;
|
|
ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
|
|
break;
|
|
}
|
|
|
|
case ABIArgInfo::Direct: {
|
|
auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
|
|
Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
|
|
ArgAddr = Addr;
|
|
break;
|
|
}
|
|
|
|
case ABIArgInfo::Indirect:
|
|
case ABIArgInfo::IndirectAliased:
|
|
Stride = SlotSize;
|
|
ArgAddr = Addr.withElementType(ArgPtrTy);
|
|
ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), ArgTy,
|
|
TypeInfo.Align);
|
|
break;
|
|
|
|
case ABIArgInfo::Ignore:
|
|
return Address(llvm::UndefValue::get(ArgPtrTy), ArgTy, TypeInfo.Align);
|
|
}
|
|
|
|
// Update VAList.
|
|
Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next");
|
|
Builder.CreateStore(NextPtr.emitRawPointer(CGF), VAListAddr);
|
|
|
|
return ArgAddr.withElementType(ArgTy);
|
|
}
|
|
|
|
void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
|
FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
|
|
for (auto &I : FI.arguments())
|
|
I.info = classifyType(I.type, 16 * 8);
|
|
}
|
|
|
|
namespace {
|
|
class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
|
|
public:
|
|
SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
|
|
: TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {}
|
|
|
|
int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
|
|
return 14;
|
|
}
|
|
|
|
bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
|
llvm::Value *Address) const override;
|
|
|
|
llvm::Value *decodeReturnAddress(CodeGen::CodeGenFunction &CGF,
|
|
llvm::Value *Address) const override {
|
|
return CGF.Builder.CreateGEP(CGF.Int8Ty, Address,
|
|
llvm::ConstantInt::get(CGF.Int32Ty, 8));
|
|
}
|
|
|
|
llvm::Value *encodeReturnAddress(CodeGen::CodeGenFunction &CGF,
|
|
llvm::Value *Address) const override {
|
|
return CGF.Builder.CreateGEP(CGF.Int8Ty, Address,
|
|
llvm::ConstantInt::get(CGF.Int32Ty, -8));
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
bool
|
|
SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
|
llvm::Value *Address) const {
|
|
// This is calculated from the LLVM and GCC tables and verified
|
|
// against gcc output. AFAIK all ABIs use the same encoding.
|
|
|
|
CodeGen::CGBuilderTy &Builder = CGF.Builder;
|
|
|
|
llvm::IntegerType *i8 = CGF.Int8Ty;
|
|
llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
|
|
llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
|
|
|
|
// 0-31: the 8-byte general-purpose registers
|
|
AssignToArrayRange(Builder, Address, Eight8, 0, 31);
|
|
|
|
// 32-63: f0-31, the 4-byte floating-point registers
|
|
AssignToArrayRange(Builder, Address, Four8, 32, 63);
|
|
|
|
// Y = 64
|
|
// PSR = 65
|
|
// WIM = 66
|
|
// TBR = 67
|
|
// PC = 68
|
|
// NPC = 69
|
|
// FSR = 70
|
|
// CSR = 71
|
|
AssignToArrayRange(Builder, Address, Eight8, 64, 71);
|
|
|
|
// 72-87: d0-15, the 8-byte floating-point registers
|
|
AssignToArrayRange(Builder, Address, Eight8, 72, 87);
|
|
|
|
return false;
|
|
}
|
|
|
|
std::unique_ptr<TargetCodeGenInfo>
|
|
CodeGen::createSparcV8TargetCodeGenInfo(CodeGenModule &CGM) {
|
|
return std::make_unique<SparcV8TargetCodeGenInfo>(CGM.getTypes());
|
|
}
|
|
|
|
std::unique_ptr<TargetCodeGenInfo>
|
|
CodeGen::createSparcV9TargetCodeGenInfo(CodeGenModule &CGM) {
|
|
return std::make_unique<SparcV9TargetCodeGenInfo>(CGM.getTypes());
|
|
}
|