Files
clang-p2996/clang/lib/CodeGen/Targets/SystemZ.cpp
Akira Hatanaka 84780af4b0 [CodeGen][arm64e] Add methods and data members to Address, which are needed to authenticate signed pointers (#86923)
To authenticate pointers, CodeGen needs access to the key and
discriminators that were used to sign the pointer. That information is
sometimes known from the context, but not always, which is why `Address`
needs to hold that information.

This patch adds methods and data members to `Address`, which will be
needed in subsequent patches to authenticate signed pointers, and uses
the newly added methods throughout CodeGen. Although this patch isn't
strictly NFC as it causes CodeGen to use different code paths in some
cases (e.g., `mergeAddressesInConditionalExpr`), it doesn't cause any
changes in functionality as it doesn't add any information needed for
authentication.

In addition to the changes mentioned above, this patch introduces class
`RawAddress`, which contains a pointer that we know is unsigned, and
adds several new functions for creating `Address` and `LValue` objects.

This reapplies d9a685a9dd, which was
reverted because it broke ubsan bots. There seems to be a bug in
coroutine code-gen, which is causing EmitTypeCheck to use the wrong
alignment. For now, pass alignment zero to EmitTypeCheck so that it can
compute the correct alignment based on the passed type (see function
EmitCXXMemberOrOperatorMemberCallExpr).
2024-03-28 06:54:36 -07:00

538 lines
20 KiB
C++

//===- SystemZ.cpp --------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "ABIInfoImpl.h"
#include "TargetInfo.h"
#include "clang/Basic/Builtins.h"
#include "llvm/IR/IntrinsicsS390.h"
using namespace clang;
using namespace clang::CodeGen;
//===----------------------------------------------------------------------===//
// SystemZ ABI Implementation
//===----------------------------------------------------------------------===//
namespace {
class SystemZABIInfo : public ABIInfo {
bool HasVector;
bool IsSoftFloatABI;
public:
SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF)
: ABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {}
bool isPromotableIntegerTypeForABI(QualType Ty) const;
bool isCompoundType(QualType Ty) const;
bool isVectorArgumentType(QualType Ty) const;
bool isFPArgumentType(QualType Ty) const;
QualType GetSingleElementType(QualType Ty) const;
ABIArgInfo classifyReturnType(QualType RetTy) const;
ABIArgInfo classifyArgumentType(QualType ArgTy) const;
void computeInfo(CGFunctionInfo &FI) const override;
Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
QualType Ty) const override;
};
class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
ASTContext &Ctx;
// These are used for speeding up the search for a visible vector ABI.
mutable bool HasVisibleVecABIFlag = false;
mutable std::set<const Type *> SeenTypes;
// Returns true (the first time) if Ty is, or is found to include, a vector
// type that exposes the vector ABI. This is any vector >=16 bytes which
// with vector support are aligned to only 8 bytes. When IsParam is true,
// the type belongs to a value as passed between functions. If it is a
// vector <=16 bytes it will be passed in a vector register (if supported).
bool isVectorTypeBased(const Type *Ty, bool IsParam) const;
public:
SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI)
: TargetCodeGenInfo(
std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)),
Ctx(CGT.getContext()) {
SwiftInfo =
std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/false);
}
// The vector ABI is different when the vector facility is present and when
// a module e.g. defines an externally visible vector variable, a flag
// indicating a visible vector ABI is added. Eventually this will result in
// a GNU attribute indicating the vector ABI of the module. Ty is the type
// of a variable or function parameter that is globally visible.
void handleExternallyVisibleObjABI(const Type *Ty, CodeGen::CodeGenModule &M,
bool IsParam) const {
if (!HasVisibleVecABIFlag && isVectorTypeBased(Ty, IsParam)) {
M.getModule().addModuleFlag(llvm::Module::Warning,
"s390x-visible-vector-ABI", 1);
HasVisibleVecABIFlag = true;
}
}
void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
CodeGen::CodeGenModule &M) const override {
if (!D)
return;
// Check if the vector ABI becomes visible by an externally visible
// variable or function.
if (const auto *VD = dyn_cast<VarDecl>(D)) {
if (VD->isExternallyVisible())
handleExternallyVisibleObjABI(VD->getType().getTypePtr(), M,
/*IsParam*/false);
}
else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
if (FD->isExternallyVisible())
handleExternallyVisibleObjABI(FD->getType().getTypePtr(), M,
/*IsParam*/false);
}
}
llvm::Value *testFPKind(llvm::Value *V, unsigned BuiltinID,
CGBuilderTy &Builder,
CodeGenModule &CGM) const override {
assert(V->getType()->isFloatingPointTy() && "V should have an FP type.");
// Only use TDC in constrained FP mode.
if (!Builder.getIsFPConstrained())
return nullptr;
llvm::Type *Ty = V->getType();
if (Ty->isFloatTy() || Ty->isDoubleTy() || Ty->isFP128Ty()) {
llvm::Module &M = CGM.getModule();
auto &Ctx = M.getContext();
llvm::Function *TDCFunc =
llvm::Intrinsic::getDeclaration(&M, llvm::Intrinsic::s390_tdc, Ty);
unsigned TDCBits = 0;
switch (BuiltinID) {
case Builtin::BI__builtin_isnan:
TDCBits = 0xf;
break;
case Builtin::BIfinite:
case Builtin::BI__finite:
case Builtin::BIfinitef:
case Builtin::BI__finitef:
case Builtin::BIfinitel:
case Builtin::BI__finitel:
case Builtin::BI__builtin_isfinite:
TDCBits = 0xfc0;
break;
case Builtin::BI__builtin_isinf:
TDCBits = 0x30;
break;
default:
break;
}
if (TDCBits)
return Builder.CreateCall(
TDCFunc,
{V, llvm::ConstantInt::get(llvm::Type::getInt64Ty(Ctx), TDCBits)});
}
return nullptr;
}
};
}
bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
// Treat an enum type as its underlying type.
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
Ty = EnumTy->getDecl()->getIntegerType();
// Promotable integer types are required to be promoted by the ABI.
if (ABIInfo::isPromotableIntegerTypeForABI(Ty))
return true;
if (const auto *EIT = Ty->getAs<BitIntType>())
if (EIT->getNumBits() < 64)
return true;
// 32-bit values must also be promoted.
if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
switch (BT->getKind()) {
case BuiltinType::Int:
case BuiltinType::UInt:
return true;
default:
return false;
}
return false;
}
bool SystemZABIInfo::isCompoundType(QualType Ty) const {
return (Ty->isAnyComplexType() ||
Ty->isVectorType() ||
isAggregateTypeForABI(Ty));
}
bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
return (HasVector &&
Ty->isVectorType() &&
getContext().getTypeSize(Ty) <= 128);
}
bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
if (IsSoftFloatABI)
return false;
if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
switch (BT->getKind()) {
case BuiltinType::Float:
case BuiltinType::Double:
return true;
default:
return false;
}
return false;
}
QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
const RecordType *RT = Ty->getAs<RecordType>();
if (RT && RT->isStructureOrClassType()) {
const RecordDecl *RD = RT->getDecl();
QualType Found;
// If this is a C++ record, check the bases first.
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
if (CXXRD->hasDefinition())
for (const auto &I : CXXRD->bases()) {
QualType Base = I.getType();
// Empty bases don't affect things either way.
if (isEmptyRecord(getContext(), Base, true))
continue;
if (!Found.isNull())
return Ty;
Found = GetSingleElementType(Base);
}
// Check the fields.
for (const auto *FD : RD->fields()) {
// Unlike isSingleElementStruct(), empty structure and array fields
// do count. So do anonymous bitfields that aren't zero-sized.
// Like isSingleElementStruct(), ignore C++20 empty data members.
if (FD->hasAttr<NoUniqueAddressAttr>() &&
isEmptyRecord(getContext(), FD->getType(), true))
continue;
// Unlike isSingleElementStruct(), arrays do not count.
// Nested structures still do though.
if (!Found.isNull())
return Ty;
Found = GetSingleElementType(FD->getType());
}
// Unlike isSingleElementStruct(), trailing padding is allowed.
// An 8-byte aligned struct s { float f; } is passed as a double.
if (!Found.isNull())
return Found;
}
return Ty;
}
Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
QualType Ty) const {
// Assume that va_list type is correct; should be pointer to LLVM type:
// struct {
// i64 __gpr;
// i64 __fpr;
// i8 *__overflow_arg_area;
// i8 *__reg_save_area;
// };
// Every non-vector argument occupies 8 bytes and is passed by preference
// in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are
// always passed on the stack.
const SystemZTargetCodeGenInfo &SZCGI =
static_cast<const SystemZTargetCodeGenInfo &>(
CGT.getCGM().getTargetCodeGenInfo());
Ty = getContext().getCanonicalType(Ty);
auto TyInfo = getContext().getTypeInfoInChars(Ty);
llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
llvm::Type *DirectTy = ArgTy;
ABIArgInfo AI = classifyArgumentType(Ty);
bool IsIndirect = AI.isIndirect();
bool InFPRs = false;
bool IsVector = false;
CharUnits UnpaddedSize;
CharUnits DirectAlign;
SZCGI.handleExternallyVisibleObjABI(Ty.getTypePtr(), CGT.getCGM(),
/*IsParam*/true);
if (IsIndirect) {
DirectTy = llvm::PointerType::getUnqual(DirectTy);
UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
} else {
if (AI.getCoerceToType())
ArgTy = AI.getCoerceToType();
InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy()));
IsVector = ArgTy->isVectorTy();
UnpaddedSize = TyInfo.Width;
DirectAlign = TyInfo.Align;
}
CharUnits PaddedSize = CharUnits::fromQuantity(8);
if (IsVector && UnpaddedSize > PaddedSize)
PaddedSize = CharUnits::fromQuantity(16);
assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
CharUnits Padding = (PaddedSize - UnpaddedSize);
llvm::Type *IndexTy = CGF.Int64Ty;
llvm::Value *PaddedSizeV =
llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
if (IsVector) {
// Work out the address of a vector argument on the stack.
// Vector arguments are always passed in the high bits of a
// single (8 byte) or double (16 byte) stack slot.
Address OverflowArgAreaPtr =
CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
Address OverflowArgArea =
Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
CGF.Int8Ty, TyInfo.Align);
Address MemAddr = OverflowArgArea.withElementType(DirectTy);
// Update overflow_arg_area_ptr pointer
llvm::Value *NewOverflowArgArea = CGF.Builder.CreateGEP(
OverflowArgArea.getElementType(), OverflowArgArea.emitRawPointer(CGF),
PaddedSizeV, "overflow_arg_area");
CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
return MemAddr;
}
assert(PaddedSize.getQuantity() == 8);
unsigned MaxRegs, RegCountField, RegSaveIndex;
CharUnits RegPadding;
if (InFPRs) {
MaxRegs = 4; // Maximum of 4 FPR arguments
RegCountField = 1; // __fpr
RegSaveIndex = 16; // save offset for f0
RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
} else {
MaxRegs = 5; // Maximum of 5 GPR arguments
RegCountField = 0; // __gpr
RegSaveIndex = 2; // save offset for r2
RegPadding = Padding; // values are passed in the low bits of a GPR
}
Address RegCountPtr =
CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
"fits_in_regs");
llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
// Emit code to load the value if it was passed in registers.
CGF.EmitBlock(InRegBlock);
// Work out the address of an argument register.
llvm::Value *ScaledRegCount =
CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
llvm::Value *RegBase =
llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
+ RegPadding.getQuantity());
llvm::Value *RegOffset =
CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
Address RegSaveAreaPtr =
CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
llvm::Value *RegSaveArea =
CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
Address RawRegAddr(
CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, RegOffset, "raw_reg_addr"),
CGF.Int8Ty, PaddedSize);
Address RegAddr = RawRegAddr.withElementType(DirectTy);
// Update the register count
llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
llvm::Value *NewRegCount =
CGF.Builder.CreateAdd(RegCount, One, "reg_count");
CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
CGF.EmitBranch(ContBlock);
// Emit code to load the value if it was passed in memory.
CGF.EmitBlock(InMemBlock);
// Work out the address of a stack argument.
Address OverflowArgAreaPtr =
CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
Address OverflowArgArea =
Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
CGF.Int8Ty, PaddedSize);
Address RawMemAddr =
CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
Address MemAddr = RawMemAddr.withElementType(DirectTy);
// Update overflow_arg_area_ptr pointer
llvm::Value *NewOverflowArgArea = CGF.Builder.CreateGEP(
OverflowArgArea.getElementType(), OverflowArgArea.emitRawPointer(CGF),
PaddedSizeV, "overflow_arg_area");
CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
CGF.EmitBranch(ContBlock);
// Return the appropriate result.
CGF.EmitBlock(ContBlock);
Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
"va_arg.addr");
if (IsIndirect)
ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), ArgTy,
TyInfo.Align);
return ResAddr;
}
ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
if (RetTy->isVoidType())
return ABIArgInfo::getIgnore();
if (isVectorArgumentType(RetTy))
return ABIArgInfo::getDirect();
if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
return getNaturalAlignIndirect(RetTy);
return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
: ABIArgInfo::getDirect());
}
ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
// Handle the generic C++ ABI.
if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
// Integers and enums are extended to full register width.
if (isPromotableIntegerTypeForABI(Ty))
return ABIArgInfo::getExtend(Ty);
// Handle vector types and vector-like structure types. Note that
// as opposed to float-like structure types, we do not allow any
// padding for vector-like structures, so verify the sizes match.
uint64_t Size = getContext().getTypeSize(Ty);
QualType SingleElementTy = GetSingleElementType(Ty);
if (isVectorArgumentType(SingleElementTy) &&
getContext().getTypeSize(SingleElementTy) == Size)
return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
// Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
// Handle small structures.
if (const RecordType *RT = Ty->getAs<RecordType>()) {
// Structures with flexible arrays have variable length, so really
// fail the size test above.
const RecordDecl *RD = RT->getDecl();
if (RD->hasFlexibleArrayMember())
return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
// The structure is passed as an unextended integer, a float, or a double.
llvm::Type *PassTy;
if (isFPArgumentType(SingleElementTy)) {
assert(Size == 32 || Size == 64);
if (Size == 32)
PassTy = llvm::Type::getFloatTy(getVMContext());
else
PassTy = llvm::Type::getDoubleTy(getVMContext());
} else
PassTy = llvm::IntegerType::get(getVMContext(), Size);
return ABIArgInfo::getDirect(PassTy);
}
// Non-structure compounds are passed indirectly.
if (isCompoundType(Ty))
return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
return ABIArgInfo::getDirect(nullptr);
}
void SystemZABIInfo::computeInfo(CGFunctionInfo &FI) const {
const SystemZTargetCodeGenInfo &SZCGI =
static_cast<const SystemZTargetCodeGenInfo &>(
CGT.getCGM().getTargetCodeGenInfo());
if (!getCXXABI().classifyReturnType(FI))
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
unsigned Idx = 0;
for (auto &I : FI.arguments()) {
I.info = classifyArgumentType(I.type);
if (FI.isVariadic() && Idx++ >= FI.getNumRequiredArgs())
// Check if a vararg vector argument is passed, in which case the
// vector ABI becomes visible as the va_list could be passed on to
// other functions.
SZCGI.handleExternallyVisibleObjABI(I.type.getTypePtr(), CGT.getCGM(),
/*IsParam*/true);
}
}
bool SystemZTargetCodeGenInfo::isVectorTypeBased(const Type *Ty,
bool IsParam) const {
if (!SeenTypes.insert(Ty).second)
return false;
if (IsParam) {
// A narrow (<16 bytes) vector will as a parameter also expose the ABI as
// it will be passed in a vector register. A wide (>16 bytes) vector will
// be passed via "hidden" pointer where any extra alignment is not
// required (per GCC).
const Type *SingleEltTy = getABIInfo<SystemZABIInfo>()
.GetSingleElementType(QualType(Ty, 0))
.getTypePtr();
bool SingleVecEltStruct = SingleEltTy != Ty && SingleEltTy->isVectorType() &&
Ctx.getTypeSize(SingleEltTy) == Ctx.getTypeSize(Ty);
if (Ty->isVectorType() || SingleVecEltStruct)
return Ctx.getTypeSize(Ty) / 8 <= 16;
}
// Assume pointers are dereferenced.
while (Ty->isPointerType() || Ty->isArrayType())
Ty = Ty->getPointeeOrArrayElementType();
// Vectors >= 16 bytes expose the ABI through alignment requirements.
if (Ty->isVectorType() && Ctx.getTypeSize(Ty) / 8 >= 16)
return true;
if (const auto *RecordTy = Ty->getAs<RecordType>()) {
const RecordDecl *RD = RecordTy->getDecl();
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
if (CXXRD->hasDefinition())
for (const auto &I : CXXRD->bases())
if (isVectorTypeBased(I.getType().getTypePtr(), /*IsParam*/false))
return true;
for (const auto *FD : RD->fields())
if (isVectorTypeBased(FD->getType().getTypePtr(), /*IsParam*/false))
return true;
}
if (const auto *FT = Ty->getAs<FunctionType>())
if (isVectorTypeBased(FT->getReturnType().getTypePtr(), /*IsParam*/true))
return true;
if (const FunctionProtoType *Proto = Ty->getAs<FunctionProtoType>())
for (const auto &ParamType : Proto->getParamTypes())
if (isVectorTypeBased(ParamType.getTypePtr(), /*IsParam*/true))
return true;
return false;
}
std::unique_ptr<TargetCodeGenInfo>
CodeGen::createSystemZTargetCodeGenInfo(CodeGenModule &CGM, bool HasVector,
bool SoftFloatABI) {
return std::make_unique<SystemZTargetCodeGenInfo>(CGM.getTypes(), HasVector,
SoftFloatABI);
}