Files
clang-p2996/clang/test/SemaHLSL/BuiltIns/isinf-errors.hlsl
Farzon Lotfi de1a97db39 [DXIL] exp, any, lerp, & rcp Intrinsic Lowering (#84526)
This change implements lowering for #70076, #70100, #70072, & #70102 
`CGBuiltin.cpp` - - simplify `lerp` intrinsic
`IntrinsicsDirectX.td` - simplify `lerp` intrinsic
`SemaChecking.cpp` - remove unnecessary check
`DXILIntrinsicExpansion.*` - add intrinsic to instruction expansion
cases
`DXILOpLowering.cpp` - make sure `DXILIntrinsicExpansion` happens first
`DirectX.h` - changes to support new pass
`DirectXTargetMachine.cpp` - changes to support new pass

Why `any`, and `lerp` as instruction expansion just for DXIL?
- SPIR-V there is an
[OpAny](https://registry.khronos.org/SPIR-V/specs/unified1/SPIRV.html#OpAny)
- SPIR-V has a GLSL lerp extension via
[Fmix](https://registry.khronos.org/SPIR-V/specs/1.0/GLSL.std.450.html#FMix)

Why `exp` instruction expansion?
- We have an `exp2` opcode and `exp` reuses that opcode. So instruction
expansion is a convenient way to do preprocessing.
- Further SPIR-V has a GLSL exp extension via
[Exp](https://registry.khronos.org/SPIR-V/specs/1.0/GLSL.std.450.html#Exp)
and
[Exp2](https://registry.khronos.org/SPIR-V/specs/1.0/GLSL.std.450.html#Exp2)

Why `rcp` as instruction expansion?
This one is a bit of the odd man out and might have to move to
`cgbuiltins` when we better understand SPIRV requirements. However I
included it because it seems like [fast math mode has an AllowRecip
flag](https://registry.khronos.org/SPIR-V/specs/unified1/SPIRV.html#_fp_fast_math_mode)
which lets you compute the reciprocal without performing the division.
We don't have that in DXIL so thought to include it.
2024-03-14 20:25:57 -04:00

39 lines
1.6 KiB
HLSL

// RUN: %clang_cc1 -finclude-default-header -triple dxil-pc-shadermodel6.6-library %s -fnative-half-type -emit-llvm -disable-llvm-passes -verify -verify-ignore-unexpected
bool test_too_few_arg() {
return __builtin_hlsl_elementwise_isinf();
// expected-error@-1 {{too few arguments to function call, expected 1, have 0}}
}
bool2 test_too_many_arg(float2 p0) {
return __builtin_hlsl_elementwise_isinf(p0, p0);
// expected-error@-1 {{too many arguments to function call, expected 1, have 2}}
}
bool builtin_bool_to_float_type_promotion(bool p1) {
return __builtin_hlsl_elementwise_isinf(p1);
// expected-error@-1 {passing 'bool' to parameter of incompatible type 'float'}}
}
bool builtin_isinf_int_to_float_promotion(int p1) {
return __builtin_hlsl_elementwise_isinf(p1);
// expected-error@-1 {{passing 'int' to parameter of incompatible type 'float'}}
}
bool2 builtin_isinf_int2_to_float2_promotion(int2 p1) {
return __builtin_hlsl_elementwise_isinf(p1);
// expected-error@-1 {{passing 'int2' (aka 'vector<int, 2>') to parameter of incompatible type '__attribute__((__vector_size__(2 * sizeof(float)))) float' (vector of 2 'float' values)}}
}
// builtins are variadic functions and so are subject to DefaultVariadicArgumentPromotion
half builtin_isinf_half_scalar (half p0) {
return __builtin_hlsl_elementwise_isinf (p0);
// expected-error@-1 {{passing 'double' to parameter of incompatible type 'float'}}
}
float builtin_isinf_float_scalar ( float p0) {
return __builtin_hlsl_elementwise_isinf (p0);
// expected-error@-1 {{passing 'double' to parameter of incompatible type 'float'}}
}