Files
clang-p2996/clang/test/SemaHLSL/BuiltIns/lerp-errors.hlsl
Farzon Lotfi de1a97db39 [DXIL] exp, any, lerp, & rcp Intrinsic Lowering (#84526)
This change implements lowering for #70076, #70100, #70072, & #70102 
`CGBuiltin.cpp` - - simplify `lerp` intrinsic
`IntrinsicsDirectX.td` - simplify `lerp` intrinsic
`SemaChecking.cpp` - remove unnecessary check
`DXILIntrinsicExpansion.*` - add intrinsic to instruction expansion
cases
`DXILOpLowering.cpp` - make sure `DXILIntrinsicExpansion` happens first
`DirectX.h` - changes to support new pass
`DirectXTargetMachine.cpp` - changes to support new pass

Why `any`, and `lerp` as instruction expansion just for DXIL?
- SPIR-V there is an
[OpAny](https://registry.khronos.org/SPIR-V/specs/unified1/SPIRV.html#OpAny)
- SPIR-V has a GLSL lerp extension via
[Fmix](https://registry.khronos.org/SPIR-V/specs/1.0/GLSL.std.450.html#FMix)

Why `exp` instruction expansion?
- We have an `exp2` opcode and `exp` reuses that opcode. So instruction
expansion is a convenient way to do preprocessing.
- Further SPIR-V has a GLSL exp extension via
[Exp](https://registry.khronos.org/SPIR-V/specs/1.0/GLSL.std.450.html#Exp)
and
[Exp2](https://registry.khronos.org/SPIR-V/specs/1.0/GLSL.std.450.html#Exp2)

Why `rcp` as instruction expansion?
This one is a bit of the odd man out and might have to move to
`cgbuiltins` when we better understand SPIRV requirements. However I
included it because it seems like [fast math mode has an AllowRecip
flag](https://registry.khronos.org/SPIR-V/specs/unified1/SPIRV.html#_fp_fast_math_mode)
which lets you compute the reciprocal without performing the division.
We don't have that in DXIL so thought to include it.
2024-03-14 20:25:57 -04:00

110 lines
4.2 KiB
HLSL

// RUN: %clang_cc1 -finclude-default-header -triple dxil-pc-shadermodel6.6-library %s -fnative-half-type -emit-llvm -disable-llvm-passes -verify -verify-ignore-unexpected
float2 test_no_second_arg(float2 p0) {
return __builtin_hlsl_lerp(p0);
// expected-error@-1 {{too few arguments to function call, expected 3, have 1}}
}
float2 test_no_third_arg(float2 p0) {
return __builtin_hlsl_lerp(p0, p0);
// expected-error@-1 {{too few arguments to function call, expected 3, have 2}}
}
float2 test_too_many_arg(float2 p0) {
return __builtin_hlsl_lerp(p0, p0, p0, p0);
// expected-error@-1 {{too many arguments to function call, expected 3, have 4}}
}
float2 test_lerp_no_second_arg(float2 p0) {
return lerp(p0);
// expected-error@-1 {{no matching function for call to 'lerp'}}
}
float2 test_lerp_vector_size_mismatch(float3 p0, float2 p1) {
return lerp(p0, p0, p1);
// expected-warning@-1 {{implicit conversion truncates vector: 'float3' (aka 'vector<float, 3>') to 'float __attribute__((ext_vector_type(2)))' (vector of 2 'float' values)}}
}
float2 test_lerp_builtin_vector_size_mismatch(float3 p0, float2 p1) {
return __builtin_hlsl_lerp(p0, p1, p1);
// expected-error@-1 {{all arguments to '__builtin_hlsl_lerp' must have the same type}}
}
float test_lerp_scalar_mismatch(float p0, half p1) {
return lerp(p1, p0, p1);
// expected-error@-1 {{call to 'lerp' is ambiguous}}
}
float2 test_lerp_element_type_mismatch(half2 p0, float2 p1) {
return lerp(p1, p0, p1);
// expected-error@-1 {{call to 'lerp' is ambiguous}}
}
float2 test_builtin_lerp_float2_splat(float p0, float2 p1) {
return __builtin_hlsl_lerp(p0, p1, p1);
// expected-error@-1 {{all arguments to '__builtin_hlsl_lerp' must be vectors}}
}
float3 test_builtin_lerp_float3_splat(float p0, float3 p1) {
return __builtin_hlsl_lerp(p0, p1, p1);
// expected-error@-1 {{all arguments to '__builtin_hlsl_lerp' must be vectors}}
}
float4 test_builtin_lerp_float4_splat(float p0, float4 p1) {
return __builtin_hlsl_lerp(p0, p1, p1);
// expected-error@-1 {{all arguments to '__builtin_hlsl_lerp' must be vectors}}
}
float2 test_lerp_float2_int_splat(float2 p0, int p1) {
return __builtin_hlsl_lerp(p0, p1, p1);
// expected-error@-1 {{all arguments to '__builtin_hlsl_lerp' must be vectors}}
}
float3 test_lerp_float3_int_splat(float3 p0, int p1) {
return __builtin_hlsl_lerp(p0, p1, p1);
// expected-error@-1 {{all arguments to '__builtin_hlsl_lerp' must be vectors}}
}
float2 test_builtin_lerp_int_vect_to_float_vec_promotion(int2 p0, float p1) {
return __builtin_hlsl_lerp(p0, p1, p1);
// expected-error@-1 {{all arguments to '__builtin_hlsl_lerp' must be vectors}}
}
float test_builtin_lerp_bool_type_promotion(bool p0) {
return __builtin_hlsl_lerp(p0, p0, p0);
// expected-error@-1 {{1st argument must be a floating point type (was 'bool')}}
}
float builtin_bool_to_float_type_promotion(float p0, bool p1) {
return __builtin_hlsl_lerp(p0, p0, p1);
// expected-error@-1 {{3rd argument must be a floating point type (was 'bool')}}
}
float builtin_bool_to_float_type_promotion2(bool p0, float p1) {
return __builtin_hlsl_lerp(p1, p0, p1);
// expected-error@-1 {{2nd argument must be a floating point type (was 'bool')}}
}
float builtin_lerp_int_to_float_promotion(float p0, int p1) {
return __builtin_hlsl_lerp(p0, p0, p1);
// expected-error@-1 {{3rd argument must be a floating point type (was 'int')}}
}
float4 test_lerp_int4(int4 p0, int4 p1, int4 p2) {
return __builtin_hlsl_lerp(p0, p1, p2);
// expected-error@-1 {{1st argument must be a floating point type (was 'int4' (aka 'vector<int, 4>'))}}
}
// note: DefaultVariadicArgumentPromotion --> DefaultArgumentPromotion has already promoted to double
// we don't know anymore that the input was half when __builtin_hlsl_lerp is called so we default to float
// for expected type
half builtin_lerp_half_scalar (half p0) {
return __builtin_hlsl_lerp ( p0, p0, p0 );
// expected-error@-1 {{passing 'double' to parameter of incompatible type 'float'}}
}
float builtin_lerp_float_scalar ( float p0) {
return __builtin_hlsl_lerp ( p0, p0, p0 );
// expected-error@-1 {{passing 'double' to parameter of incompatible type 'float'}}
}