Files
clang-p2996/compiler-rt/lib/dfsan/dfsan_allocator.cpp
Thurston Dang 62ed009ce2 [dfsan] Re-exec with no ASLR if memory layout is incompatible on Linux (#85674)
DFSan's shadow mappings are incompatible with 32 bits of ASLR entropy
('sudo sysctl vm.mmap_rnd_bits=32; ninja check-dfsan') and it is
difficult to fix this via increasing the size of the shadow mappings,
due to the overhead of shadow memory. This patch works around the issue
by detecting if the memory layout is incompatible, and if so,
re-exec'ing without ASLR.

DFSan and MSan share copy-pasted shadow memory code, hence this
workaround is ported from MSan:
- "[msan] Re-exec with no ASLR if memory layout is incompatible on
Linux"
(58f7251820)
- "[msan] Add 'MappingDesc::ALLOCATOR' type and check it is available"
(af2bf86a37)
(which in turn are inspired by TSan: "Re-exec TSan with no ASLR if
memory layout is incompatible on Linux"
(0784b1eefa
))

aeubanks had remarked in
https://github.com/llvm/llvm-project/pull/85142#issuecomment-2004442883
that this issue occurs in Chromium:
https://ci.chromium.org/ui/p/chromium/builders/try/linux_upload_clang/5066/overview
2024-03-20 11:04:52 -07:00

334 lines
10 KiB
C++

//===-- dfsan_allocator.cpp -------------------------- --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of DataflowSanitizer.
//
// DataflowSanitizer allocator.
//===----------------------------------------------------------------------===//
#include "dfsan_allocator.h"
#include "dfsan.h"
#include "dfsan_flags.h"
#include "dfsan_thread.h"
#include "sanitizer_common/sanitizer_allocator.h"
#include "sanitizer_common/sanitizer_allocator_checks.h"
#include "sanitizer_common/sanitizer_allocator_interface.h"
#include "sanitizer_common/sanitizer_allocator_report.h"
#include "sanitizer_common/sanitizer_errno.h"
namespace __dfsan {
struct Metadata {
uptr requested_size;
};
struct DFsanMapUnmapCallback {
void OnMap(uptr p, uptr size) const { dfsan_set_label(0, (void *)p, size); }
void OnMapSecondary(uptr p, uptr size, uptr user_begin,
uptr user_size) const {
OnMap(p, size);
}
void OnUnmap(uptr p, uptr size) const { dfsan_set_label(0, (void *)p, size); }
};
// Note: to ensure that the allocator is compatible with the application memory
// layout (especially with high-entropy ASLR), kSpaceBeg and kSpaceSize must be
// duplicated as MappingDesc::ALLOCATOR in dfsan_platform.h.
#if defined(__aarch64__)
const uptr kAllocatorSpace = 0xE00000000000ULL;
#else
const uptr kAllocatorSpace = 0x700000000000ULL;
#endif
const uptr kMaxAllowedMallocSize = 8UL << 30;
struct AP64 { // Allocator64 parameters. Deliberately using a short name.
static const uptr kSpaceBeg = kAllocatorSpace;
static const uptr kSpaceSize = 0x40000000000; // 4T.
static const uptr kMetadataSize = sizeof(Metadata);
typedef DefaultSizeClassMap SizeClassMap;
typedef DFsanMapUnmapCallback MapUnmapCallback;
static const uptr kFlags = 0;
using AddressSpaceView = LocalAddressSpaceView;
};
typedef SizeClassAllocator64<AP64> PrimaryAllocator;
typedef CombinedAllocator<PrimaryAllocator> Allocator;
typedef Allocator::AllocatorCache AllocatorCache;
static Allocator allocator;
static AllocatorCache fallback_allocator_cache;
static StaticSpinMutex fallback_mutex;
static uptr max_malloc_size;
void dfsan_allocator_init() {
SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
allocator.Init(common_flags()->allocator_release_to_os_interval_ms);
if (common_flags()->max_allocation_size_mb)
max_malloc_size = Min(common_flags()->max_allocation_size_mb << 20,
kMaxAllowedMallocSize);
else
max_malloc_size = kMaxAllowedMallocSize;
}
AllocatorCache *GetAllocatorCache(DFsanThreadLocalMallocStorage *ms) {
CHECK(ms);
CHECK_LE(sizeof(AllocatorCache), sizeof(ms->allocator_cache));
return reinterpret_cast<AllocatorCache *>(ms->allocator_cache);
}
void DFsanThreadLocalMallocStorage::CommitBack() {
allocator.SwallowCache(GetAllocatorCache(this));
}
static void *DFsanAllocate(uptr size, uptr alignment, bool zeroise) {
if (size > max_malloc_size) {
if (AllocatorMayReturnNull()) {
Report("WARNING: DataflowSanitizer failed to allocate 0x%zx bytes\n",
size);
return nullptr;
}
BufferedStackTrace stack;
ReportAllocationSizeTooBig(size, max_malloc_size, &stack);
}
if (UNLIKELY(IsRssLimitExceeded())) {
if (AllocatorMayReturnNull())
return nullptr;
BufferedStackTrace stack;
ReportRssLimitExceeded(&stack);
}
DFsanThread *t = GetCurrentThread();
void *allocated;
if (t) {
AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
allocated = allocator.Allocate(cache, size, alignment);
} else {
SpinMutexLock l(&fallback_mutex);
AllocatorCache *cache = &fallback_allocator_cache;
allocated = allocator.Allocate(cache, size, alignment);
}
if (UNLIKELY(!allocated)) {
SetAllocatorOutOfMemory();
if (AllocatorMayReturnNull())
return nullptr;
BufferedStackTrace stack;
ReportOutOfMemory(size, &stack);
}
Metadata *meta =
reinterpret_cast<Metadata *>(allocator.GetMetaData(allocated));
meta->requested_size = size;
if (zeroise) {
internal_memset(allocated, 0, size);
dfsan_set_label(0, allocated, size);
} else if (flags().zero_in_malloc) {
dfsan_set_label(0, allocated, size);
}
return allocated;
}
void dfsan_deallocate(void *p) {
CHECK(p);
Metadata *meta = reinterpret_cast<Metadata *>(allocator.GetMetaData(p));
uptr size = meta->requested_size;
meta->requested_size = 0;
if (flags().zero_in_free)
dfsan_set_label(0, p, size);
DFsanThread *t = GetCurrentThread();
if (t) {
AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
allocator.Deallocate(cache, p);
} else {
SpinMutexLock l(&fallback_mutex);
AllocatorCache *cache = &fallback_allocator_cache;
allocator.Deallocate(cache, p);
}
}
void *DFsanReallocate(void *old_p, uptr new_size, uptr alignment) {
Metadata *meta = reinterpret_cast<Metadata *>(allocator.GetMetaData(old_p));
uptr old_size = meta->requested_size;
uptr actually_allocated_size = allocator.GetActuallyAllocatedSize(old_p);
if (new_size <= actually_allocated_size) {
// We are not reallocating here.
meta->requested_size = new_size;
if (new_size > old_size && flags().zero_in_malloc)
dfsan_set_label(0, (char *)old_p + old_size, new_size - old_size);
return old_p;
}
uptr memcpy_size = Min(new_size, old_size);
void *new_p = DFsanAllocate(new_size, alignment, false /*zeroise*/);
if (new_p) {
dfsan_copy_memory(new_p, old_p, memcpy_size);
dfsan_deallocate(old_p);
}
return new_p;
}
void *DFsanCalloc(uptr nmemb, uptr size) {
if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
if (AllocatorMayReturnNull())
return nullptr;
BufferedStackTrace stack;
ReportCallocOverflow(nmemb, size, &stack);
}
return DFsanAllocate(nmemb * size, sizeof(u64), true /*zeroise*/);
}
static const void *AllocationBegin(const void *p) {
if (!p)
return nullptr;
void *beg = allocator.GetBlockBegin(p);
if (!beg)
return nullptr;
Metadata *b = (Metadata *)allocator.GetMetaData(beg);
if (!b)
return nullptr;
if (b->requested_size == 0)
return nullptr;
return (const void *)beg;
}
static uptr AllocationSize(const void *p) {
if (!p)
return 0;
const void *beg = allocator.GetBlockBegin(p);
if (beg != p)
return 0;
Metadata *b = (Metadata *)allocator.GetMetaData(p);
return b->requested_size;
}
static uptr AllocationSizeFast(const void *p) {
return reinterpret_cast<Metadata *>(allocator.GetMetaData(p))->requested_size;
}
void *dfsan_malloc(uptr size) {
return SetErrnoOnNull(DFsanAllocate(size, sizeof(u64), false /*zeroise*/));
}
void *dfsan_calloc(uptr nmemb, uptr size) {
return SetErrnoOnNull(DFsanCalloc(nmemb, size));
}
void *dfsan_realloc(void *ptr, uptr size) {
if (!ptr)
return SetErrnoOnNull(DFsanAllocate(size, sizeof(u64), false /*zeroise*/));
if (size == 0) {
dfsan_deallocate(ptr);
return nullptr;
}
return SetErrnoOnNull(DFsanReallocate(ptr, size, sizeof(u64)));
}
void *dfsan_reallocarray(void *ptr, uptr nmemb, uptr size) {
if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
errno = errno_ENOMEM;
if (AllocatorMayReturnNull())
return nullptr;
BufferedStackTrace stack;
ReportReallocArrayOverflow(nmemb, size, &stack);
}
return dfsan_realloc(ptr, nmemb * size);
}
void *dfsan_valloc(uptr size) {
return SetErrnoOnNull(
DFsanAllocate(size, GetPageSizeCached(), false /*zeroise*/));
}
void *dfsan_pvalloc(uptr size) {
uptr PageSize = GetPageSizeCached();
if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
errno = errno_ENOMEM;
if (AllocatorMayReturnNull())
return nullptr;
BufferedStackTrace stack;
ReportPvallocOverflow(size, &stack);
}
// pvalloc(0) should allocate one page.
size = size ? RoundUpTo(size, PageSize) : PageSize;
return SetErrnoOnNull(DFsanAllocate(size, PageSize, false /*zeroise*/));
}
void *dfsan_aligned_alloc(uptr alignment, uptr size) {
if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
errno = errno_EINVAL;
if (AllocatorMayReturnNull())
return nullptr;
BufferedStackTrace stack;
ReportInvalidAlignedAllocAlignment(size, alignment, &stack);
}
return SetErrnoOnNull(DFsanAllocate(size, alignment, false /*zeroise*/));
}
void *dfsan_memalign(uptr alignment, uptr size) {
if (UNLIKELY(!IsPowerOfTwo(alignment))) {
errno = errno_EINVAL;
if (AllocatorMayReturnNull())
return nullptr;
BufferedStackTrace stack;
ReportInvalidAllocationAlignment(alignment, &stack);
}
return SetErrnoOnNull(DFsanAllocate(size, alignment, false /*zeroise*/));
}
int dfsan_posix_memalign(void **memptr, uptr alignment, uptr size) {
if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
if (AllocatorMayReturnNull())
return errno_EINVAL;
BufferedStackTrace stack;
ReportInvalidPosixMemalignAlignment(alignment, &stack);
}
void *ptr = DFsanAllocate(size, alignment, false /*zeroise*/);
if (UNLIKELY(!ptr))
// OOM error is already taken care of by DFsanAllocate.
return errno_ENOMEM;
CHECK(IsAligned((uptr)ptr, alignment));
*memptr = ptr;
return 0;
}
} // namespace __dfsan
using namespace __dfsan;
uptr __sanitizer_get_current_allocated_bytes() {
uptr stats[AllocatorStatCount];
allocator.GetStats(stats);
return stats[AllocatorStatAllocated];
}
uptr __sanitizer_get_heap_size() {
uptr stats[AllocatorStatCount];
allocator.GetStats(stats);
return stats[AllocatorStatMapped];
}
uptr __sanitizer_get_free_bytes() { return 1; }
uptr __sanitizer_get_unmapped_bytes() { return 1; }
uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; }
int __sanitizer_get_ownership(const void *p) { return AllocationSize(p) != 0; }
const void *__sanitizer_get_allocated_begin(const void *p) {
return AllocationBegin(p);
}
uptr __sanitizer_get_allocated_size(const void *p) { return AllocationSize(p); }
uptr __sanitizer_get_allocated_size_fast(const void *p) {
DCHECK_EQ(p, __sanitizer_get_allocated_begin(p));
uptr ret = AllocationSizeFast(p);
DCHECK_EQ(ret, __sanitizer_get_allocated_size(p));
return ret;
}