Files
clang-p2996/flang/lib/Optimizer/HLFIR/Transforms/LowerHLFIRIntrinsics.cpp
Tom Eccles 44c0bdb402 [flang][HLFIR] Use GreedyPatternRewriter in LowerHLFIRIntrinsics (#83438)
In #83253 @matthias-springer pointed out that LowerHLFIRIntrinsics.cpp
should not be using rewrite patterns with the dialect conversion driver.

The intention of this pass is to lower HLFIR intrinsic operations into
FIR so it conceptually fits dialect conversion. However, dialect
conversion is much stricter about changing types when replacing
operations. This pass sometimes looses track of array bounds, resulting
in replacements with operations with different but compatible types
(expressions of the same rank and element types but with or without
compile time known array bounds). This is difficult to accommodate with
the dialect conversion driver and so I have changed to use the greedy
pattern rewriter.

There is a lot of test churn because the greedy pattern rewriter also
performs canonicalization.
2024-03-01 10:16:27 +00:00

511 lines
20 KiB
C++

//===- LowerHLFIRIntrinsics.cpp - Transformational intrinsics to FIR ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/HLFIRTools.h"
#include "flang/Optimizer/Builder/IntrinsicCall.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/Dialect/FIRDialect.h"
#include "flang/Optimizer/Dialect/FIROps.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/Dialect/Support/FIRContext.h"
#include "flang/Optimizer/HLFIR/HLFIRDialect.h"
#include "flang/Optimizer/HLFIR/HLFIROps.h"
#include "flang/Optimizer/HLFIR/Passes.h"
#include "mlir/IR/BuiltinDialect.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Pass/PassManager.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include <optional>
namespace hlfir {
#define GEN_PASS_DEF_LOWERHLFIRINTRINSICS
#include "flang/Optimizer/HLFIR/Passes.h.inc"
} // namespace hlfir
namespace {
/// Base class for passes converting transformational intrinsic operations into
/// runtime calls
template <class OP>
class HlfirIntrinsicConversion : public mlir::OpRewritePattern<OP> {
public:
explicit HlfirIntrinsicConversion(mlir::MLIRContext *ctx)
: mlir::OpRewritePattern<OP>{ctx} {
// required for cases where intrinsics are chained together e.g.
// matmul(matmul(a, b), c)
// because converting the inner operation then invalidates the
// outer operation: causing the pattern to apply recursively.
//
// This is safe because we always progress with each iteration. Circular
// applications of operations are not expressible in MLIR because we use
// an SSA form and one must become first. E.g.
// %a = hlfir.matmul %b %d
// %b = hlfir.matmul %a %d
// cannot be written.
// MSVC needs the this->
this->setHasBoundedRewriteRecursion(true);
}
protected:
struct IntrinsicArgument {
mlir::Value val; // allowed to be null if the argument is absent
mlir::Type desiredType;
};
/// Lower the arguments to the intrinsic: adding necessary boxing and
/// conversion to match the signature of the intrinsic in the runtime library.
llvm::SmallVector<fir::ExtendedValue, 3>
lowerArguments(mlir::Operation *op,
const llvm::ArrayRef<IntrinsicArgument> &args,
mlir::PatternRewriter &rewriter,
const fir::IntrinsicArgumentLoweringRules *argLowering) const {
mlir::Location loc = op->getLoc();
fir::FirOpBuilder builder{rewriter, op};
llvm::SmallVector<fir::ExtendedValue, 3> ret;
llvm::SmallVector<std::function<void()>, 2> cleanupFns;
for (size_t i = 0; i < args.size(); ++i) {
mlir::Value arg = args[i].val;
mlir::Type desiredType = args[i].desiredType;
if (!arg) {
ret.emplace_back(fir::getAbsentIntrinsicArgument());
continue;
}
hlfir::Entity entity{arg};
fir::ArgLoweringRule argRules =
fir::lowerIntrinsicArgumentAs(*argLowering, i);
switch (argRules.lowerAs) {
case fir::LowerIntrinsicArgAs::Value: {
if (args[i].desiredType != arg.getType()) {
arg = builder.createConvert(loc, desiredType, arg);
entity = hlfir::Entity{arg};
}
auto [exv, cleanup] = hlfir::convertToValue(loc, builder, entity);
if (cleanup)
cleanupFns.push_back(*cleanup);
ret.emplace_back(exv);
} break;
case fir::LowerIntrinsicArgAs::Addr: {
auto [exv, cleanup] =
hlfir::convertToAddress(loc, builder, entity, desiredType);
if (cleanup)
cleanupFns.push_back(*cleanup);
ret.emplace_back(exv);
} break;
case fir::LowerIntrinsicArgAs::Box: {
auto [box, cleanup] =
hlfir::convertToBox(loc, builder, entity, desiredType);
if (cleanup)
cleanupFns.push_back(*cleanup);
ret.emplace_back(box);
} break;
case fir::LowerIntrinsicArgAs::Inquired: {
if (args[i].desiredType != arg.getType()) {
arg = builder.createConvert(loc, desiredType, arg);
entity = hlfir::Entity{arg};
}
// Place hlfir.expr in memory, and unbox fir.boxchar. Other entities
// are translated to fir::ExtendedValue without transofrmation (notably,
// pointers/allocatable are not dereferenced).
// TODO: once lowering to FIR retires, UBOUND and LBOUND can be
// simplified since the fir.box lowered here are now guarenteed to
// contain the local lower bounds thanks to the hlfir.declare (the extra
// rebox can be removed).
auto [exv, cleanup] =
hlfir::translateToExtendedValue(loc, builder, entity);
if (cleanup)
cleanupFns.push_back(*cleanup);
ret.emplace_back(exv);
} break;
}
}
if (cleanupFns.size()) {
auto oldInsertionPoint = builder.saveInsertionPoint();
builder.setInsertionPointAfter(op);
for (std::function<void()> cleanup : cleanupFns)
cleanup();
builder.restoreInsertionPoint(oldInsertionPoint);
}
return ret;
}
void processReturnValue(mlir::Operation *op,
const fir::ExtendedValue &resultExv, bool mustBeFreed,
fir::FirOpBuilder &builder,
mlir::PatternRewriter &rewriter) const {
mlir::Location loc = op->getLoc();
mlir::Value firBase = fir::getBase(resultExv);
mlir::Type firBaseTy = firBase.getType();
std::optional<hlfir::EntityWithAttributes> resultEntity;
if (fir::isa_trivial(firBaseTy)) {
// Some intrinsics return i1 when the original operation
// produces fir.logical<>, so we may need to cast it.
firBase = builder.createConvert(loc, op->getResult(0).getType(), firBase);
resultEntity = hlfir::EntityWithAttributes{firBase};
} else {
resultEntity =
hlfir::genDeclare(loc, builder, resultExv, ".tmp.intrinsic_result",
fir::FortranVariableFlagsAttr{});
}
if (resultEntity->isVariable()) {
hlfir::AsExprOp asExpr = builder.create<hlfir::AsExprOp>(
loc, *resultEntity, builder.createBool(loc, mustBeFreed));
resultEntity = hlfir::EntityWithAttributes{asExpr.getResult()};
}
mlir::Value base = resultEntity->getBase();
if (!mlir::isa<hlfir::ExprType>(base.getType())) {
for (mlir::Operation *use : op->getResult(0).getUsers()) {
if (mlir::isa<hlfir::DestroyOp>(use))
rewriter.eraseOp(use);
}
}
rewriter.replaceOp(op, base);
}
};
// Given an integer or array of integer type, calculate the Kind parameter from
// the width for use in runtime intrinsic calls.
static unsigned getKindForType(mlir::Type ty) {
mlir::Type eltty = hlfir::getFortranElementType(ty);
unsigned width = eltty.cast<mlir::IntegerType>().getWidth();
return width / 8;
}
template <class OP>
class HlfirReductionIntrinsicConversion : public HlfirIntrinsicConversion<OP> {
using HlfirIntrinsicConversion<OP>::HlfirIntrinsicConversion;
using IntrinsicArgument =
typename HlfirIntrinsicConversion<OP>::IntrinsicArgument;
using HlfirIntrinsicConversion<OP>::lowerArguments;
using HlfirIntrinsicConversion<OP>::processReturnValue;
protected:
auto buildNumericalArgs(OP operation, mlir::Type i32, mlir::Type logicalType,
mlir::PatternRewriter &rewriter,
std::string opName) const {
llvm::SmallVector<IntrinsicArgument, 3> inArgs;
inArgs.push_back({operation.getArray(), operation.getArray().getType()});
inArgs.push_back({operation.getDim(), i32});
inArgs.push_back({operation.getMask(), logicalType});
auto *argLowering = fir::getIntrinsicArgumentLowering(opName);
return lowerArguments(operation, inArgs, rewriter, argLowering);
};
auto buildMinMaxLocArgs(OP operation, mlir::Type i32, mlir::Type logicalType,
mlir::PatternRewriter &rewriter, std::string opName,
fir::FirOpBuilder builder) const {
llvm::SmallVector<IntrinsicArgument, 3> inArgs;
inArgs.push_back({operation.getArray(), operation.getArray().getType()});
inArgs.push_back({operation.getDim(), i32});
inArgs.push_back({operation.getMask(), logicalType});
mlir::Value kind = builder.createIntegerConstant(
operation->getLoc(), i32, getKindForType(operation.getType()));
inArgs.push_back({kind, i32});
inArgs.push_back({operation.getBack(), i32});
auto *argLowering = fir::getIntrinsicArgumentLowering(opName);
return lowerArguments(operation, inArgs, rewriter, argLowering);
};
auto buildLogicalArgs(OP operation, mlir::Type i32, mlir::Type logicalType,
mlir::PatternRewriter &rewriter,
std::string opName) const {
llvm::SmallVector<IntrinsicArgument, 2> inArgs;
inArgs.push_back({operation.getMask(), logicalType});
inArgs.push_back({operation.getDim(), i32});
auto *argLowering = fir::getIntrinsicArgumentLowering(opName);
return lowerArguments(operation, inArgs, rewriter, argLowering);
};
public:
mlir::LogicalResult
matchAndRewrite(OP operation,
mlir::PatternRewriter &rewriter) const override {
std::string opName;
if constexpr (std::is_same_v<OP, hlfir::SumOp>) {
opName = "sum";
} else if constexpr (std::is_same_v<OP, hlfir::ProductOp>) {
opName = "product";
} else if constexpr (std::is_same_v<OP, hlfir::MaxvalOp>) {
opName = "maxval";
} else if constexpr (std::is_same_v<OP, hlfir::MinvalOp>) {
opName = "minval";
} else if constexpr (std::is_same_v<OP, hlfir::MinlocOp>) {
opName = "minloc";
} else if constexpr (std::is_same_v<OP, hlfir::MaxlocOp>) {
opName = "maxloc";
} else if constexpr (std::is_same_v<OP, hlfir::AnyOp>) {
opName = "any";
} else if constexpr (std::is_same_v<OP, hlfir::AllOp>) {
opName = "all";
} else {
return mlir::failure();
}
fir::FirOpBuilder builder{rewriter, operation.getOperation()};
const mlir::Location &loc = operation->getLoc();
mlir::Type i32 = builder.getI32Type();
mlir::Type logicalType = fir::LogicalType::get(
builder.getContext(), builder.getKindMap().defaultLogicalKind());
llvm::SmallVector<fir::ExtendedValue, 0> args;
if constexpr (std::is_same_v<OP, hlfir::SumOp> ||
std::is_same_v<OP, hlfir::ProductOp> ||
std::is_same_v<OP, hlfir::MaxvalOp> ||
std::is_same_v<OP, hlfir::MinvalOp>) {
args = buildNumericalArgs(operation, i32, logicalType, rewriter, opName);
} else if constexpr (std::is_same_v<OP, hlfir::MinlocOp> ||
std::is_same_v<OP, hlfir::MaxlocOp>) {
args = buildMinMaxLocArgs(operation, i32, logicalType, rewriter, opName,
builder);
} else {
args = buildLogicalArgs(operation, i32, logicalType, rewriter, opName);
}
mlir::Type scalarResultType =
hlfir::getFortranElementType(operation.getType());
auto [resultExv, mustBeFreed] =
fir::genIntrinsicCall(builder, loc, opName, scalarResultType, args);
processReturnValue(operation, resultExv, mustBeFreed, builder, rewriter);
return mlir::success();
}
};
using SumOpConversion = HlfirReductionIntrinsicConversion<hlfir::SumOp>;
using ProductOpConversion = HlfirReductionIntrinsicConversion<hlfir::ProductOp>;
using MaxvalOpConversion = HlfirReductionIntrinsicConversion<hlfir::MaxvalOp>;
using MinvalOpConversion = HlfirReductionIntrinsicConversion<hlfir::MinvalOp>;
using MinlocOpConversion = HlfirReductionIntrinsicConversion<hlfir::MinlocOp>;
using MaxlocOpConversion = HlfirReductionIntrinsicConversion<hlfir::MaxlocOp>;
using AnyOpConversion = HlfirReductionIntrinsicConversion<hlfir::AnyOp>;
using AllOpConversion = HlfirReductionIntrinsicConversion<hlfir::AllOp>;
struct CountOpConversion : public HlfirIntrinsicConversion<hlfir::CountOp> {
using HlfirIntrinsicConversion<hlfir::CountOp>::HlfirIntrinsicConversion;
mlir::LogicalResult
matchAndRewrite(hlfir::CountOp count,
mlir::PatternRewriter &rewriter) const override {
fir::FirOpBuilder builder{rewriter, count.getOperation()};
const mlir::Location &loc = count->getLoc();
mlir::Type i32 = builder.getI32Type();
mlir::Type logicalType = fir::LogicalType::get(
builder.getContext(), builder.getKindMap().defaultLogicalKind());
llvm::SmallVector<IntrinsicArgument, 3> inArgs;
inArgs.push_back({count.getMask(), logicalType});
inArgs.push_back({count.getDim(), i32});
mlir::Value kind = builder.createIntegerConstant(
count->getLoc(), i32, getKindForType(count.getType()));
inArgs.push_back({kind, i32});
auto *argLowering = fir::getIntrinsicArgumentLowering("count");
llvm::SmallVector<fir::ExtendedValue, 3> args =
lowerArguments(count, inArgs, rewriter, argLowering);
mlir::Type scalarResultType = hlfir::getFortranElementType(count.getType());
auto [resultExv, mustBeFreed] =
fir::genIntrinsicCall(builder, loc, "count", scalarResultType, args);
processReturnValue(count, resultExv, mustBeFreed, builder, rewriter);
return mlir::success();
}
};
struct MatmulOpConversion : public HlfirIntrinsicConversion<hlfir::MatmulOp> {
using HlfirIntrinsicConversion<hlfir::MatmulOp>::HlfirIntrinsicConversion;
mlir::LogicalResult
matchAndRewrite(hlfir::MatmulOp matmul,
mlir::PatternRewriter &rewriter) const override {
fir::FirOpBuilder builder{rewriter, matmul.getOperation()};
const mlir::Location &loc = matmul->getLoc();
mlir::Value lhs = matmul.getLhs();
mlir::Value rhs = matmul.getRhs();
llvm::SmallVector<IntrinsicArgument, 2> inArgs;
inArgs.push_back({lhs, lhs.getType()});
inArgs.push_back({rhs, rhs.getType()});
auto *argLowering = fir::getIntrinsicArgumentLowering("matmul");
llvm::SmallVector<fir::ExtendedValue, 2> args =
lowerArguments(matmul, inArgs, rewriter, argLowering);
mlir::Type scalarResultType =
hlfir::getFortranElementType(matmul.getType());
auto [resultExv, mustBeFreed] =
fir::genIntrinsicCall(builder, loc, "matmul", scalarResultType, args);
processReturnValue(matmul, resultExv, mustBeFreed, builder, rewriter);
return mlir::success();
}
};
struct DotProductOpConversion
: public HlfirIntrinsicConversion<hlfir::DotProductOp> {
using HlfirIntrinsicConversion<hlfir::DotProductOp>::HlfirIntrinsicConversion;
mlir::LogicalResult
matchAndRewrite(hlfir::DotProductOp dotProduct,
mlir::PatternRewriter &rewriter) const override {
fir::FirOpBuilder builder{rewriter, dotProduct.getOperation()};
const mlir::Location &loc = dotProduct->getLoc();
mlir::Value lhs = dotProduct.getLhs();
mlir::Value rhs = dotProduct.getRhs();
llvm::SmallVector<IntrinsicArgument, 2> inArgs;
inArgs.push_back({lhs, lhs.getType()});
inArgs.push_back({rhs, rhs.getType()});
auto *argLowering = fir::getIntrinsicArgumentLowering("dot_product");
llvm::SmallVector<fir::ExtendedValue, 2> args =
lowerArguments(dotProduct, inArgs, rewriter, argLowering);
mlir::Type scalarResultType =
hlfir::getFortranElementType(dotProduct.getType());
auto [resultExv, mustBeFreed] = fir::genIntrinsicCall(
builder, loc, "dot_product", scalarResultType, args);
processReturnValue(dotProduct, resultExv, mustBeFreed, builder, rewriter);
return mlir::success();
}
};
class TransposeOpConversion
: public HlfirIntrinsicConversion<hlfir::TransposeOp> {
using HlfirIntrinsicConversion<hlfir::TransposeOp>::HlfirIntrinsicConversion;
mlir::LogicalResult
matchAndRewrite(hlfir::TransposeOp transpose,
mlir::PatternRewriter &rewriter) const override {
fir::FirOpBuilder builder{rewriter, transpose.getOperation()};
const mlir::Location &loc = transpose->getLoc();
mlir::Value arg = transpose.getArray();
llvm::SmallVector<IntrinsicArgument, 1> inArgs;
inArgs.push_back({arg, arg.getType()});
auto *argLowering = fir::getIntrinsicArgumentLowering("transpose");
llvm::SmallVector<fir::ExtendedValue, 1> args =
lowerArguments(transpose, inArgs, rewriter, argLowering);
mlir::Type scalarResultType =
hlfir::getFortranElementType(transpose.getType());
auto [resultExv, mustBeFreed] = fir::genIntrinsicCall(
builder, loc, "transpose", scalarResultType, args);
processReturnValue(transpose, resultExv, mustBeFreed, builder, rewriter);
return mlir::success();
}
};
struct MatmulTransposeOpConversion
: public HlfirIntrinsicConversion<hlfir::MatmulTransposeOp> {
using HlfirIntrinsicConversion<
hlfir::MatmulTransposeOp>::HlfirIntrinsicConversion;
mlir::LogicalResult
matchAndRewrite(hlfir::MatmulTransposeOp multranspose,
mlir::PatternRewriter &rewriter) const override {
fir::FirOpBuilder builder{rewriter, multranspose.getOperation()};
const mlir::Location &loc = multranspose->getLoc();
mlir::Value lhs = multranspose.getLhs();
mlir::Value rhs = multranspose.getRhs();
llvm::SmallVector<IntrinsicArgument, 2> inArgs;
inArgs.push_back({lhs, lhs.getType()});
inArgs.push_back({rhs, rhs.getType()});
auto *argLowering = fir::getIntrinsicArgumentLowering("matmul");
llvm::SmallVector<fir::ExtendedValue, 2> args =
lowerArguments(multranspose, inArgs, rewriter, argLowering);
mlir::Type scalarResultType =
hlfir::getFortranElementType(multranspose.getType());
auto [resultExv, mustBeFreed] = fir::genIntrinsicCall(
builder, loc, "matmul_transpose", scalarResultType, args);
processReturnValue(multranspose, resultExv, mustBeFreed, builder, rewriter);
return mlir::success();
}
};
class LowerHLFIRIntrinsics
: public hlfir::impl::LowerHLFIRIntrinsicsBase<LowerHLFIRIntrinsics> {
public:
void runOnOperation() override {
// TODO: make this a pass operating on FuncOp. The issue is that
// FirOpBuilder helpers may generate new FuncOp because of runtime/llvm
// intrinsics calls creation. This may create race conflict if the pass is
// scheduled on FuncOp. A solution could be to provide an optional mutex
// when building a FirOpBuilder and locking around FuncOp and GlobalOp
// creation, but this needs a bit more thinking, so at this point the pass
// is scheduled on the moduleOp.
mlir::ModuleOp module = this->getOperation();
mlir::MLIRContext *context = &getContext();
mlir::RewritePatternSet patterns(context);
patterns
.insert<MatmulOpConversion, MatmulTransposeOpConversion,
AllOpConversion, AnyOpConversion, SumOpConversion,
ProductOpConversion, TransposeOpConversion, CountOpConversion,
DotProductOpConversion, MaxvalOpConversion, MinvalOpConversion,
MinlocOpConversion, MaxlocOpConversion>(context);
// While conceptually this pass is performing dialect conversion, we use
// pattern rewrites here instead of dialect conversion because this pass
// looses array bounds from some of the expressions e.g.
// !hlfir.expr<2xi32> -> !hlfir.expr<?xi32>
// MLIR thinks this is a different type so dialect conversion fails.
// Pattern rewriting only requires that the resulting IR is still valid
mlir::GreedyRewriteConfig config;
// Prevent the pattern driver from merging blocks
config.enableRegionSimplification = false;
if (mlir::failed(mlir::applyPatternsAndFoldGreedily(
module, std::move(patterns), config))) {
mlir::emitError(mlir::UnknownLoc::get(context),
"failure in HLFIR intrinsic lowering");
signalPassFailure();
}
}
};
} // namespace
std::unique_ptr<mlir::Pass> hlfir::createLowerHLFIRIntrinsicsPass() {
return std::make_unique<LowerHLFIRIntrinsics>();
}