When dealing with overlaps in user defined assignments, some entities with descriptors (fir.box) may be saved without descriptors. The current code was replacing the original box entity with the "raw" copy with a simple cast instead of creating a box for the copy. This patch ensures a fir.embox is emitted instead.
1330 lines
58 KiB
C++
1330 lines
58 KiB
C++
//===- LowerHLFIROrderedAssignments.cpp - Lower HLFIR ordered assignments -===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
// This file defines a pass to lower HLFIR ordered assignments.
|
|
// Ordered assignments are all the operations with the
|
|
// OrderedAssignmentTreeOpInterface that implements user defined assignments,
|
|
// assignment to vector subscripted entities, and assignments inside forall and
|
|
// where.
|
|
// The pass lowers these operations to regular hlfir.assign, loops and, if
|
|
// needed, introduces temporary storage to fulfill Fortran semantics.
|
|
//
|
|
// For each rewrite, an analysis builds an evaluation schedule, and then the
|
|
// new code is generated by following the evaluation schedule.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ScheduleOrderedAssignments.h"
|
|
#include "flang/Optimizer/Builder/FIRBuilder.h"
|
|
#include "flang/Optimizer/Builder/HLFIRTools.h"
|
|
#include "flang/Optimizer/Builder/TemporaryStorage.h"
|
|
#include "flang/Optimizer/Builder/Todo.h"
|
|
#include "flang/Optimizer/Dialect/Support/FIRContext.h"
|
|
#include "flang/Optimizer/HLFIR/Passes.h"
|
|
#include "mlir/IR/Dominance.h"
|
|
#include "mlir/IR/IRMapping.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/TypeSwitch.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
namespace hlfir {
|
|
#define GEN_PASS_DEF_LOWERHLFIRORDEREDASSIGNMENTS
|
|
#include "flang/Optimizer/HLFIR/Passes.h.inc"
|
|
} // namespace hlfir
|
|
|
|
#define DEBUG_TYPE "flang-ordered-assignment"
|
|
|
|
// Test option only to test the scheduling part only (operations are erased
|
|
// without codegen). The only goal is to allow printing and testing the debug
|
|
// info.
|
|
static llvm::cl::opt<bool> dbgScheduleOnly(
|
|
"flang-dbg-order-assignment-schedule-only",
|
|
llvm::cl::desc("Only run ordered assignment scheduling with no codegen"),
|
|
llvm::cl::init(false));
|
|
|
|
namespace {
|
|
|
|
/// Structure that represents a masked expression being lowered. Masked
|
|
/// expressions are any expressions inside an hlfir.where. As described in
|
|
/// Fortran 2018 section 10.2.3.2, the evaluation of the elemental parts of such
|
|
/// expressions must be masked, while the evaluation of none elemental parts
|
|
/// must not be masked. This structure analyzes the region evaluating the
|
|
/// expression and allows splitting the generation of the none elemental part
|
|
/// from the elemental part.
|
|
struct MaskedArrayExpr {
|
|
MaskedArrayExpr(mlir::Location loc, mlir::Region ®ion);
|
|
|
|
/// Generate the none elemental part. Must be called outside of the
|
|
/// loops created for the WHERE construct.
|
|
void generateNoneElementalPart(fir::FirOpBuilder &builder,
|
|
mlir::IRMapping &mapper);
|
|
|
|
/// Methods below can only be called once generateNoneElementalPart has been
|
|
/// called.
|
|
|
|
/// Return the shape of the expression.
|
|
mlir::Value generateShape(fir::FirOpBuilder &builder,
|
|
mlir::IRMapping &mapper);
|
|
/// Return the value of an element value for this expression given the current
|
|
/// where loop indices.
|
|
mlir::Value generateElementalParts(fir::FirOpBuilder &builder,
|
|
mlir::ValueRange oneBasedIndices,
|
|
mlir::IRMapping &mapper);
|
|
/// Generate the cleanup for the none elemental parts, if any. This must be
|
|
/// called after the loops created for the WHERE construct.
|
|
void generateNoneElementalCleanupIfAny(fir::FirOpBuilder &builder,
|
|
mlir::IRMapping &mapper);
|
|
|
|
mlir::Location loc;
|
|
mlir::Region ®ion;
|
|
/// Was generateNoneElementalPart called?
|
|
bool noneElementalPartWasGenerated = false;
|
|
/// Set of operations that form the elemental parts of the
|
|
/// expression evaluation. These are the hlfir.elemental and
|
|
/// hlfir.elemental_addr that form the elemental tree producing
|
|
/// the expression value. hlfir.elemental that produce values
|
|
/// used inside transformational operations are not part of this set.
|
|
llvm::SmallSet<mlir::Operation *, 4> elementalParts{};
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
/// Structure that visits an ordered assignment tree and generates code for
|
|
/// it according to a schedule.
|
|
class OrderedAssignmentRewriter {
|
|
public:
|
|
OrderedAssignmentRewriter(fir::FirOpBuilder &builder,
|
|
hlfir::OrderedAssignmentTreeOpInterface root)
|
|
: builder{builder}, root{root} {}
|
|
|
|
/// Generate code for the current run of the schedule.
|
|
void lowerRun(hlfir::Run &run) {
|
|
currentRun = &run;
|
|
walk(root);
|
|
currentRun = nullptr;
|
|
assert(constructStack.empty() && "must exit constructs after a run");
|
|
mapper.clear();
|
|
savedInCurrentRunBeforeUse.clear();
|
|
}
|
|
|
|
/// After all run have been lowered, clean-up all the temporary
|
|
/// storage that were created (do not call final routines).
|
|
void cleanupSavedEntities() {
|
|
for (auto &temp : savedEntities)
|
|
temp.second.destroy(root.getLoc(), builder);
|
|
}
|
|
|
|
/// Lowered value for an expression, and the original hlfir.yield if any
|
|
/// clean-up needs to be cloned after usage.
|
|
using ValueAndCleanUp = std::pair<mlir::Value, std::optional<hlfir::YieldOp>>;
|
|
|
|
private:
|
|
/// Walk the part of an order assignment tree node that needs
|
|
/// to be evaluated in the current run.
|
|
void walk(hlfir::OrderedAssignmentTreeOpInterface node);
|
|
|
|
/// Generate code when entering a given ordered assignment node.
|
|
void pre(hlfir::ForallOp forallOp);
|
|
void pre(hlfir::ForallIndexOp);
|
|
void pre(hlfir::ForallMaskOp);
|
|
void pre(hlfir::WhereOp whereOp);
|
|
void pre(hlfir::ElseWhereOp elseWhereOp);
|
|
void pre(hlfir::RegionAssignOp);
|
|
|
|
/// Generate code when leaving a given ordered assignment node.
|
|
void post(hlfir::ForallOp);
|
|
void post(hlfir::ForallMaskOp);
|
|
void post(hlfir::WhereOp);
|
|
void post(hlfir::ElseWhereOp);
|
|
/// Enter (and maybe create) the fir.if else block of an ElseWhereOp,
|
|
/// but do not generate the elswhere mask or the new fir.if.
|
|
void enterElsewhere(hlfir::ElseWhereOp);
|
|
|
|
/// Are there any leaf region in the node that must be saved in the current
|
|
/// run?
|
|
bool mustSaveRegionIn(
|
|
hlfir::OrderedAssignmentTreeOpInterface node,
|
|
llvm::SmallVectorImpl<hlfir::SaveEntity> &saveEntities) const;
|
|
/// Should this node be evaluated in the current run? Saving a region in a
|
|
/// node does not imply the node needs to be evaluated.
|
|
bool
|
|
isRequiredInCurrentRun(hlfir::OrderedAssignmentTreeOpInterface node) const;
|
|
|
|
/// Generate a scalar value yielded by an ordered assignment tree region.
|
|
/// If the value was not saved in a previous run, this clone the region
|
|
/// code, except the final yield, at the current execution point.
|
|
/// If the value was saved in a previous run, this fetches the saved value
|
|
/// from the temporary storage and returns the value.
|
|
/// Inside Forall, the value will be hoisted outside of the forall loops if
|
|
/// it does not depend on the forall indices.
|
|
/// An optional type can be provided to get a value from a specific type
|
|
/// (the cast will be hoisted if the computation is hoisted).
|
|
mlir::Value generateYieldedScalarValue(
|
|
mlir::Region ®ion,
|
|
std::optional<mlir::Type> castToType = std::nullopt);
|
|
|
|
/// Generate an entity yielded by an ordered assignment tree region, and
|
|
/// optionally return the (uncloned) yield if there is any clean-up that
|
|
/// should be done after using the entity. Like, generateYieldedScalarValue,
|
|
/// this will return the saved value if the region was saved in a previous
|
|
/// run.
|
|
ValueAndCleanUp
|
|
generateYieldedEntity(mlir::Region ®ion,
|
|
std::optional<mlir::Type> castToType = std::nullopt);
|
|
|
|
struct LhsValueAndCleanUp {
|
|
mlir::Value lhs;
|
|
std::optional<hlfir::YieldOp> elementalCleanup;
|
|
mlir::Region *nonElementalCleanup = nullptr;
|
|
std::optional<hlfir::LoopNest> vectorSubscriptLoopNest;
|
|
std::optional<mlir::Value> vectorSubscriptShape;
|
|
};
|
|
|
|
/// Generate the left-hand side. If the left-hand side is vector
|
|
/// subscripted (hlfir.elemental_addr), this will create a loop nest
|
|
/// (unless it was already created by a WHERE mask) and return the
|
|
/// element address.
|
|
LhsValueAndCleanUp
|
|
generateYieldedLHS(mlir::Location loc, mlir::Region &lhsRegion,
|
|
std::optional<hlfir::Entity> loweredRhs = std::nullopt);
|
|
|
|
/// If \p maybeYield is present and has a clean-up, generate the clean-up
|
|
/// at the current insertion point (by cloning).
|
|
void generateCleanupIfAny(std::optional<hlfir::YieldOp> maybeYield);
|
|
void generateCleanupIfAny(mlir::Region *cleanupRegion);
|
|
|
|
/// Generate a masked entity. This can only be called when whereLoopNest was
|
|
/// set (When an hlfir.where is being visited).
|
|
/// This method returns the scalar element (that may have been previously
|
|
/// saved) for the current indices inside the where loop.
|
|
mlir::Value generateMaskedEntity(mlir::Location loc, mlir::Region ®ion) {
|
|
MaskedArrayExpr maskedExpr(loc, region);
|
|
return generateMaskedEntity(maskedExpr);
|
|
}
|
|
mlir::Value generateMaskedEntity(MaskedArrayExpr &maskedExpr);
|
|
|
|
/// Create a fir.if at the current position inside the where loop nest
|
|
/// given the element value of a mask.
|
|
void generateMaskIfOp(mlir::Value cdt);
|
|
|
|
/// Save a value for subsequent runs.
|
|
void generateSaveEntity(hlfir::SaveEntity savedEntity,
|
|
bool willUseSavedEntityInSameRun);
|
|
void saveLeftHandSide(hlfir::SaveEntity savedEntity,
|
|
hlfir::RegionAssignOp regionAssignOp);
|
|
|
|
/// Get a value if it was saved in this run or a previous run. Returns
|
|
/// nullopt if it has not been saved.
|
|
std::optional<ValueAndCleanUp> getIfSaved(mlir::Region ®ion);
|
|
|
|
/// Generate code before the loop nest for the current run, if any.
|
|
void doBeforeLoopNest(const std::function<void()> &callback) {
|
|
if (constructStack.empty()) {
|
|
callback();
|
|
return;
|
|
}
|
|
auto insertionPoint = builder.saveInsertionPoint();
|
|
builder.setInsertionPoint(constructStack[0]);
|
|
callback();
|
|
builder.restoreInsertionPoint(insertionPoint);
|
|
}
|
|
|
|
/// Can the current loop nest iteration number be computed? For simplicity,
|
|
/// this is true if and only if all the bounds and steps of the fir.do_loop
|
|
/// nest dominates the outer loop. The argument is filled with the current
|
|
/// loop nest on success.
|
|
bool currentLoopNestIterationNumberCanBeComputed(
|
|
llvm::SmallVectorImpl<fir::DoLoopOp> &loopNest);
|
|
|
|
template <typename T>
|
|
fir::factory::TemporaryStorage *insertSavedEntity(mlir::Region ®ion,
|
|
T &&temp) {
|
|
auto inserted =
|
|
savedEntities.insert(std::make_pair(®ion, std::forward<T>(temp)));
|
|
assert(inserted.second && "temp must have been emplaced");
|
|
return &inserted.first->second;
|
|
}
|
|
|
|
fir::FirOpBuilder &builder;
|
|
|
|
/// Map containing the mapping between the original order assignment tree
|
|
/// operations and the operations that have been cloned in the current run.
|
|
/// It is reset between two runs.
|
|
mlir::IRMapping mapper;
|
|
/// Dominance info is used to determine if inner loop bounds are all computed
|
|
/// before outer loop for the current loop. It does not need to be reset
|
|
/// between runs.
|
|
mlir::DominanceInfo dominanceInfo;
|
|
/// Construct stack in the current run. This allows setting back the insertion
|
|
/// point correctly when leaving a node that requires a fir.do_loop or fir.if
|
|
/// operation.
|
|
llvm::SmallVector<mlir::Operation *> constructStack;
|
|
/// Current where loop nest, if any.
|
|
std::optional<hlfir::LoopNest> whereLoopNest;
|
|
|
|
/// Map of temporary storage to keep track of saved entity once the run
|
|
/// that saves them has been lowered. It is kept in-between runs.
|
|
/// llvm::MapVector is used to guarantee deterministic order
|
|
/// of iterating through savedEntities (e.g. for generating
|
|
/// destruction code for the temporary storages).
|
|
llvm::MapVector<mlir::Region *, fir::factory::TemporaryStorage> savedEntities;
|
|
/// Map holding the values that were saved in the current run and that also
|
|
/// need to be used (because their construct will be visited). It is reset
|
|
/// after each run. It avoids having to store and fetch in the temporary
|
|
/// during the same run, which would require the temporary to have different
|
|
/// fetching and storing counters.
|
|
llvm::DenseMap<mlir::Region *, ValueAndCleanUp> savedInCurrentRunBeforeUse;
|
|
|
|
/// Root of the order assignment tree being lowered.
|
|
hlfir::OrderedAssignmentTreeOpInterface root;
|
|
/// Pointer to the current run of the schedule being lowered.
|
|
hlfir::Run *currentRun = nullptr;
|
|
|
|
/// When allocating temporary storage inlined, indicate if the storage should
|
|
/// be heap or stack allocated. Temporary allocated with the runtime are heap
|
|
/// allocated by the runtime.
|
|
bool allocateOnHeap = true;
|
|
};
|
|
} // namespace
|
|
|
|
void OrderedAssignmentRewriter::walk(
|
|
hlfir::OrderedAssignmentTreeOpInterface node) {
|
|
bool mustVisit =
|
|
isRequiredInCurrentRun(node) || mlir::isa<hlfir::ForallIndexOp>(node);
|
|
llvm::SmallVector<hlfir::SaveEntity> saveEntities;
|
|
mlir::Operation *nodeOp = node.getOperation();
|
|
if (mustSaveRegionIn(node, saveEntities)) {
|
|
mlir::IRRewriter::InsertPoint insertionPoint;
|
|
if (auto elseWhereOp = mlir::dyn_cast<hlfir::ElseWhereOp>(nodeOp)) {
|
|
// ElseWhere mask to save must be evaluated inside the fir.if else
|
|
// for the previous where/elsewehere (its evaluation must be
|
|
// masked by the "pending control mask").
|
|
insertionPoint = builder.saveInsertionPoint();
|
|
enterElsewhere(elseWhereOp);
|
|
}
|
|
for (hlfir::SaveEntity saveEntity : saveEntities)
|
|
generateSaveEntity(saveEntity, mustVisit);
|
|
if (insertionPoint.isSet())
|
|
builder.restoreInsertionPoint(insertionPoint);
|
|
}
|
|
if (mustVisit) {
|
|
llvm::TypeSwitch<mlir::Operation *, void>(nodeOp)
|
|
.Case<hlfir::ForallOp, hlfir::ForallIndexOp, hlfir::ForallMaskOp,
|
|
hlfir::RegionAssignOp, hlfir::WhereOp, hlfir::ElseWhereOp>(
|
|
[&](auto concreteOp) { pre(concreteOp); })
|
|
.Default([](auto) {});
|
|
if (auto *body = node.getSubTreeRegion()) {
|
|
for (mlir::Operation &op : body->getOps())
|
|
if (auto subNode =
|
|
mlir::dyn_cast<hlfir::OrderedAssignmentTreeOpInterface>(op))
|
|
walk(subNode);
|
|
llvm::TypeSwitch<mlir::Operation *, void>(nodeOp)
|
|
.Case<hlfir::ForallOp, hlfir::ForallMaskOp, hlfir::WhereOp,
|
|
hlfir::ElseWhereOp>([&](auto concreteOp) { post(concreteOp); })
|
|
.Default([](auto) {});
|
|
}
|
|
}
|
|
}
|
|
|
|
void OrderedAssignmentRewriter::pre(hlfir::ForallOp forallOp) {
|
|
/// Create a fir.do_loop given the hlfir.forall control values.
|
|
mlir::Type idxTy = builder.getIndexType();
|
|
mlir::Location loc = forallOp.getLoc();
|
|
mlir::Value lb = generateYieldedScalarValue(forallOp.getLbRegion(), idxTy);
|
|
mlir::Value ub = generateYieldedScalarValue(forallOp.getUbRegion(), idxTy);
|
|
mlir::Value step;
|
|
if (forallOp.getStepRegion().empty()) {
|
|
auto insertionPoint = builder.saveInsertionPoint();
|
|
if (!constructStack.empty())
|
|
builder.setInsertionPoint(constructStack[0]);
|
|
step = builder.createIntegerConstant(loc, idxTy, 1);
|
|
if (!constructStack.empty())
|
|
builder.restoreInsertionPoint(insertionPoint);
|
|
} else {
|
|
step = generateYieldedScalarValue(forallOp.getStepRegion(), idxTy);
|
|
}
|
|
auto doLoop = builder.create<fir::DoLoopOp>(loc, lb, ub, step);
|
|
builder.setInsertionPointToStart(doLoop.getBody());
|
|
mlir::Value oldIndex = forallOp.getForallIndexValue();
|
|
mlir::Value newIndex =
|
|
builder.createConvert(loc, oldIndex.getType(), doLoop.getInductionVar());
|
|
mapper.map(oldIndex, newIndex);
|
|
constructStack.push_back(doLoop);
|
|
}
|
|
|
|
void OrderedAssignmentRewriter::post(hlfir::ForallOp) {
|
|
assert(!constructStack.empty() && "must contain a loop");
|
|
builder.setInsertionPointAfter(constructStack.pop_back_val());
|
|
}
|
|
|
|
void OrderedAssignmentRewriter::pre(hlfir::ForallIndexOp forallIndexOp) {
|
|
mlir::Location loc = forallIndexOp.getLoc();
|
|
mlir::Type intTy = fir::unwrapRefType(forallIndexOp.getType());
|
|
mlir::Value indexVar =
|
|
builder.createTemporary(loc, intTy, forallIndexOp.getName());
|
|
mlir::Value newVal = mapper.lookupOrDefault(forallIndexOp.getIndex());
|
|
builder.createStoreWithConvert(loc, newVal, indexVar);
|
|
mapper.map(forallIndexOp, indexVar);
|
|
}
|
|
|
|
void OrderedAssignmentRewriter::pre(hlfir::ForallMaskOp forallMaskOp) {
|
|
mlir::Location loc = forallMaskOp.getLoc();
|
|
mlir::Value mask = generateYieldedScalarValue(forallMaskOp.getMaskRegion(),
|
|
builder.getI1Type());
|
|
auto ifOp = builder.create<fir::IfOp>(loc, std::nullopt, mask, false);
|
|
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
|
|
constructStack.push_back(ifOp);
|
|
}
|
|
|
|
void OrderedAssignmentRewriter::post(hlfir::ForallMaskOp forallMaskOp) {
|
|
assert(!constructStack.empty() && "must contain an ifop");
|
|
builder.setInsertionPointAfter(constructStack.pop_back_val());
|
|
}
|
|
|
|
/// Convert an entity to the type of a given mold.
|
|
/// This is intended to help with cases where hlfir entity is a value while
|
|
/// it must be used as a variable or vice-versa. These mismatches may occur
|
|
/// between the type of user defined assignment block arguments and the actual
|
|
/// argument that was lowered for them. The actual may be an in-memory copy
|
|
/// while the block argument expects an hlfir.expr.
|
|
static hlfir::Entity
|
|
convertToMoldType(mlir::Location loc, fir::FirOpBuilder &builder,
|
|
hlfir::Entity input, hlfir::Entity mold,
|
|
llvm::SmallVectorImpl<hlfir::CleanupFunction> &cleanups) {
|
|
if (input.getType() == mold.getType())
|
|
return input;
|
|
fir::FirOpBuilder *b = &builder;
|
|
if (input.isVariable() && mold.isValue()) {
|
|
if (fir::isa_trivial(mold.getType())) {
|
|
// fir.ref<T> to T.
|
|
mlir::Value load = builder.create<fir::LoadOp>(loc, input);
|
|
return hlfir::Entity{builder.createConvert(loc, mold.getType(), load)};
|
|
}
|
|
// fir.ref<T> to hlfir.expr<T>.
|
|
mlir::Value asExpr = builder.create<hlfir::AsExprOp>(loc, input);
|
|
if (asExpr.getType() != mold.getType())
|
|
TODO(loc, "hlfir.expr conversion");
|
|
cleanups.emplace_back([=]() { b->create<hlfir::DestroyOp>(loc, asExpr); });
|
|
return hlfir::Entity{asExpr};
|
|
}
|
|
if (input.isValue() && mold.isVariable()) {
|
|
// T to fir.ref<T>, or hlfir.expr<T> to fir.ref<T>.
|
|
hlfir::AssociateOp associate = hlfir::genAssociateExpr(
|
|
loc, builder, input, mold.getFortranElementType(), ".tmp.val2ref");
|
|
cleanups.emplace_back(
|
|
[=]() { b->create<hlfir::EndAssociateOp>(loc, associate); });
|
|
return hlfir::Entity{associate.getBase()};
|
|
}
|
|
// Variable to Variable mismatch (e.g., fir.heap<T> vs fir.ref<T>), or value
|
|
// to Value mismatch (e.g. i1 vs fir.logical<4>).
|
|
if (mlir::isa<fir::BaseBoxType>(mold.getType()) &&
|
|
!mlir::isa<fir::BaseBoxType>(input.getType())) {
|
|
// An entity may have have been saved without descriptor while the original
|
|
// value had a descriptor (e.g., it was not contiguous).
|
|
auto emboxed = hlfir::convertToBox(loc, builder, input, mold.getType());
|
|
assert(!emboxed.second && "temp should already be in memory");
|
|
input = hlfir::Entity{fir::getBase(emboxed.first)};
|
|
}
|
|
return hlfir::Entity{builder.createConvert(loc, mold.getType(), input)};
|
|
}
|
|
|
|
void OrderedAssignmentRewriter::pre(hlfir::RegionAssignOp regionAssignOp) {
|
|
mlir::Location loc = regionAssignOp.getLoc();
|
|
std::optional<hlfir::LoopNest> elementalLoopNest;
|
|
auto [rhsValue, oldRhsYield] =
|
|
generateYieldedEntity(regionAssignOp.getRhsRegion());
|
|
hlfir::Entity rhsEntity{rhsValue};
|
|
LhsValueAndCleanUp loweredLhs =
|
|
generateYieldedLHS(loc, regionAssignOp.getLhsRegion(), rhsEntity);
|
|
hlfir::Entity lhsEntity{loweredLhs.lhs};
|
|
if (loweredLhs.vectorSubscriptLoopNest)
|
|
rhsEntity = hlfir::getElementAt(
|
|
loc, builder, rhsEntity,
|
|
loweredLhs.vectorSubscriptLoopNest->oneBasedIndices);
|
|
if (!regionAssignOp.getUserDefinedAssignment().empty()) {
|
|
hlfir::Entity userAssignLhs{regionAssignOp.getUserAssignmentLhs()};
|
|
hlfir::Entity userAssignRhs{regionAssignOp.getUserAssignmentRhs()};
|
|
std::optional<hlfir::LoopNest> elementalLoopNest;
|
|
if (lhsEntity.isArray() && userAssignLhs.isScalar()) {
|
|
// Elemental assignment with array argument (the RHS cannot be an array
|
|
// if the LHS is not).
|
|
mlir::Value shape = hlfir::genShape(loc, builder, lhsEntity);
|
|
elementalLoopNest = hlfir::genLoopNest(loc, builder, shape);
|
|
builder.setInsertionPointToStart(elementalLoopNest->innerLoop.getBody());
|
|
lhsEntity = hlfir::getElementAt(loc, builder, lhsEntity,
|
|
elementalLoopNest->oneBasedIndices);
|
|
rhsEntity = hlfir::getElementAt(loc, builder, rhsEntity,
|
|
elementalLoopNest->oneBasedIndices);
|
|
}
|
|
|
|
llvm::SmallVector<hlfir::CleanupFunction, 2> argConversionCleanups;
|
|
lhsEntity = convertToMoldType(loc, builder, lhsEntity, userAssignLhs,
|
|
argConversionCleanups);
|
|
rhsEntity = convertToMoldType(loc, builder, rhsEntity, userAssignRhs,
|
|
argConversionCleanups);
|
|
mapper.map(userAssignLhs, lhsEntity);
|
|
mapper.map(userAssignRhs, rhsEntity);
|
|
for (auto &op :
|
|
regionAssignOp.getUserDefinedAssignment().front().without_terminator())
|
|
(void)builder.clone(op, mapper);
|
|
for (auto &cleanupConversion : argConversionCleanups)
|
|
cleanupConversion();
|
|
if (elementalLoopNest)
|
|
builder.setInsertionPointAfter(elementalLoopNest->outerLoop);
|
|
} else {
|
|
// TODO: preserve allocatable assignment aspects for forall once
|
|
// they are conveyed in hlfir.region_assign.
|
|
builder.create<hlfir::AssignOp>(loc, rhsEntity, lhsEntity);
|
|
}
|
|
generateCleanupIfAny(loweredLhs.elementalCleanup);
|
|
if (loweredLhs.vectorSubscriptLoopNest)
|
|
builder.setInsertionPointAfter(
|
|
loweredLhs.vectorSubscriptLoopNest->outerLoop);
|
|
generateCleanupIfAny(oldRhsYield);
|
|
generateCleanupIfAny(loweredLhs.nonElementalCleanup);
|
|
}
|
|
|
|
void OrderedAssignmentRewriter::generateMaskIfOp(mlir::Value cdt) {
|
|
mlir::Location loc = cdt.getLoc();
|
|
cdt = hlfir::loadTrivialScalar(loc, builder, hlfir::Entity{cdt});
|
|
cdt = builder.createConvert(loc, builder.getI1Type(), cdt);
|
|
auto ifOp = builder.create<fir::IfOp>(cdt.getLoc(), std::nullopt, cdt,
|
|
/*withElseRegion=*/false);
|
|
constructStack.push_back(ifOp.getOperation());
|
|
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
|
|
}
|
|
|
|
void OrderedAssignmentRewriter::pre(hlfir::WhereOp whereOp) {
|
|
mlir::Location loc = whereOp.getLoc();
|
|
if (!whereLoopNest) {
|
|
// This is the top-level WHERE. Start a loop nest iterating on the shape of
|
|
// the where mask.
|
|
if (auto maybeSaved = getIfSaved(whereOp.getMaskRegion())) {
|
|
// Use the saved value to get the shape and condition element.
|
|
hlfir::Entity savedMask{maybeSaved->first};
|
|
mlir::Value shape = hlfir::genShape(loc, builder, savedMask);
|
|
whereLoopNest = hlfir::genLoopNest(loc, builder, shape);
|
|
constructStack.push_back(whereLoopNest->outerLoop.getOperation());
|
|
builder.setInsertionPointToStart(whereLoopNest->innerLoop.getBody());
|
|
mlir::Value cdt = hlfir::getElementAt(loc, builder, savedMask,
|
|
whereLoopNest->oneBasedIndices);
|
|
generateMaskIfOp(cdt);
|
|
if (maybeSaved->second) {
|
|
// If this is the same run as the one that saved the value, the clean-up
|
|
// was left-over to be done now.
|
|
auto insertionPoint = builder.saveInsertionPoint();
|
|
builder.setInsertionPointAfter(whereLoopNest->outerLoop);
|
|
generateCleanupIfAny(maybeSaved->second);
|
|
builder.restoreInsertionPoint(insertionPoint);
|
|
}
|
|
return;
|
|
}
|
|
// The mask was not evaluated yet or can be safely re-evaluated.
|
|
MaskedArrayExpr mask(loc, whereOp.getMaskRegion());
|
|
mask.generateNoneElementalPart(builder, mapper);
|
|
mlir::Value shape = mask.generateShape(builder, mapper);
|
|
whereLoopNest = hlfir::genLoopNest(loc, builder, shape);
|
|
constructStack.push_back(whereLoopNest->outerLoop.getOperation());
|
|
builder.setInsertionPointToStart(whereLoopNest->innerLoop.getBody());
|
|
mlir::Value cdt = generateMaskedEntity(mask);
|
|
generateMaskIfOp(cdt);
|
|
return;
|
|
}
|
|
// Where Loops have been already created by a parent WHERE.
|
|
// Generate a fir.if with the value of the current element of the mask
|
|
// inside the loops. The case where the mask was saved is handled in the
|
|
// generateYieldedScalarValue call.
|
|
mlir::Value cdt = generateYieldedScalarValue(whereOp.getMaskRegion());
|
|
generateMaskIfOp(cdt);
|
|
}
|
|
|
|
void OrderedAssignmentRewriter::post(hlfir::WhereOp whereOp) {
|
|
assert(!constructStack.empty() && "must contain a fir.if");
|
|
builder.setInsertionPointAfter(constructStack.pop_back_val());
|
|
// If all where/elsewhere fir.if have been popped, this is the outer whereOp,
|
|
// and the where loop must be exited.
|
|
assert(!constructStack.empty() && "must contain a fir.do_loop or fir.if");
|
|
if (mlir::isa<fir::DoLoopOp>(constructStack.back())) {
|
|
builder.setInsertionPointAfter(constructStack.pop_back_val());
|
|
whereLoopNest.reset();
|
|
}
|
|
}
|
|
|
|
void OrderedAssignmentRewriter::enterElsewhere(hlfir::ElseWhereOp elseWhereOp) {
|
|
// Create an "else" region for the current where/elsewhere fir.if.
|
|
auto ifOp = mlir::dyn_cast<fir::IfOp>(constructStack.back());
|
|
assert(ifOp && "must be an if");
|
|
if (ifOp.getElseRegion().empty()) {
|
|
mlir::Location loc = elseWhereOp.getLoc();
|
|
builder.createBlock(&ifOp.getElseRegion());
|
|
auto end = builder.create<fir::ResultOp>(loc);
|
|
builder.setInsertionPoint(end);
|
|
} else {
|
|
builder.setInsertionPoint(&ifOp.getElseRegion().back().back());
|
|
}
|
|
}
|
|
|
|
void OrderedAssignmentRewriter::pre(hlfir::ElseWhereOp elseWhereOp) {
|
|
enterElsewhere(elseWhereOp);
|
|
if (elseWhereOp.getMaskRegion().empty())
|
|
return;
|
|
// Create new nested fir.if with elsewhere mask if any.
|
|
mlir::Value cdt = generateYieldedScalarValue(elseWhereOp.getMaskRegion());
|
|
generateMaskIfOp(cdt);
|
|
}
|
|
|
|
void OrderedAssignmentRewriter::post(hlfir::ElseWhereOp elseWhereOp) {
|
|
// Exit ifOp that was created for the elseWhereOp mask, if any.
|
|
if (elseWhereOp.getMaskRegion().empty())
|
|
return;
|
|
assert(!constructStack.empty() && "must contain a fir.if");
|
|
builder.setInsertionPointAfter(constructStack.pop_back_val());
|
|
}
|
|
|
|
/// Is this value a Forall index?
|
|
/// Forall index are block arguments of hlfir.forall body, or the result
|
|
/// of hlfir.forall_index.
|
|
static bool isForallIndex(mlir::Value value) {
|
|
if (auto blockArg = mlir::dyn_cast<mlir::BlockArgument>(value)) {
|
|
if (mlir::Block *block = blockArg.getOwner())
|
|
return block->isEntryBlock() &&
|
|
mlir::isa_and_nonnull<hlfir::ForallOp>(block->getParentOp());
|
|
return false;
|
|
}
|
|
return value.getDefiningOp<hlfir::ForallIndexOp>();
|
|
}
|
|
|
|
static OrderedAssignmentRewriter::ValueAndCleanUp
|
|
castIfNeeded(mlir::Location loc, fir::FirOpBuilder &builder,
|
|
OrderedAssignmentRewriter::ValueAndCleanUp valueAndCleanUp,
|
|
std::optional<mlir::Type> castToType) {
|
|
if (!castToType.has_value())
|
|
return valueAndCleanUp;
|
|
mlir::Value cast =
|
|
builder.createConvert(loc, *castToType, valueAndCleanUp.first);
|
|
return {cast, valueAndCleanUp.second};
|
|
}
|
|
|
|
std::optional<OrderedAssignmentRewriter::ValueAndCleanUp>
|
|
OrderedAssignmentRewriter::getIfSaved(mlir::Region ®ion) {
|
|
mlir::Location loc = region.getParentOp()->getLoc();
|
|
// If the region was saved in the same run, use the value that was evaluated
|
|
// instead of fetching the temp, and do clean-up, if any, that were delayed.
|
|
// This is done to avoid requiring the temporary stack to have different
|
|
// fetching and storing counters, and also because it produces slightly better
|
|
// code.
|
|
if (auto savedInSameRun = savedInCurrentRunBeforeUse.find(®ion);
|
|
savedInSameRun != savedInCurrentRunBeforeUse.end())
|
|
return savedInSameRun->second;
|
|
// If the region was saved in a previous run, fetch the saved value.
|
|
if (auto temp = savedEntities.find(®ion); temp != savedEntities.end()) {
|
|
doBeforeLoopNest([&]() { temp->second.resetFetchPosition(loc, builder); });
|
|
return ValueAndCleanUp{temp->second.fetch(loc, builder), std::nullopt};
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
OrderedAssignmentRewriter::ValueAndCleanUp
|
|
OrderedAssignmentRewriter::generateYieldedEntity(
|
|
mlir::Region ®ion, std::optional<mlir::Type> castToType) {
|
|
mlir::Location loc = region.getParentOp()->getLoc();
|
|
if (auto maybeValueAndCleanUp = getIfSaved(region))
|
|
return castIfNeeded(loc, builder, *maybeValueAndCleanUp, castToType);
|
|
// Otherwise, evaluate the region now.
|
|
|
|
// Masked expression must not evaluate the elemental parts that are masked,
|
|
// they have custom code generation.
|
|
if (whereLoopNest.has_value()) {
|
|
mlir::Value maskedValue = generateMaskedEntity(loc, region);
|
|
return castIfNeeded(loc, builder, {maskedValue, std::nullopt}, castToType);
|
|
}
|
|
|
|
assert(region.hasOneBlock() && "region must contain one block");
|
|
auto oldYield = mlir::dyn_cast_or_null<hlfir::YieldOp>(
|
|
region.back().getOperations().back());
|
|
assert(oldYield && "region computing entities must end with a YieldOp");
|
|
mlir::Block::OpListType &ops = region.back().getOperations();
|
|
|
|
// Inside Forall, scalars that do not depend on forall indices can be hoisted
|
|
// here because their evaluation is required to only call pure procedures, and
|
|
// if they depend on a variable previously assigned to in a forall assignment,
|
|
// this assignment must have been scheduled in a previous run. Hoisting of
|
|
// scalars is done here to help creating simple temporary storage if needed.
|
|
// Inner forall bounds can often be hoisted, and this allows computing the
|
|
// total number of iterations to create temporary storages.
|
|
bool hoistComputation = false;
|
|
if (fir::isa_trivial(oldYield.getEntity().getType()) &&
|
|
!constructStack.empty()) {
|
|
hoistComputation = true;
|
|
for (mlir::Operation &op : ops)
|
|
if (llvm::any_of(op.getOperands(), [](mlir::Value value) {
|
|
return isForallIndex(value);
|
|
})) {
|
|
hoistComputation = false;
|
|
break;
|
|
}
|
|
}
|
|
auto insertionPoint = builder.saveInsertionPoint();
|
|
if (hoistComputation)
|
|
builder.setInsertionPoint(constructStack[0]);
|
|
|
|
// Clone all operations except the final hlfir.yield.
|
|
assert(!ops.empty() && "yield block cannot be empty");
|
|
auto end = ops.end();
|
|
for (auto opIt = ops.begin(); std::next(opIt) != end; ++opIt)
|
|
(void)builder.clone(*opIt, mapper);
|
|
// Get the value for the yielded entity, it may be the result of an operation
|
|
// that was cloned, or it may be the same as the previous value if the yield
|
|
// operand was created before the ordered assignment tree.
|
|
mlir::Value newEntity = mapper.lookupOrDefault(oldYield.getEntity());
|
|
if (castToType.has_value())
|
|
newEntity =
|
|
builder.createConvert(newEntity.getLoc(), *castToType, newEntity);
|
|
|
|
if (hoistComputation) {
|
|
// Hoisted trivial scalars clean-up can be done right away, the value is
|
|
// in registers.
|
|
generateCleanupIfAny(oldYield);
|
|
builder.restoreInsertionPoint(insertionPoint);
|
|
return {newEntity, std::nullopt};
|
|
}
|
|
if (oldYield.getCleanup().empty())
|
|
return {newEntity, std::nullopt};
|
|
return {newEntity, oldYield};
|
|
}
|
|
|
|
mlir::Value OrderedAssignmentRewriter::generateYieldedScalarValue(
|
|
mlir::Region ®ion, std::optional<mlir::Type> castToType) {
|
|
mlir::Location loc = region.getParentOp()->getLoc();
|
|
auto [value, maybeYield] = generateYieldedEntity(region, castToType);
|
|
value = hlfir::loadTrivialScalar(loc, builder, hlfir::Entity{value});
|
|
assert(fir::isa_trivial(value.getType()) && "not a trivial scalar value");
|
|
generateCleanupIfAny(maybeYield);
|
|
return value;
|
|
}
|
|
|
|
OrderedAssignmentRewriter::LhsValueAndCleanUp
|
|
OrderedAssignmentRewriter::generateYieldedLHS(
|
|
mlir::Location loc, mlir::Region &lhsRegion,
|
|
std::optional<hlfir::Entity> loweredRhs) {
|
|
LhsValueAndCleanUp loweredLhs;
|
|
hlfir::ElementalAddrOp elementalAddrLhs =
|
|
mlir::dyn_cast<hlfir::ElementalAddrOp>(lhsRegion.back().back());
|
|
if (auto temp = savedEntities.find(&lhsRegion); temp != savedEntities.end()) {
|
|
// The LHS address was computed and saved in a previous run. Fetch it.
|
|
doBeforeLoopNest([&]() { temp->second.resetFetchPosition(loc, builder); });
|
|
if (elementalAddrLhs && !whereLoopNest) {
|
|
// Vector subscripted designator address are saved element by element.
|
|
// If no "elemental" loops have been created yet, the shape of the
|
|
// RHS, if it is an array can be used, or the shape of the vector
|
|
// subscripted designator must be retrieved to generate the "elemental"
|
|
// loop nest.
|
|
if (loweredRhs && loweredRhs->isArray()) {
|
|
// The RHS shape can be used to create the elemental loops and avoid
|
|
// saving the LHS shape.
|
|
loweredLhs.vectorSubscriptShape =
|
|
hlfir::genShape(loc, builder, *loweredRhs);
|
|
} else {
|
|
// If the shape cannot be retrieved from the RHS, it must have been
|
|
// saved. Get it from the temporary.
|
|
auto &vectorTmp =
|
|
temp->second.cast<fir::factory::AnyVectorSubscriptStack>();
|
|
loweredLhs.vectorSubscriptShape = vectorTmp.fetchShape(loc, builder);
|
|
}
|
|
loweredLhs.vectorSubscriptLoopNest = hlfir::genLoopNest(
|
|
loc, builder, loweredLhs.vectorSubscriptShape.value());
|
|
builder.setInsertionPointToStart(
|
|
loweredLhs.vectorSubscriptLoopNest->innerLoop.getBody());
|
|
}
|
|
loweredLhs.lhs = temp->second.fetch(loc, builder);
|
|
return loweredLhs;
|
|
}
|
|
// The LHS has not yet been evaluated and saved. Evaluate it now.
|
|
if (elementalAddrLhs && !whereLoopNest) {
|
|
// This is a vector subscripted entity. The address of elements must
|
|
// be returned. If no "elemental" loops have been created for a WHERE,
|
|
// create them now based on the vector subscripted designator shape.
|
|
for (auto &op : lhsRegion.front().without_terminator())
|
|
(void)builder.clone(op, mapper);
|
|
loweredLhs.vectorSubscriptShape =
|
|
mapper.lookupOrDefault(elementalAddrLhs.getShape());
|
|
loweredLhs.vectorSubscriptLoopNest =
|
|
hlfir::genLoopNest(loc, builder, *loweredLhs.vectorSubscriptShape,
|
|
!elementalAddrLhs.isOrdered());
|
|
builder.setInsertionPointToStart(
|
|
loweredLhs.vectorSubscriptLoopNest->innerLoop.getBody());
|
|
mapper.map(elementalAddrLhs.getIndices(),
|
|
loweredLhs.vectorSubscriptLoopNest->oneBasedIndices);
|
|
for (auto &op : elementalAddrLhs.getBody().front().without_terminator())
|
|
(void)builder.clone(op, mapper);
|
|
loweredLhs.elementalCleanup = elementalAddrLhs.getYieldOp();
|
|
loweredLhs.lhs =
|
|
mapper.lookupOrDefault(loweredLhs.elementalCleanup->getEntity());
|
|
} else {
|
|
// This is a designator without vector subscripts. Generate it as
|
|
// it is done for other entities.
|
|
auto [lhs, yield] = generateYieldedEntity(lhsRegion);
|
|
loweredLhs.lhs = lhs;
|
|
if (yield && !yield->getCleanup().empty())
|
|
loweredLhs.nonElementalCleanup = &yield->getCleanup();
|
|
}
|
|
return loweredLhs;
|
|
}
|
|
|
|
mlir::Value
|
|
OrderedAssignmentRewriter::generateMaskedEntity(MaskedArrayExpr &maskedExpr) {
|
|
assert(whereLoopNest.has_value() && "must be inside WHERE loop nest");
|
|
auto insertionPoint = builder.saveInsertionPoint();
|
|
if (!maskedExpr.noneElementalPartWasGenerated) {
|
|
// Generate none elemental part before the where loops (but inside the
|
|
// current forall loops if any).
|
|
builder.setInsertionPoint(whereLoopNest->outerLoop);
|
|
maskedExpr.generateNoneElementalPart(builder, mapper);
|
|
}
|
|
// Generate the none elemental part cleanup after the where loops.
|
|
builder.setInsertionPointAfter(whereLoopNest->outerLoop);
|
|
maskedExpr.generateNoneElementalCleanupIfAny(builder, mapper);
|
|
// Generate the value of the current element for the masked expression
|
|
// at the current insertion point (inside the where loops, and any fir.if
|
|
// generated for previous masks).
|
|
builder.restoreInsertionPoint(insertionPoint);
|
|
return maskedExpr.generateElementalParts(
|
|
builder, whereLoopNest->oneBasedIndices, mapper);
|
|
}
|
|
|
|
void OrderedAssignmentRewriter::generateCleanupIfAny(
|
|
std::optional<hlfir::YieldOp> maybeYield) {
|
|
if (maybeYield.has_value())
|
|
generateCleanupIfAny(&maybeYield->getCleanup());
|
|
}
|
|
void OrderedAssignmentRewriter::generateCleanupIfAny(
|
|
mlir::Region *cleanupRegion) {
|
|
if (cleanupRegion && !cleanupRegion->empty()) {
|
|
assert(cleanupRegion->hasOneBlock() && "region must contain one block");
|
|
for (auto &op : cleanupRegion->back().without_terminator())
|
|
builder.clone(op, mapper);
|
|
}
|
|
}
|
|
|
|
bool OrderedAssignmentRewriter::mustSaveRegionIn(
|
|
hlfir::OrderedAssignmentTreeOpInterface node,
|
|
llvm::SmallVectorImpl<hlfir::SaveEntity> &saveEntities) const {
|
|
for (auto &action : currentRun->actions)
|
|
if (hlfir::SaveEntity *savedEntity =
|
|
std::get_if<hlfir::SaveEntity>(&action))
|
|
if (node.getOperation() == savedEntity->yieldRegion->getParentOp())
|
|
saveEntities.push_back(*savedEntity);
|
|
return !saveEntities.empty();
|
|
}
|
|
|
|
bool OrderedAssignmentRewriter::isRequiredInCurrentRun(
|
|
hlfir::OrderedAssignmentTreeOpInterface node) const {
|
|
// hlfir.forall_index do not contain saved regions/assignments,
|
|
// but if their hlfir.forall parent was required, they are
|
|
// required (the forall indices needs to be mapped).
|
|
if (mlir::isa<hlfir::ForallIndexOp>(node))
|
|
return true;
|
|
for (auto &action : currentRun->actions)
|
|
if (hlfir::SaveEntity *savedEntity =
|
|
std::get_if<hlfir::SaveEntity>(&action)) {
|
|
// A SaveEntity action does not require evaluating the node that contains
|
|
// it, but it requires to evaluate all the parents of the nodes that
|
|
// contains it. For instance, an saving a bound in hlfir.forall B does not
|
|
// require creating the loops for B, but it requires creating the loops
|
|
// for any forall parent A of the forall B.
|
|
if (node->isProperAncestor(savedEntity->yieldRegion->getParentOp()))
|
|
return true;
|
|
} else {
|
|
auto assign = std::get<hlfir::RegionAssignOp>(action);
|
|
if (node->isAncestor(assign.getOperation()))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Is the apply using all the elemental indices in order?
|
|
static bool isInOrderApply(hlfir::ApplyOp apply,
|
|
hlfir::ElementalOpInterface elemental) {
|
|
mlir::Region::BlockArgListType elementalIndices = elemental.getIndices();
|
|
if (elementalIndices.size() != apply.getIndices().size())
|
|
return false;
|
|
for (auto [elementalIdx, applyIdx] :
|
|
llvm::zip(elementalIndices, apply.getIndices()))
|
|
if (elementalIdx != applyIdx)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// Gather the tree of hlfir::ElementalOpInterface use-def, if any, starting
|
|
/// from \p elemental, which may be a nullptr.
|
|
static void
|
|
gatherElementalTree(hlfir::ElementalOpInterface elemental,
|
|
llvm::SmallPtrSetImpl<mlir::Operation *> &elementalOps,
|
|
bool isOutOfOrder) {
|
|
if (elemental) {
|
|
// Only inline an applied elemental that must be executed in order if the
|
|
// applying indices are in order. An hlfir::Elemental may have been created
|
|
// for a transformational like transpose, and Fortran 2018 standard
|
|
// section 10.2.3.2, point 10 imply that impure elemental sub-expression
|
|
// evaluations should not be masked if they are the arguments of
|
|
// transformational expressions.
|
|
if (isOutOfOrder && elemental.isOrdered())
|
|
return;
|
|
elementalOps.insert(elemental.getOperation());
|
|
for (mlir::Operation &op : elemental.getElementalRegion().getOps())
|
|
if (auto apply = mlir::dyn_cast<hlfir::ApplyOp>(op)) {
|
|
bool isUnorderedApply =
|
|
isOutOfOrder || !isInOrderApply(apply, elemental);
|
|
auto maybeElemental =
|
|
mlir::dyn_cast_or_null<hlfir::ElementalOpInterface>(
|
|
apply.getExpr().getDefiningOp());
|
|
gatherElementalTree(maybeElemental, elementalOps, isUnorderedApply);
|
|
}
|
|
}
|
|
}
|
|
|
|
MaskedArrayExpr::MaskedArrayExpr(mlir::Location loc, mlir::Region ®ion)
|
|
: loc{loc}, region{region} {
|
|
mlir::Operation &terminator = region.back().back();
|
|
if (auto elementalAddr =
|
|
mlir::dyn_cast<hlfir::ElementalOpInterface>(terminator)) {
|
|
// Vector subscripted designator (hlfir.elemental_addr terminator).
|
|
gatherElementalTree(elementalAddr, elementalParts, /*isOutOfOrder=*/false);
|
|
return;
|
|
}
|
|
// Try if elemental expression.
|
|
mlir::Value entity = mlir::cast<hlfir::YieldOp>(terminator).getEntity();
|
|
auto maybeElemental = mlir::dyn_cast_or_null<hlfir::ElementalOpInterface>(
|
|
entity.getDefiningOp());
|
|
gatherElementalTree(maybeElemental, elementalParts, /*isOutOfOrder=*/false);
|
|
}
|
|
|
|
void MaskedArrayExpr::generateNoneElementalPart(fir::FirOpBuilder &builder,
|
|
mlir::IRMapping &mapper) {
|
|
assert(!noneElementalPartWasGenerated &&
|
|
"none elemental parts already generated");
|
|
// Clone all operations, except the elemental and the final yield.
|
|
mlir::Block::OpListType &ops = region.back().getOperations();
|
|
assert(!ops.empty() && "yield block cannot be empty");
|
|
auto end = ops.end();
|
|
for (auto opIt = ops.begin(); std::next(opIt) != end; ++opIt)
|
|
if (!elementalParts.contains(&*opIt))
|
|
(void)builder.clone(*opIt, mapper);
|
|
noneElementalPartWasGenerated = true;
|
|
}
|
|
|
|
mlir::Value MaskedArrayExpr::generateShape(fir::FirOpBuilder &builder,
|
|
mlir::IRMapping &mapper) {
|
|
assert(noneElementalPartWasGenerated &&
|
|
"non elemental part must have been generated");
|
|
mlir::Operation &terminator = region.back().back();
|
|
// If the operation that produced the yielded entity is elemental, it was not
|
|
// cloned, but it holds a shape argument that was cloned. Return the cloned
|
|
// shape.
|
|
if (auto elementalAddrOp = mlir::dyn_cast<hlfir::ElementalAddrOp>(terminator))
|
|
return mapper.lookupOrDefault(elementalAddrOp.getShape());
|
|
mlir::Value entity = mlir::cast<hlfir::YieldOp>(terminator).getEntity();
|
|
if (auto elemental = entity.getDefiningOp<hlfir::ElementalOp>())
|
|
return mapper.lookupOrDefault(elemental.getShape());
|
|
// Otherwise, the whole entity was cloned, and the shape can be generated
|
|
// from it.
|
|
hlfir::Entity clonedEntity{mapper.lookupOrDefault(entity)};
|
|
return hlfir::genShape(loc, builder, hlfir::Entity{clonedEntity});
|
|
}
|
|
|
|
mlir::Value
|
|
MaskedArrayExpr::generateElementalParts(fir::FirOpBuilder &builder,
|
|
mlir::ValueRange oneBasedIndices,
|
|
mlir::IRMapping &mapper) {
|
|
assert(noneElementalPartWasGenerated &&
|
|
"non elemental part must have been generated");
|
|
mlir::Operation &terminator = region.back().back();
|
|
hlfir::ElementalOpInterface elemental =
|
|
mlir::dyn_cast<hlfir::ElementalAddrOp>(terminator);
|
|
if (!elemental) {
|
|
// If the terminator is not an hlfir.elemental_addr, try if the yielded
|
|
// entity was produced by an hlfir.elemental.
|
|
mlir::Value entity = mlir::cast<hlfir::YieldOp>(terminator).getEntity();
|
|
elemental = entity.getDefiningOp<hlfir::ElementalOp>();
|
|
if (!elemental) {
|
|
// The yielded entity was not produced by an elemental operation,
|
|
// get its clone in the non elemental part evaluation and address it.
|
|
hlfir::Entity clonedEntity{mapper.lookupOrDefault(entity)};
|
|
return hlfir::getElementAt(loc, builder, clonedEntity, oneBasedIndices);
|
|
}
|
|
}
|
|
|
|
auto mustRecursivelyInline =
|
|
[&](hlfir::ElementalOp appliedElemental) -> bool {
|
|
return elementalParts.contains(appliedElemental.getOperation());
|
|
};
|
|
return inlineElementalOp(loc, builder, elemental, oneBasedIndices, mapper,
|
|
mustRecursivelyInline);
|
|
}
|
|
|
|
void MaskedArrayExpr::generateNoneElementalCleanupIfAny(
|
|
fir::FirOpBuilder &builder, mlir::IRMapping &mapper) {
|
|
mlir::Operation &terminator = region.back().back();
|
|
mlir::Region *cleanupRegion = nullptr;
|
|
if (auto elementalAddr = mlir::dyn_cast<hlfir::ElementalAddrOp>(terminator)) {
|
|
cleanupRegion = &elementalAddr.getCleanup();
|
|
} else {
|
|
auto yieldOp = mlir::cast<hlfir::YieldOp>(terminator);
|
|
cleanupRegion = &yieldOp.getCleanup();
|
|
}
|
|
if (cleanupRegion->empty())
|
|
return;
|
|
for (mlir::Operation &op : cleanupRegion->front().without_terminator()) {
|
|
if (auto destroy = mlir::dyn_cast<hlfir::DestroyOp>(op))
|
|
if (elementalParts.contains(destroy.getExpr().getDefiningOp()))
|
|
continue;
|
|
(void)builder.clone(op, mapper);
|
|
}
|
|
}
|
|
|
|
static hlfir::RegionAssignOp
|
|
getAssignIfLeftHandSideRegion(mlir::Region ®ion) {
|
|
auto assign = mlir::dyn_cast<hlfir::RegionAssignOp>(region.getParentOp());
|
|
if (assign && (&assign.getLhsRegion() == ®ion))
|
|
return assign;
|
|
return nullptr;
|
|
}
|
|
|
|
bool OrderedAssignmentRewriter::currentLoopNestIterationNumberCanBeComputed(
|
|
llvm::SmallVectorImpl<fir::DoLoopOp> &loopNest) {
|
|
if (constructStack.empty())
|
|
return true;
|
|
mlir::Operation *outerLoop = constructStack[0];
|
|
mlir::Operation *currentConstruct = constructStack.back();
|
|
// Loop through the loops until the outer construct is met, and test if the
|
|
// loop operands dominate the outer construct.
|
|
while (currentConstruct) {
|
|
if (auto doLoop = mlir::dyn_cast<fir::DoLoopOp>(currentConstruct)) {
|
|
if (llvm::any_of(doLoop->getOperands(), [&](mlir::Value value) {
|
|
return !dominanceInfo.properlyDominates(value, outerLoop);
|
|
})) {
|
|
return false;
|
|
}
|
|
loopNest.push_back(doLoop);
|
|
}
|
|
if (currentConstruct == outerLoop)
|
|
currentConstruct = nullptr;
|
|
else
|
|
currentConstruct = currentConstruct->getParentOp();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static mlir::Value
|
|
computeLoopNestIterationNumber(mlir::Location loc, fir::FirOpBuilder &builder,
|
|
llvm::ArrayRef<fir::DoLoopOp> loopNest) {
|
|
mlir::Value loopExtent;
|
|
for (fir::DoLoopOp doLoop : loopNest) {
|
|
mlir::Value extent = builder.genExtentFromTriplet(
|
|
loc, doLoop.getLowerBound(), doLoop.getUpperBound(), doLoop.getStep(),
|
|
builder.getIndexType());
|
|
if (!loopExtent)
|
|
loopExtent = extent;
|
|
else
|
|
loopExtent = builder.create<mlir::arith::MulIOp>(loc, loopExtent, extent);
|
|
}
|
|
assert(loopExtent && "loopNest must not be empty");
|
|
return loopExtent;
|
|
}
|
|
|
|
/// Return a name for temporary storage that indicates in which context
|
|
/// the temporary storage was created.
|
|
static llvm::StringRef
|
|
getTempName(hlfir::OrderedAssignmentTreeOpInterface root) {
|
|
if (mlir::isa<hlfir::ForallOp>(root.getOperation()))
|
|
return ".tmp.forall";
|
|
if (mlir::isa<hlfir::WhereOp>(root.getOperation()))
|
|
return ".tmp.where";
|
|
return ".tmp.assign";
|
|
}
|
|
|
|
void OrderedAssignmentRewriter::generateSaveEntity(
|
|
hlfir::SaveEntity savedEntity, bool willUseSavedEntityInSameRun) {
|
|
mlir::Region ®ion = *savedEntity.yieldRegion;
|
|
|
|
if (hlfir::RegionAssignOp regionAssignOp =
|
|
getAssignIfLeftHandSideRegion(region)) {
|
|
// Need to save the address, not the values.
|
|
assert(!willUseSavedEntityInSameRun &&
|
|
"lhs cannot be used in the loop nest where it is saved");
|
|
return saveLeftHandSide(savedEntity, regionAssignOp);
|
|
}
|
|
|
|
mlir::Location loc = region.getParentOp()->getLoc();
|
|
// Evaluate the region inside the loop nest (if any).
|
|
auto [clonedValue, oldYield] = generateYieldedEntity(region);
|
|
hlfir::Entity entity{clonedValue};
|
|
entity = hlfir::loadTrivialScalar(loc, builder, entity);
|
|
mlir::Type entityType = entity.getType();
|
|
|
|
llvm::StringRef tempName = getTempName(root);
|
|
fir::factory::TemporaryStorage *temp = nullptr;
|
|
if (constructStack.empty()) {
|
|
// Value evaluated outside of any loops (this may be the first MASK of a
|
|
// WHERE construct, or an LHS/RHS temp of hlfir.region_assign outside of
|
|
// WHERE/FORALL).
|
|
temp = insertSavedEntity(
|
|
region, fir::factory::SimpleCopy(loc, builder, entity, tempName));
|
|
} else {
|
|
// Need to create a temporary for values computed inside loops.
|
|
// Create temporary storage outside of the loop nest given the entity
|
|
// type (and the loop context).
|
|
llvm::SmallVector<fir::DoLoopOp> loopNest;
|
|
bool loopShapeCanBePreComputed =
|
|
currentLoopNestIterationNumberCanBeComputed(loopNest);
|
|
doBeforeLoopNest([&] {
|
|
/// For simple scalars inside loops whose total iteration number can be
|
|
/// pre-computed, create a rank-1 array outside of the loops. It will be
|
|
/// assigned/fetched inside the loops like a normal Fortran array given
|
|
/// the iteration count.
|
|
if (loopShapeCanBePreComputed && fir::isa_trivial(entityType)) {
|
|
mlir::Value loopExtent =
|
|
computeLoopNestIterationNumber(loc, builder, loopNest);
|
|
auto sequenceType =
|
|
builder.getVarLenSeqTy(entityType).cast<fir::SequenceType>();
|
|
temp = insertSavedEntity(region,
|
|
fir::factory::HomogeneousScalarStack{
|
|
loc, builder, sequenceType, loopExtent,
|
|
/*lenParams=*/{}, allocateOnHeap,
|
|
/*stackThroughLoops=*/true, tempName});
|
|
|
|
} else {
|
|
// If the number of iteration is not known, or if the values at each
|
|
// iterations are values that may have different shape, type parameters
|
|
// or dynamic type, use the runtime to create and manage a stack-like
|
|
// temporary.
|
|
temp = insertSavedEntity(
|
|
region, fir::factory::AnyValueStack{loc, builder, entityType});
|
|
}
|
|
});
|
|
// Inside the loop nest (and any fir.if if there are active masks), copy
|
|
// the value to the temp and do clean-ups for the value if any.
|
|
temp->pushValue(loc, builder, entity);
|
|
}
|
|
|
|
// Delay the clean-up if the entity will be used in the same run (i.e., the
|
|
// parent construct will be visited and needs to be lowered). When possible,
|
|
// this is not done for hlfir.expr because this use would prevent the
|
|
// hlfir.expr storage from being moved when creating the temporary in
|
|
// bufferization, and that would lead to an extra copy.
|
|
if (willUseSavedEntityInSameRun &&
|
|
(!temp->canBeFetchedAfterPush() ||
|
|
!mlir::isa<hlfir::ExprType>(entity.getType()))) {
|
|
auto inserted =
|
|
savedInCurrentRunBeforeUse.try_emplace(®ion, entity, oldYield);
|
|
assert(inserted.second && "entity must have been emplaced");
|
|
(void)inserted;
|
|
} else {
|
|
if (constructStack.empty() &&
|
|
mlir::isa<hlfir::RegionAssignOp>(region.getParentOp())) {
|
|
// Here the clean-up code is inserted after the original
|
|
// RegionAssignOp, so that the assignment code happens
|
|
// before the cleanup. We do this only for standalone
|
|
// operations, because the clean-up is handled specially
|
|
// during lowering of the parent constructs if any
|
|
// (e.g. see generateNoneElementalCleanupIfAny for
|
|
// WhereOp).
|
|
auto insertionPoint = builder.saveInsertionPoint();
|
|
builder.setInsertionPointAfter(region.getParentOp());
|
|
generateCleanupIfAny(oldYield);
|
|
builder.restoreInsertionPoint(insertionPoint);
|
|
} else {
|
|
generateCleanupIfAny(oldYield);
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool rhsIsArray(hlfir::RegionAssignOp regionAssignOp) {
|
|
auto yieldOp = mlir::dyn_cast<hlfir::YieldOp>(
|
|
regionAssignOp.getRhsRegion().back().back());
|
|
return yieldOp && hlfir::Entity{yieldOp.getEntity()}.isArray();
|
|
}
|
|
|
|
void OrderedAssignmentRewriter::saveLeftHandSide(
|
|
hlfir::SaveEntity savedEntity, hlfir::RegionAssignOp regionAssignOp) {
|
|
mlir::Region ®ion = *savedEntity.yieldRegion;
|
|
mlir::Location loc = region.getParentOp()->getLoc();
|
|
LhsValueAndCleanUp loweredLhs = generateYieldedLHS(loc, region);
|
|
fir::factory::TemporaryStorage *temp = nullptr;
|
|
if (loweredLhs.vectorSubscriptLoopNest)
|
|
constructStack.push_back(loweredLhs.vectorSubscriptLoopNest->outerLoop);
|
|
if (loweredLhs.vectorSubscriptLoopNest && !rhsIsArray(regionAssignOp)) {
|
|
// Vector subscripted entity for which the shape must also be saved on top
|
|
// of the element addresses (e.g. the shape may change in each forall
|
|
// iteration and is needed to create the elemental loops).
|
|
mlir::Value shape = loweredLhs.vectorSubscriptShape.value();
|
|
int rank = mlir::cast<fir::ShapeType>(shape.getType()).getRank();
|
|
const bool shapeIsInvariant =
|
|
constructStack.empty() ||
|
|
dominanceInfo.properlyDominates(shape, constructStack[0]);
|
|
doBeforeLoopNest([&] {
|
|
// Outside of any forall/where/elemental loops, create a temporary that
|
|
// will both be able to save the vector subscripted designator shape(s)
|
|
// and element addresses.
|
|
temp =
|
|
insertSavedEntity(region, fir::factory::AnyVectorSubscriptStack{
|
|
loc, builder, loweredLhs.lhs.getType(),
|
|
shapeIsInvariant, rank});
|
|
});
|
|
// Save shape before the elemental loop nest created by the vector
|
|
// subscripted LHS.
|
|
auto &vectorTmp = temp->cast<fir::factory::AnyVectorSubscriptStack>();
|
|
auto insertionPoint = builder.saveInsertionPoint();
|
|
builder.setInsertionPoint(loweredLhs.vectorSubscriptLoopNest->outerLoop);
|
|
vectorTmp.pushShape(loc, builder, shape);
|
|
builder.restoreInsertionPoint(insertionPoint);
|
|
} else {
|
|
// Otherwise, only save the LHS address.
|
|
// If the LHS address dominates the constructs, its SSA value can
|
|
// simply be tracked and there is no need to save the address in memory.
|
|
// Otherwise, the addresses are stored at each iteration in memory with
|
|
// a descriptor stack.
|
|
if (constructStack.empty() ||
|
|
dominanceInfo.properlyDominates(loweredLhs.lhs, constructStack[0]))
|
|
doBeforeLoopNest([&] {
|
|
temp = insertSavedEntity(region, fir::factory::SSARegister{});
|
|
});
|
|
else
|
|
doBeforeLoopNest([&] {
|
|
temp = insertSavedEntity(
|
|
region, fir::factory::AnyVariableStack{loc, builder,
|
|
loweredLhs.lhs.getType()});
|
|
});
|
|
}
|
|
temp->pushValue(loc, builder, loweredLhs.lhs);
|
|
generateCleanupIfAny(loweredLhs.elementalCleanup);
|
|
if (loweredLhs.vectorSubscriptLoopNest) {
|
|
constructStack.pop_back();
|
|
builder.setInsertionPointAfter(
|
|
loweredLhs.vectorSubscriptLoopNest->outerLoop);
|
|
}
|
|
}
|
|
|
|
/// Lower an ordered assignment tree to fir.do_loop and hlfir.assign given
|
|
/// a schedule.
|
|
static void lower(hlfir::OrderedAssignmentTreeOpInterface root,
|
|
mlir::PatternRewriter &rewriter, hlfir::Schedule &schedule) {
|
|
auto module = root->getParentOfType<mlir::ModuleOp>();
|
|
fir::FirOpBuilder builder(rewriter, module);
|
|
OrderedAssignmentRewriter assignmentRewriter(builder, root);
|
|
for (auto &run : schedule)
|
|
assignmentRewriter.lowerRun(run);
|
|
assignmentRewriter.cleanupSavedEntities();
|
|
}
|
|
|
|
/// Shared rewrite entry point for all the ordered assignment tree root
|
|
/// operations. It calls the scheduler and then apply the schedule.
|
|
static mlir::LogicalResult rewrite(hlfir::OrderedAssignmentTreeOpInterface root,
|
|
bool tryFusingAssignments,
|
|
mlir::PatternRewriter &rewriter) {
|
|
hlfir::Schedule schedule =
|
|
hlfir::buildEvaluationSchedule(root, tryFusingAssignments);
|
|
|
|
LLVM_DEBUG(
|
|
/// Debug option to print the scheduling debug info without doing
|
|
/// any code generation. The operations are simply erased to avoid
|
|
/// failing and calling the rewrite patterns on nested operations.
|
|
/// The only purpose of this is to help testing scheduling without
|
|
/// having to test generated code.
|
|
if (dbgScheduleOnly) {
|
|
rewriter.eraseOp(root);
|
|
return mlir::success();
|
|
});
|
|
lower(root, rewriter, schedule);
|
|
rewriter.eraseOp(root);
|
|
return mlir::success();
|
|
}
|
|
|
|
namespace {
|
|
|
|
class ForallOpConversion : public mlir::OpRewritePattern<hlfir::ForallOp> {
|
|
public:
|
|
explicit ForallOpConversion(mlir::MLIRContext *ctx, bool tryFusingAssignments)
|
|
: OpRewritePattern{ctx}, tryFusingAssignments{tryFusingAssignments} {}
|
|
|
|
mlir::LogicalResult
|
|
matchAndRewrite(hlfir::ForallOp forallOp,
|
|
mlir::PatternRewriter &rewriter) const override {
|
|
auto root = mlir::cast<hlfir::OrderedAssignmentTreeOpInterface>(
|
|
forallOp.getOperation());
|
|
if (mlir::failed(::rewrite(root, tryFusingAssignments, rewriter)))
|
|
TODO(forallOp.getLoc(), "FORALL construct or statement in HLFIR");
|
|
return mlir::success();
|
|
}
|
|
const bool tryFusingAssignments;
|
|
};
|
|
|
|
class WhereOpConversion : public mlir::OpRewritePattern<hlfir::WhereOp> {
|
|
public:
|
|
explicit WhereOpConversion(mlir::MLIRContext *ctx, bool tryFusingAssignments)
|
|
: OpRewritePattern{ctx}, tryFusingAssignments{tryFusingAssignments} {}
|
|
|
|
mlir::LogicalResult
|
|
matchAndRewrite(hlfir::WhereOp whereOp,
|
|
mlir::PatternRewriter &rewriter) const override {
|
|
auto root = mlir::cast<hlfir::OrderedAssignmentTreeOpInterface>(
|
|
whereOp.getOperation());
|
|
return ::rewrite(root, tryFusingAssignments, rewriter);
|
|
}
|
|
const bool tryFusingAssignments;
|
|
};
|
|
|
|
class RegionAssignConversion
|
|
: public mlir::OpRewritePattern<hlfir::RegionAssignOp> {
|
|
public:
|
|
explicit RegionAssignConversion(mlir::MLIRContext *ctx)
|
|
: OpRewritePattern{ctx} {}
|
|
|
|
mlir::LogicalResult
|
|
matchAndRewrite(hlfir::RegionAssignOp regionAssignOp,
|
|
mlir::PatternRewriter &rewriter) const override {
|
|
auto root = mlir::cast<hlfir::OrderedAssignmentTreeOpInterface>(
|
|
regionAssignOp.getOperation());
|
|
return ::rewrite(root, /*tryFusingAssignments=*/false, rewriter);
|
|
}
|
|
};
|
|
|
|
class LowerHLFIROrderedAssignments
|
|
: public hlfir::impl::LowerHLFIROrderedAssignmentsBase<
|
|
LowerHLFIROrderedAssignments> {
|
|
public:
|
|
void runOnOperation() override {
|
|
// Running on a ModuleOp because this pass may generate FuncOp declaration
|
|
// for runtime calls. This could be a FuncOp pass otherwise.
|
|
auto module = this->getOperation();
|
|
auto *context = &getContext();
|
|
mlir::RewritePatternSet patterns(context);
|
|
// Patterns are only defined for the OrderedAssignmentTreeOpInterface
|
|
// operations that can be the root of ordered assignments. The other
|
|
// operations will be taken care of while rewriting these trees (they
|
|
// cannot exist outside of these operations given their verifiers/traits).
|
|
patterns.insert<ForallOpConversion, WhereOpConversion>(
|
|
context, this->tryFusingAssignments.getValue());
|
|
patterns.insert<RegionAssignConversion>(context);
|
|
mlir::ConversionTarget target(*context);
|
|
target.markUnknownOpDynamicallyLegal([](mlir::Operation *op) {
|
|
return !mlir::isa<hlfir::OrderedAssignmentTreeOpInterface>(op);
|
|
});
|
|
if (mlir::failed(mlir::applyPartialConversion(module, target,
|
|
std::move(patterns)))) {
|
|
mlir::emitError(mlir::UnknownLoc::get(context),
|
|
"failure in HLFIR ordered assignments lowering pass");
|
|
signalPassFailure();
|
|
}
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
std::unique_ptr<mlir::Pass> hlfir::createLowerHLFIROrderedAssignmentsPass() {
|
|
return std::make_unique<LowerHLFIROrderedAssignments>();
|
|
}
|