Files
clang-p2996/libc/AOR_v20.02/math/test/ulp.c
Kristof Beyls 0928368f62 [libc] Provide Arm Optimized Routines for the LLVM libc project.
This adds the Arm Optimized Routines (see
https://github.com/ARM-software/optimized-routines) source code under the
the LLVM license. The version of the code provided in this patch is v20.02
of the Arm Optimized Routines project.

This entire contribution is being committed as is even though it does
not currently fit the LLVM libc model and does not follow the LLVM
coding style. In the near future, implementations from this patch will be
moved over to their right place in the LLVM-libc tree. This will be done
over many small patches, all of which will go through the normal LLVM code
review process. See this libc-dev post for the plan:
http://lists.llvm.org/pipermail/libc-dev/2020-March/000044.html

Differential revision of the original upload: https://reviews.llvm.org/D75355
2020-03-16 12:19:31 -07:00

853 lines
21 KiB
C

/*
* ULP error checking tool for math functions.
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*/
#include <ctype.h>
#include <fenv.h>
#include <float.h>
#include <math.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "mathlib.h"
/* Don't depend on mpfr by default. */
#ifndef USE_MPFR
# define USE_MPFR 0
#endif
#if USE_MPFR
# include <mpfr.h>
#endif
#ifndef WANT_VMATH
/* Enable the build of vector math code. */
# define WANT_VMATH 1
#endif
static inline uint64_t
asuint64 (double f)
{
union
{
double f;
uint64_t i;
} u = {f};
return u.i;
}
static inline double
asdouble (uint64_t i)
{
union
{
uint64_t i;
double f;
} u = {i};
return u.f;
}
static inline uint32_t
asuint (float f)
{
union
{
float f;
uint32_t i;
} u = {f};
return u.i;
}
static inline float
asfloat (uint32_t i)
{
union
{
uint32_t i;
float f;
} u = {i};
return u.f;
}
static uint64_t seed = 0x0123456789abcdef;
static uint64_t
rand64 (void)
{
seed = 6364136223846793005ull * seed + 1;
return seed ^ (seed >> 32);
}
/* Uniform random in [0,n]. */
static uint64_t
randn (uint64_t n)
{
uint64_t r, m;
if (n == 0)
return 0;
n++;
if (n == 0)
return rand64 ();
for (;;)
{
r = rand64 ();
m = r % n;
if (r - m <= -n)
return m;
}
}
struct gen
{
uint64_t start;
uint64_t len;
uint64_t start2;
uint64_t len2;
uint64_t off;
uint64_t step;
uint64_t cnt;
};
struct args_f1
{
float x;
};
struct args_f2
{
float x;
float x2;
};
struct args_d1
{
double x;
};
struct args_d2
{
double x;
double x2;
};
/* result = y + tail*2^ulpexp. */
struct ret_f
{
float y;
double tail;
int ulpexp;
int ex;
int ex_may;
};
struct ret_d
{
double y;
double tail;
int ulpexp;
int ex;
int ex_may;
};
static inline uint64_t
next1 (struct gen *g)
{
/* For single argument use randomized incremental steps,
that produce dense sampling without collisions and allow
testing all inputs in a range. */
uint64_t r = g->start + g->off;
g->off += g->step + randn (g->step / 2);
if (g->off > g->len)
g->off -= g->len; /* hack. */
return r;
}
static inline uint64_t
next2 (uint64_t *x2, struct gen *g)
{
/* For two arguments use uniform random sampling. */
uint64_t r = g->start + randn (g->len);
*x2 = g->start2 + randn (g->len2);
return r;
}
static struct args_f1
next_f1 (void *g)
{
return (struct args_f1){asfloat (next1 (g))};
}
static struct args_f2
next_f2 (void *g)
{
uint64_t x2;
uint64_t x = next2 (&x2, g);
return (struct args_f2){asfloat (x), asfloat (x2)};
}
static struct args_d1
next_d1 (void *g)
{
return (struct args_d1){asdouble (next1 (g))};
}
static struct args_d2
next_d2 (void *g)
{
uint64_t x2;
uint64_t x = next2 (&x2, g);
return (struct args_d2){asdouble (x), asdouble (x2)};
}
struct conf
{
int r;
int rc;
int quiet;
int mpfr;
int fenv;
unsigned long long n;
double softlim;
double errlim;
};
/* Wrappers for sincos. */
static float sincosf_sinf(float x) {(void)cosf(x); return sinf(x);}
static float sincosf_cosf(float x) {(void)sinf(x); return cosf(x);}
static double sincos_sin(double x) {(void)cos(x); return sin(x);}
static double sincos_cos(double x) {(void)sin(x); return cos(x);}
#if USE_MPFR
static int sincos_mpfr_sin(mpfr_t y, const mpfr_t x, mpfr_rnd_t r) { mpfr_cos(y,x,r); return mpfr_sin(y,x,r); }
static int sincos_mpfr_cos(mpfr_t y, const mpfr_t x, mpfr_rnd_t r) { mpfr_sin(y,x,r); return mpfr_cos(y,x,r); }
#endif
/* A bit of a hack: call vector functions twice with the same
input in lane 0 but a different value in other lanes: once
with an in-range value and then with a special case value. */
static int secondcall;
/* Wrappers for vector functions. */
#if __aarch64__ && WANT_VMATH
typedef __f32x4_t v_float;
typedef __f64x2_t v_double;
static const float fv[2] = {1.0f, -INFINITY};
static const double dv[2] = {1.0, -INFINITY};
static inline v_float argf(float x) { return (v_float){x,x,x,fv[secondcall]}; }
static inline v_double argd(double x) { return (v_double){x,dv[secondcall]}; }
static float v_sinf(float x) { return __v_sinf(argf(x))[0]; }
static float v_cosf(float x) { return __v_cosf(argf(x))[0]; }
static float v_expf_1u(float x) { return __v_expf_1u(argf(x))[0]; }
static float v_expf(float x) { return __v_expf(argf(x))[0]; }
static float v_exp2f_1u(float x) { return __v_exp2f_1u(argf(x))[0]; }
static float v_exp2f(float x) { return __v_exp2f(argf(x))[0]; }
static float v_logf(float x) { return __v_logf(argf(x))[0]; }
static float v_powf(float x, float y) { return __v_powf(argf(x),argf(y))[0]; }
static double v_sin(double x) { return __v_sin(argd(x))[0]; }
static double v_cos(double x) { return __v_cos(argd(x))[0]; }
static double v_exp(double x) { return __v_exp(argd(x))[0]; }
static double v_log(double x) { return __v_log(argd(x))[0]; }
static double v_pow(double x, double y) { return __v_pow(argd(x),argd(y))[0]; }
#ifdef __vpcs
static float vn_sinf(float x) { return __vn_sinf(argf(x))[0]; }
static float vn_cosf(float x) { return __vn_cosf(argf(x))[0]; }
static float vn_expf_1u(float x) { return __vn_expf_1u(argf(x))[0]; }
static float vn_expf(float x) { return __vn_expf(argf(x))[0]; }
static float vn_exp2f_1u(float x) { return __vn_exp2f_1u(argf(x))[0]; }
static float vn_exp2f(float x) { return __vn_exp2f(argf(x))[0]; }
static float vn_logf(float x) { return __vn_logf(argf(x))[0]; }
static float vn_powf(float x, float y) { return __vn_powf(argf(x),argf(y))[0]; }
static double vn_sin(double x) { return __vn_sin(argd(x))[0]; }
static double vn_cos(double x) { return __vn_cos(argd(x))[0]; }
static double vn_exp(double x) { return __vn_exp(argd(x))[0]; }
static double vn_log(double x) { return __vn_log(argd(x))[0]; }
static double vn_pow(double x, double y) { return __vn_pow(argd(x),argd(y))[0]; }
static float Z_sinf(float x) { return _ZGVnN4v_sinf(argf(x))[0]; }
static float Z_cosf(float x) { return _ZGVnN4v_cosf(argf(x))[0]; }
static float Z_expf(float x) { return _ZGVnN4v_expf(argf(x))[0]; }
static float Z_exp2f(float x) { return _ZGVnN4v_exp2f(argf(x))[0]; }
static float Z_logf(float x) { return _ZGVnN4v_logf(argf(x))[0]; }
static float Z_powf(float x, float y) { return _ZGVnN4vv_powf(argf(x),argf(y))[0]; }
static double Z_sin(double x) { return _ZGVnN2v_sin(argd(x))[0]; }
static double Z_cos(double x) { return _ZGVnN2v_cos(argd(x))[0]; }
static double Z_exp(double x) { return _ZGVnN2v_exp(argd(x))[0]; }
static double Z_log(double x) { return _ZGVnN2v_log(argd(x))[0]; }
static double Z_pow(double x, double y) { return _ZGVnN2vv_pow(argd(x),argd(y))[0]; }
#endif
#endif
struct fun
{
const char *name;
int arity;
int singleprec;
int twice;
union
{
float (*f1) (float);
float (*f2) (float, float);
double (*d1) (double);
double (*d2) (double, double);
} fun;
union
{
double (*f1) (double);
double (*f2) (double, double);
long double (*d1) (long double);
long double (*d2) (long double, long double);
} fun_long;
#if USE_MPFR
union
{
int (*f1) (mpfr_t, const mpfr_t, mpfr_rnd_t);
int (*f2) (mpfr_t, const mpfr_t, const mpfr_t, mpfr_rnd_t);
int (*d1) (mpfr_t, const mpfr_t, mpfr_rnd_t);
int (*d2) (mpfr_t, const mpfr_t, const mpfr_t, mpfr_rnd_t);
} fun_mpfr;
#endif
};
static const struct fun fun[] = {
#if USE_MPFR
# define F(x, x_wrap, x_long, x_mpfr, a, s, t, twice) \
{#x, a, s, twice, {.t = x_wrap}, {.t = x_long}, {.t = x_mpfr}},
#else
# define F(x, x_wrap, x_long, x_mpfr, a, s, t, twice) \
{#x, a, s, twice, {.t = x_wrap}, {.t = x_long}},
#endif
#define F1(x) F (x##f, x##f, x, mpfr_##x, 1, 1, f1, 0)
#define F2(x) F (x##f, x##f, x, mpfr_##x, 2, 1, f2, 0)
#define D1(x) F (x, x, x##l, mpfr_##x, 1, 0, d1, 0)
#define D2(x) F (x, x, x##l, mpfr_##x, 2, 0, d2, 0)
F1 (sin)
F1 (cos)
F (sincosf_sinf, sincosf_sinf, sincos_sin, sincos_mpfr_sin, 1, 1, f1, 0)
F (sincosf_cosf, sincosf_cosf, sincos_cos, sincos_mpfr_cos, 1, 1, f1, 0)
F1 (exp)
F1 (exp2)
F1 (log)
F1 (log2)
F2 (pow)
D1 (exp)
D1 (exp2)
D1 (log)
D1 (log2)
D2 (pow)
#if WANT_VMATH
F (__s_sinf, __s_sinf, sin, mpfr_sin, 1, 1, f1, 0)
F (__s_cosf, __s_cosf, cos, mpfr_cos, 1, 1, f1, 0)
F (__s_expf_1u, __s_expf_1u, exp, mpfr_exp, 1, 1, f1, 0)
F (__s_expf, __s_expf, exp, mpfr_exp, 1, 1, f1, 0)
F (__s_exp2f_1u, __s_exp2f_1u, exp2, mpfr_exp2, 1, 1, f1, 0)
F (__s_exp2f, __s_exp2f, exp2, mpfr_exp2, 1, 1, f1, 0)
F (__s_powf, __s_powf, pow, mpfr_pow, 2, 1, f2, 0)
F (__s_logf, __s_logf, log, mpfr_log, 1, 1, f1, 0)
F (__s_sin, __s_sin, sinl, mpfr_sin, 1, 0, d1, 0)
F (__s_cos, __s_cos, cosl, mpfr_cos, 1, 0, d1, 0)
F (__s_exp, __s_exp, expl, mpfr_exp, 1, 0, d1, 0)
F (__s_log, __s_log, logl, mpfr_log, 1, 0, d1, 0)
F (__s_pow, __s_pow, powl, mpfr_pow, 2, 0, d2, 0)
#if __aarch64__
F (__v_sinf, v_sinf, sin, mpfr_sin, 1, 1, f1, 1)
F (__v_cosf, v_cosf, cos, mpfr_cos, 1, 1, f1, 1)
F (__v_expf_1u, v_expf_1u, exp, mpfr_exp, 1, 1, f1, 1)
F (__v_expf, v_expf, exp, mpfr_exp, 1, 1, f1, 1)
F (__v_exp2f_1u, v_exp2f_1u, exp2, mpfr_exp2, 1, 1, f1, 1)
F (__v_exp2f, v_exp2f, exp2, mpfr_exp2, 1, 1, f1, 1)
F (__v_logf, v_logf, log, mpfr_log, 1, 1, f1, 1)
F (__v_powf, v_powf, pow, mpfr_pow, 2, 1, f2, 1)
F (__v_sin, v_sin, sinl, mpfr_sin, 1, 0, d1, 1)
F (__v_cos, v_cos, cosl, mpfr_cos, 1, 0, d1, 1)
F (__v_exp, v_exp, expl, mpfr_exp, 1, 0, d1, 1)
F (__v_log, v_log, logl, mpfr_log, 1, 0, d1, 1)
F (__v_pow, v_pow, powl, mpfr_pow, 2, 0, d2, 1)
#ifdef __vpcs
F (__vn_sinf, vn_sinf, sin, mpfr_sin, 1, 1, f1, 1)
F (__vn_cosf, vn_cosf, cos, mpfr_cos, 1, 1, f1, 1)
F (__vn_expf_1u, vn_expf_1u, exp, mpfr_exp, 1, 1, f1, 1)
F (__vn_expf, vn_expf, exp, mpfr_exp, 1, 1, f1, 1)
F (__vn_exp2f_1u, vn_exp2f_1u, exp2, mpfr_exp2, 1, 1, f1, 1)
F (__vn_exp2f, vn_exp2f, exp2, mpfr_exp2, 1, 1, f1, 1)
F (__vn_logf, vn_logf, log, mpfr_log, 1, 1, f1, 1)
F (__vn_powf, vn_powf, pow, mpfr_pow, 2, 1, f2, 1)
F (__vn_sin, vn_sin, sinl, mpfr_sin, 1, 0, d1, 1)
F (__vn_cos, vn_cos, cosl, mpfr_cos, 1, 0, d1, 1)
F (__vn_exp, vn_exp, expl, mpfr_exp, 1, 0, d1, 1)
F (__vn_log, vn_log, logl, mpfr_log, 1, 0, d1, 1)
F (__vn_pow, vn_pow, powl, mpfr_pow, 2, 0, d2, 1)
F (_ZGVnN4v_sinf, Z_sinf, sin, mpfr_sin, 1, 1, f1, 1)
F (_ZGVnN4v_cosf, Z_cosf, cos, mpfr_cos, 1, 1, f1, 1)
F (_ZGVnN4v_expf, Z_expf, exp, mpfr_exp, 1, 1, f1, 1)
F (_ZGVnN4v_exp2f, Z_exp2f, exp2, mpfr_exp2, 1, 1, f1, 1)
F (_ZGVnN4v_logf, Z_logf, log, mpfr_log, 1, 1, f1, 1)
F (_ZGVnN4vv_powf, Z_powf, pow, mpfr_pow, 2, 1, f2, 1)
F (_ZGVnN2v_sin, Z_sin, sinl, mpfr_sin, 1, 0, d1, 1)
F (_ZGVnN2v_cos, Z_cos, cosl, mpfr_cos, 1, 0, d1, 1)
F (_ZGVnN2v_exp, Z_exp, expl, mpfr_exp, 1, 0, d1, 1)
F (_ZGVnN2v_log, Z_log, logl, mpfr_log, 1, 0, d1, 1)
F (_ZGVnN2vv_pow, Z_pow, powl, mpfr_pow, 2, 0, d2, 1)
#endif
#endif
#endif
#undef F
#undef F1
#undef F2
#undef D1
#undef D2
{0}};
/* Boilerplate for generic calls. */
static inline int
ulpscale_f (float x)
{
int e = asuint (x) >> 23 & 0xff;
if (!e)
e++;
return e - 0x7f - 23;
}
static inline int
ulpscale_d (double x)
{
int e = asuint64 (x) >> 52 & 0x7ff;
if (!e)
e++;
return e - 0x3ff - 52;
}
static inline float
call_f1 (const struct fun *f, struct args_f1 a)
{
return f->fun.f1 (a.x);
}
static inline float
call_f2 (const struct fun *f, struct args_f2 a)
{
return f->fun.f2 (a.x, a.x2);
}
static inline double
call_d1 (const struct fun *f, struct args_d1 a)
{
return f->fun.d1 (a.x);
}
static inline double
call_d2 (const struct fun *f, struct args_d2 a)
{
return f->fun.d2 (a.x, a.x2);
}
static inline double
call_long_f1 (const struct fun *f, struct args_f1 a)
{
return f->fun_long.f1 (a.x);
}
static inline double
call_long_f2 (const struct fun *f, struct args_f2 a)
{
return f->fun_long.f2 (a.x, a.x2);
}
static inline long double
call_long_d1 (const struct fun *f, struct args_d1 a)
{
return f->fun_long.d1 (a.x);
}
static inline long double
call_long_d2 (const struct fun *f, struct args_d2 a)
{
return f->fun_long.d2 (a.x, a.x2);
}
static inline void
printcall_f1 (const struct fun *f, struct args_f1 a)
{
printf ("%s(%a)", f->name, a.x);
}
static inline void
printcall_f2 (const struct fun *f, struct args_f2 a)
{
printf ("%s(%a, %a)", f->name, a.x, a.x2);
}
static inline void
printcall_d1 (const struct fun *f, struct args_d1 a)
{
printf ("%s(%a)", f->name, a.x);
}
static inline void
printcall_d2 (const struct fun *f, struct args_d2 a)
{
printf ("%s(%a, %a)", f->name, a.x, a.x2);
}
static inline void
printgen_f1 (const struct fun *f, struct gen *gen)
{
printf ("%s in [%a;%a]", f->name, asfloat (gen->start),
asfloat (gen->start + gen->len));
}
static inline void
printgen_f2 (const struct fun *f, struct gen *gen)
{
printf ("%s in [%a;%a] x [%a;%a]", f->name, asfloat (gen->start),
asfloat (gen->start + gen->len), asfloat (gen->start2),
asfloat (gen->start2 + gen->len2));
}
static inline void
printgen_d1 (const struct fun *f, struct gen *gen)
{
printf ("%s in [%a;%a]", f->name, asdouble (gen->start),
asdouble (gen->start + gen->len));
}
static inline void
printgen_d2 (const struct fun *f, struct gen *gen)
{
printf ("%s in [%a;%a] x [%a;%a]", f->name, asdouble (gen->start),
asdouble (gen->start + gen->len), asdouble (gen->start2),
asdouble (gen->start2 + gen->len2));
}
#define reduce_f1(a, f, op) (f (a.x))
#define reduce_f2(a, f, op) (f (a.x) op f (a.x2))
#define reduce_d1(a, f, op) (f (a.x))
#define reduce_d2(a, f, op) (f (a.x) op f (a.x2))
#ifndef IEEE_754_2008_SNAN
# define IEEE_754_2008_SNAN 1
#endif
static inline int
issignaling_f (float x)
{
uint32_t ix = asuint (x);
if (!IEEE_754_2008_SNAN)
return (ix & 0x7fc00000) == 0x7fc00000;
return 2 * (ix ^ 0x00400000) > 2u * 0x7fc00000;
}
static inline int
issignaling_d (double x)
{
uint64_t ix = asuint64 (x);
if (!IEEE_754_2008_SNAN)
return (ix & 0x7ff8000000000000) == 0x7ff8000000000000;
return 2 * (ix ^ 0x0008000000000000) > 2 * 0x7ff8000000000000ULL;
}
#if USE_MPFR
static mpfr_rnd_t
rmap (int r)
{
switch (r)
{
case FE_TONEAREST:
return MPFR_RNDN;
case FE_TOWARDZERO:
return MPFR_RNDZ;
case FE_UPWARD:
return MPFR_RNDU;
case FE_DOWNWARD:
return MPFR_RNDD;
}
return -1;
}
#define prec_mpfr_f 50
#define prec_mpfr_d 80
#define prec_f 24
#define prec_d 53
#define emin_f -148
#define emin_d -1073
#define emax_f 128
#define emax_d 1024
static inline int
call_mpfr_f1 (mpfr_t y, const struct fun *f, struct args_f1 a, mpfr_rnd_t r)
{
MPFR_DECL_INIT (x, prec_f);
mpfr_set_flt (x, a.x, MPFR_RNDN);
return f->fun_mpfr.f1 (y, x, r);
}
static inline int
call_mpfr_f2 (mpfr_t y, const struct fun *f, struct args_f2 a, mpfr_rnd_t r)
{
MPFR_DECL_INIT (x, prec_f);
MPFR_DECL_INIT (x2, prec_f);
mpfr_set_flt (x, a.x, MPFR_RNDN);
mpfr_set_flt (x2, a.x2, MPFR_RNDN);
return f->fun_mpfr.f2 (y, x, x2, r);
}
static inline int
call_mpfr_d1 (mpfr_t y, const struct fun *f, struct args_d1 a, mpfr_rnd_t r)
{
MPFR_DECL_INIT (x, prec_d);
mpfr_set_d (x, a.x, MPFR_RNDN);
return f->fun_mpfr.d1 (y, x, r);
}
static inline int
call_mpfr_d2 (mpfr_t y, const struct fun *f, struct args_d2 a, mpfr_rnd_t r)
{
MPFR_DECL_INIT (x, prec_d);
MPFR_DECL_INIT (x2, prec_d);
mpfr_set_d (x, a.x, MPFR_RNDN);
mpfr_set_d (x2, a.x2, MPFR_RNDN);
return f->fun_mpfr.d2 (y, x, x2, r);
}
#endif
#define float_f float
#define double_f double
#define copysign_f copysignf
#define nextafter_f nextafterf
#define fabs_f fabsf
#define asuint_f asuint
#define asfloat_f asfloat
#define scalbn_f scalbnf
#define lscalbn_f scalbn
#define halfinf_f 0x1p127f
#define min_normal_f 0x1p-126f
#define float_d double
#define double_d long double
#define copysign_d copysign
#define nextafter_d nextafter
#define fabs_d fabs
#define asuint_d asuint64
#define asfloat_d asdouble
#define scalbn_d scalbn
#define lscalbn_d scalbnl
#define halfinf_d 0x1p1023
#define min_normal_d 0x1p-1022
#define NEW_RT
#define RT(x) x##_f
#define T(x) x##_f1
#include "ulp.h"
#undef T
#define T(x) x##_f2
#include "ulp.h"
#undef T
#undef RT
#define NEW_RT
#define RT(x) x##_d
#define T(x) x##_d1
#include "ulp.h"
#undef T
#define T(x) x##_d2
#include "ulp.h"
#undef T
#undef RT
static void
usage (void)
{
puts ("./ulp [-q] [-m] [-f] [-r nudz] [-l soft-ulplimit] [-e ulplimit] func "
"lo [hi [x lo2 hi2] [count]]");
puts ("Compares func against a higher precision implementation in [lo; hi].");
puts ("-q: quiet.");
puts ("-m: use mpfr even if faster method is available.");
puts ("-f: disable fenv testing (rounding modes and exceptions).");
puts ("Supported func:");
for (const struct fun *f = fun; f->name; f++)
printf ("\t%s\n", f->name);
exit (1);
}
static int
cmp (const struct fun *f, struct gen *gen, const struct conf *conf)
{
int r = 1;
if (f->arity == 1 && f->singleprec)
r = cmp_f1 (f, gen, conf);
else if (f->arity == 2 && f->singleprec)
r = cmp_f2 (f, gen, conf);
else if (f->arity == 1 && !f->singleprec)
r = cmp_d1 (f, gen, conf);
else if (f->arity == 2 && !f->singleprec)
r = cmp_d2 (f, gen, conf);
else
usage ();
return r;
}
static uint64_t
getnum (const char *s, int singleprec)
{
// int i;
uint64_t sign = 0;
// char buf[12];
if (s[0] == '+')
s++;
else if (s[0] == '-')
{
sign = singleprec ? 1ULL << 31 : 1ULL << 63;
s++;
}
/* 0xXXXX is treated as bit representation, '-' flips the sign bit. */
if (s[0] == '0' && tolower (s[1]) == 'x' && strchr (s, 'p') == 0)
return sign ^ strtoull (s, 0, 0);
// /* SNaN, QNaN, NaN, Inf. */
// for (i=0; s[i] && i < sizeof buf; i++)
// buf[i] = tolower(s[i]);
// buf[i] = 0;
// if (strcmp(buf, "snan") == 0)
// return sign | (singleprec ? 0x7fa00000 : 0x7ff4000000000000);
// if (strcmp(buf, "qnan") == 0 || strcmp(buf, "nan") == 0)
// return sign | (singleprec ? 0x7fc00000 : 0x7ff8000000000000);
// if (strcmp(buf, "inf") == 0 || strcmp(buf, "infinity") == 0)
// return sign | (singleprec ? 0x7f800000 : 0x7ff0000000000000);
/* Otherwise assume it's a floating-point literal. */
return sign
| (singleprec ? asuint (strtof (s, 0)) : asuint64 (strtod (s, 0)));
}
static void
parsegen (struct gen *g, int argc, char *argv[], const struct fun *f)
{
int singleprec = f->singleprec;
int arity = f->arity;
uint64_t a, b, a2, b2, n;
if (argc < 1)
usage ();
b = a = getnum (argv[0], singleprec);
n = 0;
if (argc > 1 && strcmp (argv[1], "x") == 0)
{
argc -= 2;
argv += 2;
}
else if (argc > 1)
{
b = getnum (argv[1], singleprec);
if (argc > 2 && strcmp (argv[2], "x") == 0)
{
argc -= 3;
argv += 3;
}
}
b2 = a2 = getnum (argv[0], singleprec);
if (argc > 1)
b2 = getnum (argv[1], singleprec);
if (argc > 2)
n = strtoull (argv[2], 0, 0);
if (argc > 3)
usage ();
//printf("ab %lx %lx ab2 %lx %lx n %lu\n", a, b, a2, b2, n);
if (arity == 1)
{
g->start = a;
g->len = b - a;
if (n - 1 > b - a)
n = b - a + 1;
g->off = 0;
g->step = n ? (g->len + 1) / n : 1;
g->start2 = g->len2 = 0;
g->cnt = n;
}
else if (arity == 2)
{
g->start = a;
g->len = b - a;
g->off = g->step = 0;
g->start2 = a2;
g->len2 = b2 - a2;
g->cnt = n;
}
else
usage ();
}
int
main (int argc, char *argv[])
{
const struct fun *f;
struct gen gen;
struct conf conf;
conf.rc = 'n';
conf.quiet = 0;
conf.mpfr = 0;
conf.fenv = 1;
conf.softlim = 0;
conf.errlim = INFINITY;
for (;;)
{
argc--;
argv++;
if (argc < 1)
usage ();
if (argv[0][0] != '-')
break;
switch (argv[0][1])
{
case 'e':
argc--;
argv++;
if (argc < 1)
usage ();
conf.errlim = strtod (argv[0], 0);
break;
case 'f':
conf.fenv = 0;
break;
case 'l':
argc--;
argv++;
if (argc < 1)
usage ();
conf.softlim = strtod (argv[0], 0);
break;
case 'm':
conf.mpfr = 1;
break;
case 'q':
conf.quiet = 1;
break;
case 'r':
conf.rc = argv[0][2];
if (!conf.rc)
{
argc--;
argv++;
if (argc < 1)
usage ();
conf.rc = argv[0][0];
}
break;
default:
usage ();
}
}
switch (conf.rc)
{
case 'n':
conf.r = FE_TONEAREST;
break;
case 'u':
conf.r = FE_UPWARD;
break;
case 'd':
conf.r = FE_DOWNWARD;
break;
case 'z':
conf.r = FE_TOWARDZERO;
break;
default:
usage ();
}
for (f = fun; f->name; f++)
if (strcmp (argv[0], f->name) == 0)
break;
if (!f->name)
usage ();
if (!f->singleprec && LDBL_MANT_DIG == DBL_MANT_DIG)
conf.mpfr = 1; /* Use mpfr if long double has no extra precision. */
if (!USE_MPFR && conf.mpfr)
{
puts ("mpfr is not available.");
return 0;
}
argc--;
argv++;
parsegen (&gen, argc, argv, f);
conf.n = gen.cnt;
return cmp (f, &gen, &conf);
}