Files
clang-p2996/libc/test/utils/FPUtil/x86_long_double_test.cpp
lntue 5748ad84e5 [libc] Add proxy header math_macros.h. (#87598)
Context: https://github.com/llvm/llvm-project/pull/87017

- Add proxy header `libc/hdr/math_macros.h` that will:
  - include `<math.h>` in overlay mode,
- include `"include/llvm-libc-macros/math-macros.h"` in full build mode.
- Its corresponding CMake target `libc.hdr.math_macros` will only depend
on `libc.include.math` and `libc.include.llvm-libc-macros.math_macros`
in full build mode.
- Replace all `#include "include/llvm-libc-macros/math-macros.h"` with
`#include "hdr/math_macros.h"`.
- Add dependency to `libc.hdr.math_macros` CMake target when using
`add_fp_unittest`.
- Update the remaining dependency.
- Update bazel overlay: add `libc:hdr_math_macros` target, and replacing
all dependency on `libc:llvm_libc_macros_math_macros` with
`libc:hdr_math_macros`.
2024-04-05 18:21:16 -04:00

88 lines
3.1 KiB
C++

//===-- Unittests for x86 long double -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "src/__support/FPUtil/FPBits.h"
#include "test/UnitTest/Test.h"
#include "hdr/math_macros.h"
using FPBits = LIBC_NAMESPACE::fputil::FPBits<long double>;
TEST(LlvmLibcX86LongDoubleTest, is_nan) {
// In the nan checks below, we use the macro isnan from math.h to ensure that
// a number is actually a NaN. The isnan macro resolves to the compiler
// builtin function. Hence, matching LLVM-libc's notion of NaN with the
// isnan result ensures that LLVM-libc's behavior matches the compiler's
// behavior.
constexpr uint32_t COUNT = 100'000;
FPBits bits(0.0l);
bits.set_biased_exponent(FPBits::MAX_BIASED_EXPONENT);
for (unsigned int i = 0; i < COUNT; ++i) {
// If exponent has the max value and the implicit bit is 0,
// then the number is a NaN for all values of mantissa.
bits.set_mantissa(i);
long double nan = bits.get_val();
ASSERT_NE(static_cast<int>(isnan(nan)), 0);
ASSERT_TRUE(bits.is_nan());
}
bits.set_implicit_bit(1);
for (unsigned int i = 1; i < COUNT; ++i) {
// If exponent has the max value and the implicit bit is 1,
// then the number is a NaN for all non-zero values of mantissa.
// Note the initial value of |i| of 1 to avoid a zero mantissa.
bits.set_mantissa(i);
long double nan = bits.get_val();
ASSERT_NE(static_cast<int>(isnan(nan)), 0);
ASSERT_TRUE(bits.is_nan());
}
bits.set_biased_exponent(1);
bits.set_implicit_bit(0);
for (unsigned int i = 0; i < COUNT; ++i) {
// If exponent is non-zero and also not max, and the implicit bit is 0,
// then the number is a NaN for all values of mantissa.
bits.set_mantissa(i);
long double nan = bits.get_val();
ASSERT_NE(static_cast<int>(isnan(nan)), 0);
ASSERT_TRUE(bits.is_nan());
}
bits.set_biased_exponent(1);
bits.set_implicit_bit(1);
for (unsigned int i = 0; i < COUNT; ++i) {
// If exponent is non-zero and also not max, and the implicit bit is 1,
// then the number is normal value for all values of mantissa.
bits.set_mantissa(i);
long double valid = bits.get_val();
ASSERT_EQ(static_cast<int>(isnan(valid)), 0);
ASSERT_FALSE(bits.is_nan());
}
bits.set_biased_exponent(0);
bits.set_implicit_bit(1);
for (unsigned int i = 0; i < COUNT; ++i) {
// If exponent is zero, then the number is a valid but denormal value.
bits.set_mantissa(i);
long double valid = bits.get_val();
ASSERT_EQ(static_cast<int>(isnan(valid)), 0);
ASSERT_FALSE(bits.is_nan());
}
bits.set_biased_exponent(0);
bits.set_implicit_bit(0);
for (unsigned int i = 0; i < COUNT; ++i) {
// If exponent is zero, then the number is a valid but denormal value.
bits.set_mantissa(i);
long double valid = bits.get_val();
ASSERT_EQ(static_cast<int>(isnan(valid)), 0);
ASSERT_FALSE(bits.is_nan());
}
}