Files
clang-p2996/libcxx/test/std/ranges/range.utility/range.utility.conv/to.pass.cpp
Stephan T. Lavavej 64addd6521 [libc++][test] Enhance ADDITIONAL_COMPILE_FLAGS, use TEST_MEOW_DIAGNOSTIC_IGNORED sparingly (#75317)
This is the last PR that's needed (for now) to get libc++'s tests
working with MSVC's STL.

The ADDITIONAL_COMPILE_FLAGS machinery is very useful, but also very
problematic for MSVC, as it doesn't understand most of Clang's compiler
options. We've been dealing with this by simply marking anything that
uses ADDITIONAL_COMPILE_FLAGS as FAIL or SKIPPED, but that creates
significant gaps in test coverage.

Fortunately, ADDITIONAL_COMPILE_FLAGS also supports "features", which
can be slightly enhanced to send Clang-compatible and MSVC-compatible
options to the right compilers.

This patch adds the gcc-style-warnings and cl-style-warnings Lit features,
and uses that to pass the appropriate warning flags to tests. It also uses
TEST_MEOW_DIAGNOSTIC_IGNORED for a few local suppressions of MSVC
warnings.
2023-12-14 17:38:27 -05:00

580 lines
19 KiB
C++

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// MSVC warning C4244: 'argument': conversion from '_Ty' to 'int', possible loss of data
// ADDITIONAL_COMPILE_FLAGS(cl-style-warnings): /wd4244
// UNSUPPORTED: c++03, c++11, c++14, c++17, c++20
// template<class C, input_range R, class... Args> requires (!view<C>)
// constexpr C to(R&& r, Args&&... args); // Since C++23
#include <ranges>
#include <algorithm>
#include <array>
#include <cassert>
#include <vector>
#include "container.h"
#include "test_iterators.h"
#include "test_macros.h"
#include "test_range.h"
template <class Container, class Range, class... Args>
concept HasTo = requires (Range&& range, Args ...args) {
std::ranges::to<Container>(std::forward<Range>(range), std::forward<Args>(args)...);
};
struct InputRange {
int x = 0;
constexpr cpp20_input_iterator<int*> begin() {
return cpp20_input_iterator<int*>(&x);
}
constexpr sentinel_wrapper<cpp20_input_iterator<int*>> end() {
return sentinel_wrapper<cpp20_input_iterator<int*>>(begin());
}
};
static_assert(std::ranges::input_range<InputRange>);
struct common_cpp20_input_iterator {
using value_type = int;
using difference_type = long long;
using iterator_concept = std::input_iterator_tag;
// Deliberately not defining `iterator_category` to make sure this class satisfies the `input_iterator` concept but
// would fail `derived_from<iterator_category, input_iterator_tag>`.
int x = 0;
// Copyable so that it can be used as a sentinel against itself.
constexpr decltype(auto) operator*() const { return x; }
constexpr common_cpp20_input_iterator& operator++() { return *this; }
constexpr void operator++(int) {}
constexpr friend bool operator==(common_cpp20_input_iterator, common_cpp20_input_iterator) { return true; }
};
static_assert(std::input_iterator<common_cpp20_input_iterator>);
static_assert(std::sentinel_for<common_cpp20_input_iterator, common_cpp20_input_iterator>);
template <class T>
concept HasIteratorCategory = requires {
typename std::iterator_traits<T>::iterator_category;
};
static_assert(!HasIteratorCategory<common_cpp20_input_iterator>);
struct CommonInputRange {
int x = 0;
constexpr common_cpp20_input_iterator begin() { return {}; }
constexpr common_cpp20_input_iterator end() { return begin(); }
};
static_assert(std::ranges::input_range<CommonInputRange>);
static_assert(std::ranges::common_range<CommonInputRange>);
struct CommonRange {
int x = 0;
constexpr forward_iterator<int*> begin() {
return forward_iterator<int*>(&x);
}
constexpr forward_iterator<int*> end() {
return begin();
}
};
static_assert(std::ranges::input_range<CommonRange>);
static_assert(std::ranges::common_range<CommonRange>);
struct NonCommonRange {
int x = 0;
constexpr forward_iterator<int*> begin() {
return forward_iterator<int*>(&x);
}
constexpr sentinel_wrapper<forward_iterator<int*>> end() {
return sentinel_wrapper<forward_iterator<int*>>(begin());
}
};
static_assert(std::ranges::input_range<NonCommonRange>);
static_assert(!std::ranges::common_range<NonCommonRange>);
static_assert(std::derived_from<
typename std::iterator_traits<std::ranges::iterator_t<NonCommonRange>>::iterator_category,
std::input_iterator_tag>);
using ContainerT = int;
static_assert(!std::ranges::view<ContainerT>);
static_assert(HasTo<ContainerT, InputRange>);
static_assert(!HasTo<test_view<forward_iterator>, InputRange>);
// Note: it's not possible to check the `input_range` constraint because if it's not satisfied, the pipe adaptor
// overload hijacks the call (it takes unconstrained variadic arguments).
// Check the exact constraints for each one of the cases inside `ranges::to`.
struct Empty {};
struct Fallback {
using value_type = int;
CtrChoice ctr_choice = CtrChoice::Invalid;
int x = 0;
constexpr Fallback() : ctr_choice(CtrChoice::DefaultCtrAndInsert) {}
constexpr Fallback(Empty) : ctr_choice(CtrChoice::DefaultCtrAndInsert) {}
constexpr void push_back(value_type) {}
constexpr value_type* begin() { return &x; }
constexpr value_type* end() { return &x; }
std::size_t size() const { return 0; }
};
struct CtrDirectOrFallback : Fallback {
using Fallback::Fallback;
constexpr CtrDirectOrFallback(InputRange&&, int = 0) { ctr_choice = CtrChoice::DirectCtr; }
};
struct CtrFromRangeTOrFallback : Fallback {
using Fallback::Fallback;
constexpr CtrFromRangeTOrFallback(std::from_range_t, InputRange&&, int = 0) { ctr_choice = CtrChoice::FromRangeT; }
};
struct CtrBeginEndPairOrFallback : Fallback {
using Fallback::Fallback;
template <class Iter>
constexpr CtrBeginEndPairOrFallback(Iter, Iter, int = 0) { ctr_choice = CtrChoice::BeginEndPair; }
};
template <bool HasSize>
struct MaybeSizedRange {
int x = 0;
constexpr forward_iterator<int*> begin() { return forward_iterator<int*>(&x); }
constexpr forward_iterator<int*> end() { return begin(); }
constexpr std::size_t size() const
requires HasSize {
return 0;
}
};
static_assert(std::ranges::sized_range<MaybeSizedRange<true>>);
static_assert(!std::ranges::sized_range<MaybeSizedRange<false>>);
template <bool HasCapacity = true, bool CapacityReturnsSizeT = true,
bool HasMaxSize = true, bool MaxSizeReturnsSizeT = true>
struct Reservable : Fallback {
bool reserve_called = false;
using Fallback::Fallback;
constexpr std::size_t capacity() const
requires (HasCapacity && CapacityReturnsSizeT) {
return 0;
}
constexpr int capacity() const
requires (HasCapacity && !CapacityReturnsSizeT) {
return 0;
}
constexpr std::size_t max_size() const
requires (HasMaxSize && MaxSizeReturnsSizeT) {
return 0;
}
constexpr int max_size() const
requires (HasMaxSize && !MaxSizeReturnsSizeT) {
return 0;
}
constexpr void reserve(std::size_t) {
reserve_called = true;
}
};
LIBCPP_STATIC_ASSERT(std::ranges::__reservable_container<Reservable<>>);
constexpr void test_constraints() {
{ // Case 1 -- construct directly from the range.
{ // (range)
auto result = std::ranges::to<CtrDirectOrFallback>(InputRange());
assert(result.ctr_choice == CtrChoice::DirectCtr);
}
{ // (range, arg)
auto result = std::ranges::to<CtrDirectOrFallback>(InputRange(), 1);
assert(result.ctr_choice == CtrChoice::DirectCtr);
}
{ // (range, convertible-to-arg)
auto result = std::ranges::to<CtrDirectOrFallback>(InputRange(), 1.0);
assert(result.ctr_choice == CtrChoice::DirectCtr);
}
{ // (range, BAD_arg)
auto result = std::ranges::to<CtrDirectOrFallback>(InputRange(), Empty());
assert(result.ctr_choice == CtrChoice::DefaultCtrAndInsert);
}
}
{ // Case 2 -- construct using the `from_range_t` tagged constructor.
{ // (range)
auto result = std::ranges::to<CtrFromRangeTOrFallback>(InputRange());
assert(result.ctr_choice == CtrChoice::FromRangeT);
}
{ // (range, arg)
auto result = std::ranges::to<CtrFromRangeTOrFallback>(InputRange(), 1);
assert(result.ctr_choice == CtrChoice::FromRangeT);
}
{ // (range, convertible-to-arg)
auto result = std::ranges::to<CtrFromRangeTOrFallback>(InputRange(), 1.0);
assert(result.ctr_choice == CtrChoice::FromRangeT);
}
{ // (range, BAD_arg)
auto result = std::ranges::to<CtrFromRangeTOrFallback>(InputRange(), Empty());
assert(result.ctr_choice == CtrChoice::DefaultCtrAndInsert);
}
}
{ // Case 3 -- construct from a begin-end iterator pair.
{ // (range)
auto result = std::ranges::to<CtrBeginEndPairOrFallback>(CommonRange());
assert(result.ctr_choice == CtrChoice::BeginEndPair);
}
{ // (range, arg)
auto result = std::ranges::to<CtrBeginEndPairOrFallback>(CommonRange(), 1);
assert(result.ctr_choice == CtrChoice::BeginEndPair);
}
{ // (range, convertible-to-arg)
auto result = std::ranges::to<CtrBeginEndPairOrFallback>(CommonRange(), 1.0);
assert(result.ctr_choice == CtrChoice::BeginEndPair);
}
{ // (BAD_range) -- not a common range.
auto result = std::ranges::to<CtrBeginEndPairOrFallback>(NonCommonRange());
assert(result.ctr_choice == CtrChoice::DefaultCtrAndInsert);
}
{ // (BAD_range) -- iterator type not derived from `input_iterator_tag`.
auto result = std::ranges::to<CtrBeginEndPairOrFallback>(CommonInputRange());
assert(result.ctr_choice == CtrChoice::DefaultCtrAndInsert);
}
{ // (range, BAD_arg)
auto result = std::ranges::to<CtrBeginEndPairOrFallback>(CommonRange(), Empty());
assert(result.ctr_choice == CtrChoice::DefaultCtrAndInsert);
}
}
{ // Case 4 -- default-construct (or construct from the extra arguments) and insert, reserving the size if possible.
// Note: it's not possible to check the constraints on the default constructor using this approach because there is
// nothing to fall back to -- the call will result in a hard error.
// However, it's possible to check the constraints on reserving the capacity.
{ // All constraints satisfied.
using C = Reservable<>;
auto result = std::ranges::to<C>(MaybeSizedRange<true>());
assert(result.reserve_called);
}
{ // !sized_range
using C = Reservable<>;
auto result = std::ranges::to<C>(MaybeSizedRange<false>());
assert(!result.reserve_called);
}
{ // Missing `capacity`.
using C = Reservable</*HasCapacity=*/false>;
auto result = std::ranges::to<C>(MaybeSizedRange<true>());
assert(!result.reserve_called);
}
{ // `capacity` doesn't return `size_type`.
using C = Reservable</*HasCapacity=*/true, /*CapacityReturnsSizeT=*/false>;
auto result = std::ranges::to<C>(MaybeSizedRange<true>());
assert(!result.reserve_called);
}
{ // Missing `max_size`.
using C = Reservable</*HasCapacity=*/true, /*CapacityReturnsSizeT=*/true, /*HasMaxSize=*/false>;
auto result = std::ranges::to<C>(MaybeSizedRange<true>());
assert(!result.reserve_called);
}
{ // `max_size` doesn't return `size_type`.
using C = Reservable<
/*HasCapacity=*/true, /*CapacityReturnsSizeT=*/true, /*HasMaxSize=*/true, /*MaxSizeReturnsSizeT=*/false>;
auto result = std::ranges::to<C>(MaybeSizedRange<true>());
assert(!result.reserve_called);
}
}
}
constexpr void test_ctr_choice_order() {
std::array in = {1, 2, 3, 4, 5};
int arg1 = 42;
char arg2 = 'a';
{ // Case 1 -- construct directly from the given range.
{
using C = Container<int, CtrChoice::DirectCtr>;
std::same_as<C> decltype(auto) result = std::ranges::to<C>(in);
assert(result.ctr_choice == CtrChoice::DirectCtr);
assert(std::ranges::equal(result, in));
assert((in | std::ranges::to<C>()) == result);
auto closure = std::ranges::to<C>();
assert((in | closure) == result);
}
{ // Extra arguments.
using C = Container<int, CtrChoice::DirectCtr>;
std::same_as<C> decltype(auto) result = std::ranges::to<C>(in, arg1, arg2);
assert(result.ctr_choice == CtrChoice::DirectCtr);
assert(std::ranges::equal(result, in));
assert(result.extra_arg1 == arg1);
assert(result.extra_arg2 == arg2);
assert((in | std::ranges::to<C>(arg1, arg2)) == result);
auto closure = std::ranges::to<C>(arg1, arg2);
assert((in | closure) == result);
}
}
{ // Case 2 -- construct using the `from_range_t` tag.
{
using C = Container<int, CtrChoice::FromRangeT>;
std::same_as<C> decltype(auto) result = std::ranges::to<C>(in);
assert(result.ctr_choice == CtrChoice::FromRangeT);
assert(std::ranges::equal(result, in));
assert((in | std::ranges::to<C>()) == result);
auto closure = std::ranges::to<C>();
assert((in | closure) == result);
}
{ // Extra arguments.
using C = Container<int, CtrChoice::FromRangeT>;
std::same_as<C> decltype(auto) result = std::ranges::to<C>(in, arg1, arg2);
assert(result.ctr_choice == CtrChoice::FromRangeT);
assert(std::ranges::equal(result, in));
assert(result.extra_arg1 == arg1);
assert(result.extra_arg2 == arg2);
assert((in | std::ranges::to<C>(arg1, arg2)) == result);
auto closure = std::ranges::to<C>(arg1, arg2);
assert((in | closure) == result);
}
}
{ // Case 3 -- construct from a begin-end pair.
{
using C = Container<int, CtrChoice::BeginEndPair>;
std::same_as<C> decltype(auto) result = std::ranges::to<C>(in);
assert(result.ctr_choice == CtrChoice::BeginEndPair);
assert(std::ranges::equal(result, in));
assert((in | std::ranges::to<C>()) == result);
auto closure = std::ranges::to<C>();
assert((in | closure) == result);
}
{ // Extra arguments.
using C = Container<int, CtrChoice::BeginEndPair>;
std::same_as<C> decltype(auto) result = std::ranges::to<C>(in, arg1, arg2);
assert(result.ctr_choice == CtrChoice::BeginEndPair);
assert(std::ranges::equal(result, in));
assert(result.extra_arg1 == arg1);
assert(result.extra_arg2 == arg2);
assert((in | std::ranges::to<C>(arg1, arg2)) == result);
auto closure = std::ranges::to<C>(arg1, arg2);
assert((in | closure) == result);
}
}
{ // Case 4 -- default-construct then insert elements.
{
using C = Container<int, CtrChoice::DefaultCtrAndInsert, InserterChoice::Insert, /*CanReserve=*/false>;
std::same_as<C> decltype(auto) result = std::ranges::to<C>(in);
assert(result.ctr_choice == CtrChoice::DefaultCtrAndInsert);
assert(result.inserter_choice == InserterChoice::Insert);
assert(std::ranges::equal(result, in));
assert(!result.called_reserve);
assert((in | std::ranges::to<C>()) == result);
auto closure = std::ranges::to<C>();
assert((in | closure) == result);
}
{
using C = Container<int, CtrChoice::DefaultCtrAndInsert, InserterChoice::Insert, /*CanReserve=*/true>;
std::same_as<C> decltype(auto) result = std::ranges::to<C>(in);
assert(result.ctr_choice == CtrChoice::DefaultCtrAndInsert);
assert(result.inserter_choice == InserterChoice::Insert);
assert(std::ranges::equal(result, in));
assert(result.called_reserve);
assert((in | std::ranges::to<C>()) == result);
auto closure = std::ranges::to<C>();
assert((in | closure) == result);
}
{
using C = Container<int, CtrChoice::DefaultCtrAndInsert, InserterChoice::PushBack, /*CanReserve=*/false>;
std::same_as<C> decltype(auto) result = std::ranges::to<C>(in);
assert(result.ctr_choice == CtrChoice::DefaultCtrAndInsert);
assert(result.inserter_choice == InserterChoice::PushBack);
assert(std::ranges::equal(result, in));
assert(!result.called_reserve);
assert((in | std::ranges::to<C>()) == result);
auto closure = std::ranges::to<C>();
assert((in | closure) == result);
}
{
using C = Container<int, CtrChoice::DefaultCtrAndInsert, InserterChoice::PushBack, /*CanReserve=*/true>;
std::same_as<C> decltype(auto) result = std::ranges::to<C>(in);
assert(result.ctr_choice == CtrChoice::DefaultCtrAndInsert);
assert(result.inserter_choice == InserterChoice::PushBack);
assert(std::ranges::equal(result, in));
assert(result.called_reserve);
assert((in | std::ranges::to<C>()) == result);
auto closure = std::ranges::to<C>();
assert((in | closure) == result);
}
{ // Extra arguments.
using C = Container<int, CtrChoice::DefaultCtrAndInsert, InserterChoice::Insert, /*CanReserve=*/false>;
std::same_as<C> decltype(auto) result = std::ranges::to<C>(in, arg1, arg2);
assert(result.ctr_choice == CtrChoice::DefaultCtrAndInsert);
assert(result.inserter_choice == InserterChoice::Insert);
assert(std::ranges::equal(result, in));
assert(!result.called_reserve);
assert(result.extra_arg1 == arg1);
assert(result.extra_arg2 == arg2);
assert((in | std::ranges::to<C>(arg1, arg2)) == result);
auto closure = std::ranges::to<C>(arg1, arg2);
assert((in | closure) == result);
}
}
}
template <CtrChoice Rank>
struct NotARange {
using value_type = int;
constexpr NotARange(std::ranges::input_range auto&&)
requires (Rank >= CtrChoice::DirectCtr)
{}
constexpr NotARange(std::from_range_t, std::ranges::input_range auto&&)
requires (Rank >= CtrChoice::FromRangeT)
{}
template <class Iter>
constexpr NotARange(Iter, Iter)
requires (Rank >= CtrChoice::BeginEndPair)
{}
constexpr NotARange()
requires (Rank >= CtrChoice::DefaultCtrAndInsert)
= default;
constexpr void push_back(int) {}
};
static_assert(!std::ranges::range<NotARange<CtrChoice::DirectCtr>>);
constexpr void test_lwg_3785() {
// Test LWG 3785 ("`ranges::to` is over-constrained on the destination type being a range") -- make sure it's possible
// to convert the given input range to a non-range type.
std::array in = {1, 2, 3, 4, 5};
{
using C = NotARange<CtrChoice::DirectCtr>;
[[maybe_unused]] std::same_as<C> decltype(auto) result = std::ranges::to<C>(in);
}
{
using C = NotARange<CtrChoice::FromRangeT>;
[[maybe_unused]] std::same_as<C> decltype(auto) result = std::ranges::to<C>(in);
}
{
using C = NotARange<CtrChoice::BeginEndPair>;
[[maybe_unused]] std::same_as<C> decltype(auto) result = std::ranges::to<C>(in);
}
{
using C = NotARange<CtrChoice::DefaultCtrAndInsert>;
[[maybe_unused]] std::same_as<C> decltype(auto) result = std::ranges::to<C>(in);
}
}
constexpr void test_recursive() {
using C1 = Container<int, CtrChoice::DirectCtr>;
using C2 = Container<C1, CtrChoice::FromRangeT>;
using C3 = Container<C2, CtrChoice::BeginEndPair>;
using C4 = Container<C3, CtrChoice::DefaultCtrAndInsert, InserterChoice::PushBack>;
using A1 = std::array<int, 4>;
using A2 = std::array<A1, 3>;
using A3 = std::array<A2, 2>;
using A4 = std::array<A3, 2>;
A4 in = {};
{ // Fill the nested array with incremental values.
int x = 0;
for (auto& a3 : in) {
for (auto& a2 : a3) {
for (auto& a1 : a2) {
for (int& el : a1) {
el = x++;
}
}
}
}
}
std::same_as<C4> decltype(auto) result = std::ranges::to<C4>(in);
assert(result.ctr_choice == CtrChoice::DefaultCtrAndInsert);
int expected_value = 0;
for (auto& c3 : result) {
assert(c3.ctr_choice == CtrChoice::BeginEndPair);
for (auto& c2 : c3) {
assert(c2.ctr_choice == CtrChoice::FromRangeT);
for (auto& c1 : c2) {
assert(c1.ctr_choice == CtrChoice::DirectCtr);
for (int el : c1) {
assert(el == expected_value);
++expected_value;
}
}
}
}
assert((in | std::ranges::to<C4>()) == result);
}
constexpr bool test() {
test_constraints();
test_ctr_choice_order();
test_lwg_3785();
test_recursive();
return true;
}
int main(int, char**) {
test();
static_assert(test());
return 0;
}