Currently std::expected can have some padding bytes in its tail due to
[[no_unique_address]]. Those padding bytes can be used by other objects.
For example, in the current implementation:
sizeof(std::expected<std::optional<int>, bool>) ==
sizeof(std::expected<std::expected<std::optional<int>, bool>, bool>)
As a result, the data layout of an
std::expected<std::expected<std::optional<int>, bool>, bool>
can look like this:
+-- optional "has value" flag
| +--padding
/---int---\ | |
00 00 00 00 01 00 00 00
| |
| +- "outer" expected "has value" flag
|
+- expected "has value" flag
This is problematic because `emplace()`ing the "inner" expected can not
only overwrite the "inner" expected "has value" flag (issue #68552) but
also the tail padding where other objects might live.
This patch fixes the problem by ensuring that std::expected has no tail
padding, which is achieved by conditional usage of [[no_unique_address]]
based on the tail padding that this would create.
This is an ABI breaking change because the following property changes:
sizeof(std::expected<std::optional<int>, bool>) <
sizeof(std::expected<std::expected<std::optional<int>, bool>, bool>)
Before the change, this relation didn't hold. After the change, the relation
does hold, which means that the size of std::expected in these cases increases
after this patch. The data layout will change in the following cases where
tail padding can be reused by other objects:
class foo : std::expected<std::optional<int>, bool> {
bool b;
};
or using [[no_unique_address]]:
struct foo {
[[no_unique_address]] std::expected<std::optional<int>, bool> e;
bool b;
};
The vendor communication is handled in #70820.
Fixes: #70494
Co-authored-by: philnik777 <nikolasklauser@berlin.de>
Co-authored-by: Louis Dionne <ldionne.2@gmail.com>