The existing implementation didn't handle when the input text section was some offset from the output section. This resulted in an assert in relaxGot() with an lld built with asserts for some large binaries, or even worse, a silently broken binary with an lld without asserts.
1244 lines
39 KiB
C++
1244 lines
39 KiB
C++
//===- X86_64.cpp ---------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "OutputSections.h"
|
|
#include "Relocations.h"
|
|
#include "Symbols.h"
|
|
#include "SyntheticSections.h"
|
|
#include "Target.h"
|
|
#include "lld/Common/ErrorHandler.h"
|
|
#include "llvm/BinaryFormat/ELF.h"
|
|
#include "llvm/Support/Endian.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::object;
|
|
using namespace llvm::support::endian;
|
|
using namespace llvm::ELF;
|
|
using namespace lld;
|
|
using namespace lld::elf;
|
|
|
|
namespace {
|
|
class X86_64 : public TargetInfo {
|
|
public:
|
|
X86_64();
|
|
int getTlsGdRelaxSkip(RelType type) const override;
|
|
RelExpr getRelExpr(RelType type, const Symbol &s,
|
|
const uint8_t *loc) const override;
|
|
RelType getDynRel(RelType type) const override;
|
|
void writeGotPltHeader(uint8_t *buf) const override;
|
|
void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
|
|
void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
|
|
void writePltHeader(uint8_t *buf) const override;
|
|
void writePlt(uint8_t *buf, const Symbol &sym,
|
|
uint64_t pltEntryAddr) const override;
|
|
void relocate(uint8_t *loc, const Relocation &rel,
|
|
uint64_t val) const override;
|
|
int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
|
|
void applyJumpInstrMod(uint8_t *loc, JumpModType type,
|
|
unsigned size) const override;
|
|
RelExpr adjustGotPcExpr(RelType type, int64_t addend,
|
|
const uint8_t *loc) const override;
|
|
void relocateAlloc(InputSectionBase &sec, uint8_t *buf) const override;
|
|
bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
|
|
uint8_t stOther) const override;
|
|
bool deleteFallThruJmpInsn(InputSection &is, InputFile *file,
|
|
InputSection *nextIS) const override;
|
|
bool relaxOnce(int pass) const override;
|
|
};
|
|
} // namespace
|
|
|
|
// This is vector of NOP instructions of sizes from 1 to 8 bytes. The
|
|
// appropriately sized instructions are used to fill the gaps between sections
|
|
// which are executed during fall through.
|
|
static const std::vector<std::vector<uint8_t>> nopInstructions = {
|
|
{0x90},
|
|
{0x66, 0x90},
|
|
{0x0f, 0x1f, 0x00},
|
|
{0x0f, 0x1f, 0x40, 0x00},
|
|
{0x0f, 0x1f, 0x44, 0x00, 0x00},
|
|
{0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
|
|
{0x0F, 0x1F, 0x80, 0x00, 0x00, 0x00, 0x00},
|
|
{0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
|
|
{0x66, 0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}};
|
|
|
|
X86_64::X86_64() {
|
|
copyRel = R_X86_64_COPY;
|
|
gotRel = R_X86_64_GLOB_DAT;
|
|
pltRel = R_X86_64_JUMP_SLOT;
|
|
relativeRel = R_X86_64_RELATIVE;
|
|
iRelativeRel = R_X86_64_IRELATIVE;
|
|
symbolicRel = R_X86_64_64;
|
|
tlsDescRel = R_X86_64_TLSDESC;
|
|
tlsGotRel = R_X86_64_TPOFF64;
|
|
tlsModuleIndexRel = R_X86_64_DTPMOD64;
|
|
tlsOffsetRel = R_X86_64_DTPOFF64;
|
|
gotBaseSymInGotPlt = true;
|
|
gotEntrySize = 8;
|
|
pltHeaderSize = 16;
|
|
pltEntrySize = 16;
|
|
ipltEntrySize = 16;
|
|
trapInstr = {0xcc, 0xcc, 0xcc, 0xcc}; // 0xcc = INT3
|
|
nopInstrs = nopInstructions;
|
|
|
|
// Align to the large page size (known as a superpage or huge page).
|
|
// FreeBSD automatically promotes large, superpage-aligned allocations.
|
|
defaultImageBase = 0x200000;
|
|
}
|
|
|
|
int X86_64::getTlsGdRelaxSkip(RelType type) const {
|
|
// TLSDESC relocations are processed separately. See relaxTlsGdToLe below.
|
|
return type == R_X86_64_GOTPC32_TLSDESC || type == R_X86_64_TLSDESC_CALL ? 1
|
|
: 2;
|
|
}
|
|
|
|
// Opcodes for the different X86_64 jmp instructions.
|
|
enum JmpInsnOpcode : uint32_t {
|
|
J_JMP_32,
|
|
J_JNE_32,
|
|
J_JE_32,
|
|
J_JG_32,
|
|
J_JGE_32,
|
|
J_JB_32,
|
|
J_JBE_32,
|
|
J_JL_32,
|
|
J_JLE_32,
|
|
J_JA_32,
|
|
J_JAE_32,
|
|
J_UNKNOWN,
|
|
};
|
|
|
|
// Given the first (optional) and second byte of the insn's opcode, this
|
|
// returns the corresponding enum value.
|
|
static JmpInsnOpcode getJmpInsnType(const uint8_t *first,
|
|
const uint8_t *second) {
|
|
if (*second == 0xe9)
|
|
return J_JMP_32;
|
|
|
|
if (first == nullptr)
|
|
return J_UNKNOWN;
|
|
|
|
if (*first == 0x0f) {
|
|
switch (*second) {
|
|
case 0x84:
|
|
return J_JE_32;
|
|
case 0x85:
|
|
return J_JNE_32;
|
|
case 0x8f:
|
|
return J_JG_32;
|
|
case 0x8d:
|
|
return J_JGE_32;
|
|
case 0x82:
|
|
return J_JB_32;
|
|
case 0x86:
|
|
return J_JBE_32;
|
|
case 0x8c:
|
|
return J_JL_32;
|
|
case 0x8e:
|
|
return J_JLE_32;
|
|
case 0x87:
|
|
return J_JA_32;
|
|
case 0x83:
|
|
return J_JAE_32;
|
|
}
|
|
}
|
|
return J_UNKNOWN;
|
|
}
|
|
|
|
// Return the relocation index for input section IS with a specific Offset.
|
|
// Returns the maximum size of the vector if no such relocation is found.
|
|
static unsigned getRelocationWithOffset(const InputSection &is,
|
|
uint64_t offset) {
|
|
unsigned size = is.relocs().size();
|
|
for (unsigned i = size - 1; i + 1 > 0; --i) {
|
|
if (is.relocs()[i].offset == offset && is.relocs()[i].expr != R_NONE)
|
|
return i;
|
|
}
|
|
return size;
|
|
}
|
|
|
|
// Returns true if R corresponds to a relocation used for a jump instruction.
|
|
// TODO: Once special relocations for relaxable jump instructions are available,
|
|
// this should be modified to use those relocations.
|
|
static bool isRelocationForJmpInsn(Relocation &R) {
|
|
return R.type == R_X86_64_PLT32 || R.type == R_X86_64_PC32 ||
|
|
R.type == R_X86_64_PC8;
|
|
}
|
|
|
|
// Return true if Relocation R points to the first instruction in the
|
|
// next section.
|
|
// TODO: Delete this once psABI reserves a new relocation type for fall thru
|
|
// jumps.
|
|
static bool isFallThruRelocation(InputSection &is, InputFile *file,
|
|
InputSection *nextIS, Relocation &r) {
|
|
if (!isRelocationForJmpInsn(r))
|
|
return false;
|
|
|
|
uint64_t addrLoc = is.getOutputSection()->addr + is.outSecOff + r.offset;
|
|
uint64_t targetOffset = InputSectionBase::getRelocTargetVA(
|
|
file, r.type, r.addend, addrLoc, *r.sym, r.expr);
|
|
|
|
// If this jmp is a fall thru, the target offset is the beginning of the
|
|
// next section.
|
|
uint64_t nextSectionOffset =
|
|
nextIS->getOutputSection()->addr + nextIS->outSecOff;
|
|
return (addrLoc + 4 + targetOffset) == nextSectionOffset;
|
|
}
|
|
|
|
// Return the jmp instruction opcode that is the inverse of the given
|
|
// opcode. For example, JE inverted is JNE.
|
|
static JmpInsnOpcode invertJmpOpcode(const JmpInsnOpcode opcode) {
|
|
switch (opcode) {
|
|
case J_JE_32:
|
|
return J_JNE_32;
|
|
case J_JNE_32:
|
|
return J_JE_32;
|
|
case J_JG_32:
|
|
return J_JLE_32;
|
|
case J_JGE_32:
|
|
return J_JL_32;
|
|
case J_JB_32:
|
|
return J_JAE_32;
|
|
case J_JBE_32:
|
|
return J_JA_32;
|
|
case J_JL_32:
|
|
return J_JGE_32;
|
|
case J_JLE_32:
|
|
return J_JG_32;
|
|
case J_JA_32:
|
|
return J_JBE_32;
|
|
case J_JAE_32:
|
|
return J_JB_32;
|
|
default:
|
|
return J_UNKNOWN;
|
|
}
|
|
}
|
|
|
|
// Deletes direct jump instruction in input sections that jumps to the
|
|
// following section as it is not required. If there are two consecutive jump
|
|
// instructions, it checks if they can be flipped and one can be deleted.
|
|
// For example:
|
|
// .section .text
|
|
// a.BB.foo:
|
|
// ...
|
|
// 10: jne aa.BB.foo
|
|
// 16: jmp bar
|
|
// aa.BB.foo:
|
|
// ...
|
|
//
|
|
// can be converted to:
|
|
// a.BB.foo:
|
|
// ...
|
|
// 10: je bar #jne flipped to je and the jmp is deleted.
|
|
// aa.BB.foo:
|
|
// ...
|
|
bool X86_64::deleteFallThruJmpInsn(InputSection &is, InputFile *file,
|
|
InputSection *nextIS) const {
|
|
const unsigned sizeOfDirectJmpInsn = 5;
|
|
|
|
if (nextIS == nullptr)
|
|
return false;
|
|
|
|
if (is.getSize() < sizeOfDirectJmpInsn)
|
|
return false;
|
|
|
|
// If this jmp insn can be removed, it is the last insn and the
|
|
// relocation is 4 bytes before the end.
|
|
unsigned rIndex = getRelocationWithOffset(is, is.getSize() - 4);
|
|
if (rIndex == is.relocs().size())
|
|
return false;
|
|
|
|
Relocation &r = is.relocs()[rIndex];
|
|
|
|
// Check if the relocation corresponds to a direct jmp.
|
|
const uint8_t *secContents = is.content().data();
|
|
// If it is not a direct jmp instruction, there is nothing to do here.
|
|
if (*(secContents + r.offset - 1) != 0xe9)
|
|
return false;
|
|
|
|
if (isFallThruRelocation(is, file, nextIS, r)) {
|
|
// This is a fall thru and can be deleted.
|
|
r.expr = R_NONE;
|
|
r.offset = 0;
|
|
is.drop_back(sizeOfDirectJmpInsn);
|
|
is.nopFiller = true;
|
|
return true;
|
|
}
|
|
|
|
// Now, check if flip and delete is possible.
|
|
const unsigned sizeOfJmpCCInsn = 6;
|
|
// To flip, there must be at least one JmpCC and one direct jmp.
|
|
if (is.getSize() < sizeOfDirectJmpInsn + sizeOfJmpCCInsn)
|
|
return false;
|
|
|
|
unsigned rbIndex =
|
|
getRelocationWithOffset(is, (is.getSize() - sizeOfDirectJmpInsn - 4));
|
|
if (rbIndex == is.relocs().size())
|
|
return false;
|
|
|
|
Relocation &rB = is.relocs()[rbIndex];
|
|
|
|
const uint8_t *jmpInsnB = secContents + rB.offset - 1;
|
|
JmpInsnOpcode jmpOpcodeB = getJmpInsnType(jmpInsnB - 1, jmpInsnB);
|
|
if (jmpOpcodeB == J_UNKNOWN)
|
|
return false;
|
|
|
|
if (!isFallThruRelocation(is, file, nextIS, rB))
|
|
return false;
|
|
|
|
// jmpCC jumps to the fall thru block, the branch can be flipped and the
|
|
// jmp can be deleted.
|
|
JmpInsnOpcode jInvert = invertJmpOpcode(jmpOpcodeB);
|
|
if (jInvert == J_UNKNOWN)
|
|
return false;
|
|
is.jumpInstrMod = make<JumpInstrMod>();
|
|
*is.jumpInstrMod = {rB.offset - 1, jInvert, 4};
|
|
// Move R's values to rB except the offset.
|
|
rB = {r.expr, r.type, rB.offset, r.addend, r.sym};
|
|
// Cancel R
|
|
r.expr = R_NONE;
|
|
r.offset = 0;
|
|
is.drop_back(sizeOfDirectJmpInsn);
|
|
is.nopFiller = true;
|
|
return true;
|
|
}
|
|
|
|
bool X86_64::relaxOnce(int pass) const {
|
|
uint64_t minVA = UINT64_MAX, maxVA = 0;
|
|
for (OutputSection *osec : outputSections) {
|
|
minVA = std::min(minVA, osec->addr);
|
|
maxVA = std::max(maxVA, osec->addr + osec->size);
|
|
}
|
|
// If the max VA difference is under 2^31, GOT-generating relocations with a 32-bit range cannot overflow.
|
|
if (isUInt<31>(maxVA - minVA))
|
|
return false;
|
|
|
|
SmallVector<InputSection *, 0> storage;
|
|
bool changed = false;
|
|
for (OutputSection *osec : outputSections) {
|
|
if (!(osec->flags & SHF_EXECINSTR))
|
|
continue;
|
|
for (InputSection *sec : getInputSections(*osec, storage)) {
|
|
for (Relocation &rel : sec->relocs()) {
|
|
if (rel.expr != R_RELAX_GOT_PC)
|
|
continue;
|
|
|
|
uint64_t v = sec->getRelocTargetVA(sec->file, rel.type, rel.addend,
|
|
sec->getOutputSection()->addr +
|
|
sec->outSecOff + rel.offset,
|
|
*rel.sym, rel.expr);
|
|
if (isInt<32>(v))
|
|
continue;
|
|
if (rel.sym->auxIdx == 0) {
|
|
rel.sym->allocateAux();
|
|
addGotEntry(*rel.sym);
|
|
changed = true;
|
|
}
|
|
rel.expr = R_GOT_PC;
|
|
}
|
|
}
|
|
}
|
|
return changed;
|
|
}
|
|
|
|
RelExpr X86_64::getRelExpr(RelType type, const Symbol &s,
|
|
const uint8_t *loc) const {
|
|
switch (type) {
|
|
case R_X86_64_8:
|
|
case R_X86_64_16:
|
|
case R_X86_64_32:
|
|
case R_X86_64_32S:
|
|
case R_X86_64_64:
|
|
return R_ABS;
|
|
case R_X86_64_DTPOFF32:
|
|
case R_X86_64_DTPOFF64:
|
|
return R_DTPREL;
|
|
case R_X86_64_TPOFF32:
|
|
case R_X86_64_TPOFF64:
|
|
return R_TPREL;
|
|
case R_X86_64_TLSDESC_CALL:
|
|
return R_TLSDESC_CALL;
|
|
case R_X86_64_TLSLD:
|
|
return R_TLSLD_PC;
|
|
case R_X86_64_TLSGD:
|
|
return R_TLSGD_PC;
|
|
case R_X86_64_SIZE32:
|
|
case R_X86_64_SIZE64:
|
|
return R_SIZE;
|
|
case R_X86_64_PLT32:
|
|
return R_PLT_PC;
|
|
case R_X86_64_PC8:
|
|
case R_X86_64_PC16:
|
|
case R_X86_64_PC32:
|
|
case R_X86_64_PC64:
|
|
return R_PC;
|
|
case R_X86_64_GOT32:
|
|
case R_X86_64_GOT64:
|
|
return R_GOTPLT;
|
|
case R_X86_64_GOTPC32_TLSDESC:
|
|
return R_TLSDESC_PC;
|
|
case R_X86_64_GOTPCREL:
|
|
case R_X86_64_GOTPCRELX:
|
|
case R_X86_64_REX_GOTPCRELX:
|
|
case R_X86_64_GOTTPOFF:
|
|
return R_GOT_PC;
|
|
case R_X86_64_GOTOFF64:
|
|
return R_GOTPLTREL;
|
|
case R_X86_64_PLTOFF64:
|
|
return R_PLT_GOTPLT;
|
|
case R_X86_64_GOTPC32:
|
|
case R_X86_64_GOTPC64:
|
|
return R_GOTPLTONLY_PC;
|
|
case R_X86_64_NONE:
|
|
return R_NONE;
|
|
default:
|
|
error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
|
|
") against symbol " + toString(s));
|
|
return R_NONE;
|
|
}
|
|
}
|
|
|
|
void X86_64::writeGotPltHeader(uint8_t *buf) const {
|
|
// The first entry holds the link-time address of _DYNAMIC. It is documented
|
|
// in the psABI and glibc before Aug 2021 used the entry to compute run-time
|
|
// load address of the shared object (note that this is relevant for linking
|
|
// ld.so, not any other program).
|
|
write64le(buf, mainPart->dynamic->getVA());
|
|
}
|
|
|
|
void X86_64::writeGotPlt(uint8_t *buf, const Symbol &s) const {
|
|
// See comments in X86::writeGotPlt.
|
|
write64le(buf, s.getPltVA() + 6);
|
|
}
|
|
|
|
void X86_64::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
|
|
// An x86 entry is the address of the ifunc resolver function (for -z rel).
|
|
if (config->writeAddends)
|
|
write64le(buf, s.getVA());
|
|
}
|
|
|
|
void X86_64::writePltHeader(uint8_t *buf) const {
|
|
const uint8_t pltData[] = {
|
|
0xff, 0x35, 0, 0, 0, 0, // pushq GOTPLT+8(%rip)
|
|
0xff, 0x25, 0, 0, 0, 0, // jmp *GOTPLT+16(%rip)
|
|
0x0f, 0x1f, 0x40, 0x00, // nop
|
|
};
|
|
memcpy(buf, pltData, sizeof(pltData));
|
|
uint64_t gotPlt = in.gotPlt->getVA();
|
|
uint64_t plt = in.ibtPlt ? in.ibtPlt->getVA() : in.plt->getVA();
|
|
write32le(buf + 2, gotPlt - plt + 2); // GOTPLT+8
|
|
write32le(buf + 8, gotPlt - plt + 4); // GOTPLT+16
|
|
}
|
|
|
|
void X86_64::writePlt(uint8_t *buf, const Symbol &sym,
|
|
uint64_t pltEntryAddr) const {
|
|
const uint8_t inst[] = {
|
|
0xff, 0x25, 0, 0, 0, 0, // jmpq *got(%rip)
|
|
0x68, 0, 0, 0, 0, // pushq <relocation index>
|
|
0xe9, 0, 0, 0, 0, // jmpq plt[0]
|
|
};
|
|
memcpy(buf, inst, sizeof(inst));
|
|
|
|
write32le(buf + 2, sym.getGotPltVA() - pltEntryAddr - 6);
|
|
write32le(buf + 7, sym.getPltIdx());
|
|
write32le(buf + 12, in.plt->getVA() - pltEntryAddr - 16);
|
|
}
|
|
|
|
RelType X86_64::getDynRel(RelType type) const {
|
|
if (type == R_X86_64_64 || type == R_X86_64_PC64 || type == R_X86_64_SIZE32 ||
|
|
type == R_X86_64_SIZE64)
|
|
return type;
|
|
return R_X86_64_NONE;
|
|
}
|
|
|
|
static void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) {
|
|
if (rel.type == R_X86_64_TLSGD) {
|
|
// Convert
|
|
// .byte 0x66
|
|
// leaq x@tlsgd(%rip), %rdi
|
|
// .word 0x6666
|
|
// rex64
|
|
// call __tls_get_addr@plt
|
|
// to the following two instructions.
|
|
const uint8_t inst[] = {
|
|
0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00,
|
|
0x00, 0x00, // mov %fs:0x0,%rax
|
|
0x48, 0x8d, 0x80, 0, 0, 0, 0, // lea x@tpoff,%rax
|
|
};
|
|
memcpy(loc - 4, inst, sizeof(inst));
|
|
|
|
// The original code used a pc relative relocation and so we have to
|
|
// compensate for the -4 in had in the addend.
|
|
write32le(loc + 8, val + 4);
|
|
} else if (rel.type == R_X86_64_GOTPC32_TLSDESC) {
|
|
// Convert leaq x@tlsdesc(%rip), %REG to movq $x@tpoff, %REG.
|
|
if ((loc[-3] & 0xfb) != 0x48 || loc[-2] != 0x8d ||
|
|
(loc[-1] & 0xc7) != 0x05) {
|
|
errorOrWarn(getErrorLocation(loc - 3) +
|
|
"R_X86_64_GOTPC32_TLSDESC must be used "
|
|
"in leaq x@tlsdesc(%rip), %REG");
|
|
return;
|
|
}
|
|
loc[-3] = 0x48 | ((loc[-3] >> 2) & 1);
|
|
loc[-2] = 0xc7;
|
|
loc[-1] = 0xc0 | ((loc[-1] >> 3) & 7);
|
|
write32le(loc, val + 4);
|
|
} else {
|
|
// Convert call *x@tlsdesc(%REG) to xchg ax, ax.
|
|
assert(rel.type == R_X86_64_TLSDESC_CALL);
|
|
loc[0] = 0x66;
|
|
loc[1] = 0x90;
|
|
}
|
|
}
|
|
|
|
static void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, uint64_t val) {
|
|
if (rel.type == R_X86_64_TLSGD) {
|
|
// Convert
|
|
// .byte 0x66
|
|
// leaq x@tlsgd(%rip), %rdi
|
|
// .word 0x6666
|
|
// rex64
|
|
// call __tls_get_addr@plt
|
|
// to the following two instructions.
|
|
const uint8_t inst[] = {
|
|
0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00,
|
|
0x00, 0x00, // mov %fs:0x0,%rax
|
|
0x48, 0x03, 0x05, 0, 0, 0, 0, // addq x@gottpoff(%rip),%rax
|
|
};
|
|
memcpy(loc - 4, inst, sizeof(inst));
|
|
|
|
// Both code sequences are PC relatives, but since we are moving the
|
|
// constant forward by 8 bytes we have to subtract the value by 8.
|
|
write32le(loc + 8, val - 8);
|
|
} else if (rel.type == R_X86_64_GOTPC32_TLSDESC) {
|
|
// Convert leaq x@tlsdesc(%rip), %REG to movq x@gottpoff(%rip), %REG.
|
|
assert(rel.type == R_X86_64_GOTPC32_TLSDESC);
|
|
if ((loc[-3] & 0xfb) != 0x48 || loc[-2] != 0x8d ||
|
|
(loc[-1] & 0xc7) != 0x05) {
|
|
errorOrWarn(getErrorLocation(loc - 3) +
|
|
"R_X86_64_GOTPC32_TLSDESC must be used "
|
|
"in leaq x@tlsdesc(%rip), %REG");
|
|
return;
|
|
}
|
|
loc[-2] = 0x8b;
|
|
write32le(loc, val);
|
|
} else {
|
|
// Convert call *x@tlsdesc(%rax) to xchg ax, ax.
|
|
assert(rel.type == R_X86_64_TLSDESC_CALL);
|
|
loc[0] = 0x66;
|
|
loc[1] = 0x90;
|
|
}
|
|
}
|
|
|
|
// In some conditions, R_X86_64_GOTTPOFF relocation can be optimized to
|
|
// R_X86_64_TPOFF32 so that it does not use GOT.
|
|
static void relaxTlsIeToLe(uint8_t *loc, const Relocation &, uint64_t val) {
|
|
uint8_t *inst = loc - 3;
|
|
uint8_t reg = loc[-1] >> 3;
|
|
uint8_t *regSlot = loc - 1;
|
|
|
|
// Note that ADD with RSP or R12 is converted to ADD instead of LEA
|
|
// because LEA with these registers needs 4 bytes to encode and thus
|
|
// wouldn't fit the space.
|
|
|
|
if (memcmp(inst, "\x48\x03\x25", 3) == 0) {
|
|
// "addq foo@gottpoff(%rip),%rsp" -> "addq $foo,%rsp"
|
|
memcpy(inst, "\x48\x81\xc4", 3);
|
|
} else if (memcmp(inst, "\x4c\x03\x25", 3) == 0) {
|
|
// "addq foo@gottpoff(%rip),%r12" -> "addq $foo,%r12"
|
|
memcpy(inst, "\x49\x81\xc4", 3);
|
|
} else if (memcmp(inst, "\x4c\x03", 2) == 0) {
|
|
// "addq foo@gottpoff(%rip),%r[8-15]" -> "leaq foo(%r[8-15]),%r[8-15]"
|
|
memcpy(inst, "\x4d\x8d", 2);
|
|
*regSlot = 0x80 | (reg << 3) | reg;
|
|
} else if (memcmp(inst, "\x48\x03", 2) == 0) {
|
|
// "addq foo@gottpoff(%rip),%reg -> "leaq foo(%reg),%reg"
|
|
memcpy(inst, "\x48\x8d", 2);
|
|
*regSlot = 0x80 | (reg << 3) | reg;
|
|
} else if (memcmp(inst, "\x4c\x8b", 2) == 0) {
|
|
// "movq foo@gottpoff(%rip),%r[8-15]" -> "movq $foo,%r[8-15]"
|
|
memcpy(inst, "\x49\xc7", 2);
|
|
*regSlot = 0xc0 | reg;
|
|
} else if (memcmp(inst, "\x48\x8b", 2) == 0) {
|
|
// "movq foo@gottpoff(%rip),%reg" -> "movq $foo,%reg"
|
|
memcpy(inst, "\x48\xc7", 2);
|
|
*regSlot = 0xc0 | reg;
|
|
} else {
|
|
error(getErrorLocation(loc - 3) +
|
|
"R_X86_64_GOTTPOFF must be used in MOVQ or ADDQ instructions only");
|
|
}
|
|
|
|
// The original code used a PC relative relocation.
|
|
// Need to compensate for the -4 it had in the addend.
|
|
write32le(loc, val + 4);
|
|
}
|
|
|
|
static void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) {
|
|
const uint8_t inst[] = {
|
|
0x66, 0x66, // .word 0x6666
|
|
0x66, // .byte 0x66
|
|
0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0,%rax
|
|
};
|
|
|
|
if (loc[4] == 0xe8) {
|
|
// Convert
|
|
// leaq bar@tlsld(%rip), %rdi # 48 8d 3d <Loc>
|
|
// callq __tls_get_addr@PLT # e8 <disp32>
|
|
// leaq bar@dtpoff(%rax), %rcx
|
|
// to
|
|
// .word 0x6666
|
|
// .byte 0x66
|
|
// mov %fs:0,%rax
|
|
// leaq bar@tpoff(%rax), %rcx
|
|
memcpy(loc - 3, inst, sizeof(inst));
|
|
return;
|
|
}
|
|
|
|
if (loc[4] == 0xff && loc[5] == 0x15) {
|
|
// Convert
|
|
// leaq x@tlsld(%rip),%rdi # 48 8d 3d <Loc>
|
|
// call *__tls_get_addr@GOTPCREL(%rip) # ff 15 <disp32>
|
|
// to
|
|
// .long 0x66666666
|
|
// movq %fs:0,%rax
|
|
// See "Table 11.9: LD -> LE Code Transition (LP64)" in
|
|
// https://raw.githubusercontent.com/wiki/hjl-tools/x86-psABI/x86-64-psABI-1.0.pdf
|
|
loc[-3] = 0x66;
|
|
memcpy(loc - 2, inst, sizeof(inst));
|
|
return;
|
|
}
|
|
|
|
error(getErrorLocation(loc - 3) +
|
|
"expected R_X86_64_PLT32 or R_X86_64_GOTPCRELX after R_X86_64_TLSLD");
|
|
}
|
|
|
|
// A JumpInstrMod at a specific offset indicates that the jump instruction
|
|
// opcode at that offset must be modified. This is specifically used to relax
|
|
// jump instructions with basic block sections. This function looks at the
|
|
// JumpMod and effects the change.
|
|
void X86_64::applyJumpInstrMod(uint8_t *loc, JumpModType type,
|
|
unsigned size) const {
|
|
switch (type) {
|
|
case J_JMP_32:
|
|
if (size == 4)
|
|
*loc = 0xe9;
|
|
else
|
|
*loc = 0xeb;
|
|
break;
|
|
case J_JE_32:
|
|
if (size == 4) {
|
|
loc[-1] = 0x0f;
|
|
*loc = 0x84;
|
|
} else
|
|
*loc = 0x74;
|
|
break;
|
|
case J_JNE_32:
|
|
if (size == 4) {
|
|
loc[-1] = 0x0f;
|
|
*loc = 0x85;
|
|
} else
|
|
*loc = 0x75;
|
|
break;
|
|
case J_JG_32:
|
|
if (size == 4) {
|
|
loc[-1] = 0x0f;
|
|
*loc = 0x8f;
|
|
} else
|
|
*loc = 0x7f;
|
|
break;
|
|
case J_JGE_32:
|
|
if (size == 4) {
|
|
loc[-1] = 0x0f;
|
|
*loc = 0x8d;
|
|
} else
|
|
*loc = 0x7d;
|
|
break;
|
|
case J_JB_32:
|
|
if (size == 4) {
|
|
loc[-1] = 0x0f;
|
|
*loc = 0x82;
|
|
} else
|
|
*loc = 0x72;
|
|
break;
|
|
case J_JBE_32:
|
|
if (size == 4) {
|
|
loc[-1] = 0x0f;
|
|
*loc = 0x86;
|
|
} else
|
|
*loc = 0x76;
|
|
break;
|
|
case J_JL_32:
|
|
if (size == 4) {
|
|
loc[-1] = 0x0f;
|
|
*loc = 0x8c;
|
|
} else
|
|
*loc = 0x7c;
|
|
break;
|
|
case J_JLE_32:
|
|
if (size == 4) {
|
|
loc[-1] = 0x0f;
|
|
*loc = 0x8e;
|
|
} else
|
|
*loc = 0x7e;
|
|
break;
|
|
case J_JA_32:
|
|
if (size == 4) {
|
|
loc[-1] = 0x0f;
|
|
*loc = 0x87;
|
|
} else
|
|
*loc = 0x77;
|
|
break;
|
|
case J_JAE_32:
|
|
if (size == 4) {
|
|
loc[-1] = 0x0f;
|
|
*loc = 0x83;
|
|
} else
|
|
*loc = 0x73;
|
|
break;
|
|
case J_UNKNOWN:
|
|
llvm_unreachable("Unknown Jump Relocation");
|
|
}
|
|
}
|
|
|
|
int64_t X86_64::getImplicitAddend(const uint8_t *buf, RelType type) const {
|
|
switch (type) {
|
|
case R_X86_64_8:
|
|
case R_X86_64_PC8:
|
|
return SignExtend64<8>(*buf);
|
|
case R_X86_64_16:
|
|
case R_X86_64_PC16:
|
|
return SignExtend64<16>(read16le(buf));
|
|
case R_X86_64_32:
|
|
case R_X86_64_32S:
|
|
case R_X86_64_TPOFF32:
|
|
case R_X86_64_GOT32:
|
|
case R_X86_64_GOTPC32:
|
|
case R_X86_64_GOTPC32_TLSDESC:
|
|
case R_X86_64_GOTPCREL:
|
|
case R_X86_64_GOTPCRELX:
|
|
case R_X86_64_REX_GOTPCRELX:
|
|
case R_X86_64_PC32:
|
|
case R_X86_64_GOTTPOFF:
|
|
case R_X86_64_PLT32:
|
|
case R_X86_64_TLSGD:
|
|
case R_X86_64_TLSLD:
|
|
case R_X86_64_DTPOFF32:
|
|
case R_X86_64_SIZE32:
|
|
return SignExtend64<32>(read32le(buf));
|
|
case R_X86_64_64:
|
|
case R_X86_64_TPOFF64:
|
|
case R_X86_64_DTPOFF64:
|
|
case R_X86_64_DTPMOD64:
|
|
case R_X86_64_PC64:
|
|
case R_X86_64_SIZE64:
|
|
case R_X86_64_GLOB_DAT:
|
|
case R_X86_64_GOT64:
|
|
case R_X86_64_GOTOFF64:
|
|
case R_X86_64_GOTPC64:
|
|
case R_X86_64_PLTOFF64:
|
|
case R_X86_64_IRELATIVE:
|
|
case R_X86_64_RELATIVE:
|
|
return read64le(buf);
|
|
case R_X86_64_TLSDESC:
|
|
return read64le(buf + 8);
|
|
case R_X86_64_JUMP_SLOT:
|
|
case R_X86_64_NONE:
|
|
// These relocations are defined as not having an implicit addend.
|
|
return 0;
|
|
default:
|
|
internalLinkerError(getErrorLocation(buf),
|
|
"cannot read addend for relocation " + toString(type));
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val);
|
|
|
|
void X86_64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
|
|
switch (rel.type) {
|
|
case R_X86_64_8:
|
|
checkIntUInt(loc, val, 8, rel);
|
|
*loc = val;
|
|
break;
|
|
case R_X86_64_PC8:
|
|
checkInt(loc, val, 8, rel);
|
|
*loc = val;
|
|
break;
|
|
case R_X86_64_16:
|
|
checkIntUInt(loc, val, 16, rel);
|
|
write16le(loc, val);
|
|
break;
|
|
case R_X86_64_PC16:
|
|
checkInt(loc, val, 16, rel);
|
|
write16le(loc, val);
|
|
break;
|
|
case R_X86_64_32:
|
|
checkUInt(loc, val, 32, rel);
|
|
write32le(loc, val);
|
|
break;
|
|
case R_X86_64_32S:
|
|
case R_X86_64_GOT32:
|
|
case R_X86_64_GOTPC32:
|
|
case R_X86_64_GOTPCREL:
|
|
case R_X86_64_PC32:
|
|
case R_X86_64_PLT32:
|
|
case R_X86_64_DTPOFF32:
|
|
case R_X86_64_SIZE32:
|
|
checkInt(loc, val, 32, rel);
|
|
write32le(loc, val);
|
|
break;
|
|
case R_X86_64_64:
|
|
case R_X86_64_TPOFF64:
|
|
case R_X86_64_DTPOFF64:
|
|
case R_X86_64_PC64:
|
|
case R_X86_64_SIZE64:
|
|
case R_X86_64_GOT64:
|
|
case R_X86_64_GOTOFF64:
|
|
case R_X86_64_GOTPC64:
|
|
case R_X86_64_PLTOFF64:
|
|
write64le(loc, val);
|
|
break;
|
|
case R_X86_64_GOTPCRELX:
|
|
case R_X86_64_REX_GOTPCRELX:
|
|
if (rel.expr != R_GOT_PC) {
|
|
relaxGot(loc, rel, val);
|
|
} else {
|
|
checkInt(loc, val, 32, rel);
|
|
write32le(loc, val);
|
|
}
|
|
break;
|
|
case R_X86_64_GOTPC32_TLSDESC:
|
|
case R_X86_64_TLSDESC_CALL:
|
|
case R_X86_64_TLSGD:
|
|
if (rel.expr == R_RELAX_TLS_GD_TO_LE) {
|
|
relaxTlsGdToLe(loc, rel, val);
|
|
} else if (rel.expr == R_RELAX_TLS_GD_TO_IE) {
|
|
relaxTlsGdToIe(loc, rel, val);
|
|
} else {
|
|
checkInt(loc, val, 32, rel);
|
|
write32le(loc, val);
|
|
}
|
|
break;
|
|
case R_X86_64_TLSLD:
|
|
if (rel.expr == R_RELAX_TLS_LD_TO_LE) {
|
|
relaxTlsLdToLe(loc, rel, val);
|
|
} else {
|
|
checkInt(loc, val, 32, rel);
|
|
write32le(loc, val);
|
|
}
|
|
break;
|
|
case R_X86_64_GOTTPOFF:
|
|
if (rel.expr == R_RELAX_TLS_IE_TO_LE) {
|
|
relaxTlsIeToLe(loc, rel, val);
|
|
} else {
|
|
checkInt(loc, val, 32, rel);
|
|
write32le(loc, val);
|
|
}
|
|
break;
|
|
case R_X86_64_TPOFF32:
|
|
checkInt(loc, val, 32, rel);
|
|
write32le(loc, val);
|
|
break;
|
|
|
|
case R_X86_64_TLSDESC:
|
|
// The addend is stored in the second 64-bit word.
|
|
write64le(loc + 8, val);
|
|
break;
|
|
default:
|
|
llvm_unreachable("unknown relocation");
|
|
}
|
|
}
|
|
|
|
RelExpr X86_64::adjustGotPcExpr(RelType type, int64_t addend,
|
|
const uint8_t *loc) const {
|
|
// Only R_X86_64_[REX_]GOTPCRELX can be relaxed. GNU as may emit GOTPCRELX
|
|
// with addend != -4. Such an instruction does not load the full GOT entry, so
|
|
// we cannot relax the relocation. E.g. movl x@GOTPCREL+4(%rip), %rax
|
|
// (addend=0) loads the high 32 bits of the GOT entry.
|
|
if (!config->relax || addend != -4 ||
|
|
(type != R_X86_64_GOTPCRELX && type != R_X86_64_REX_GOTPCRELX))
|
|
return R_GOT_PC;
|
|
const uint8_t op = loc[-2];
|
|
const uint8_t modRm = loc[-1];
|
|
|
|
// FIXME: When PIC is disabled and foo is defined locally in the
|
|
// lower 32 bit address space, memory operand in mov can be converted into
|
|
// immediate operand. Otherwise, mov must be changed to lea. We support only
|
|
// latter relaxation at this moment.
|
|
if (op == 0x8b)
|
|
return R_RELAX_GOT_PC;
|
|
|
|
// Relax call and jmp.
|
|
if (op == 0xff && (modRm == 0x15 || modRm == 0x25))
|
|
return R_RELAX_GOT_PC;
|
|
|
|
// We don't support test/binop instructions without a REX prefix.
|
|
if (type == R_X86_64_GOTPCRELX)
|
|
return R_GOT_PC;
|
|
|
|
// Relaxation of test, adc, add, and, cmp, or, sbb, sub, xor.
|
|
// If PIC then no relaxation is available.
|
|
return config->isPic ? R_GOT_PC : R_RELAX_GOT_PC_NOPIC;
|
|
}
|
|
|
|
// A subset of relaxations can only be applied for no-PIC. This method
|
|
// handles such relaxations. Instructions encoding information was taken from:
|
|
// "Intel 64 and IA-32 Architectures Software Developer's Manual V2"
|
|
// (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/
|
|
// 64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf)
|
|
static void relaxGotNoPic(uint8_t *loc, uint64_t val, uint8_t op,
|
|
uint8_t modRm) {
|
|
const uint8_t rex = loc[-3];
|
|
// Convert "test %reg, foo@GOTPCREL(%rip)" to "test $foo, %reg".
|
|
if (op == 0x85) {
|
|
// See "TEST-Logical Compare" (4-428 Vol. 2B),
|
|
// TEST r/m64, r64 uses "full" ModR / M byte (no opcode extension).
|
|
|
|
// ModR/M byte has form XX YYY ZZZ, where
|
|
// YYY is MODRM.reg(register 2), ZZZ is MODRM.rm(register 1).
|
|
// XX has different meanings:
|
|
// 00: The operand's memory address is in reg1.
|
|
// 01: The operand's memory address is reg1 + a byte-sized displacement.
|
|
// 10: The operand's memory address is reg1 + a word-sized displacement.
|
|
// 11: The operand is reg1 itself.
|
|
// If an instruction requires only one operand, the unused reg2 field
|
|
// holds extra opcode bits rather than a register code
|
|
// 0xC0 == 11 000 000 binary.
|
|
// 0x38 == 00 111 000 binary.
|
|
// We transfer reg2 to reg1 here as operand.
|
|
// See "2.1.3 ModR/M and SIB Bytes" (Vol. 2A 2-3).
|
|
loc[-1] = 0xc0 | (modRm & 0x38) >> 3; // ModR/M byte.
|
|
|
|
// Change opcode from TEST r/m64, r64 to TEST r/m64, imm32
|
|
// See "TEST-Logical Compare" (4-428 Vol. 2B).
|
|
loc[-2] = 0xf7;
|
|
|
|
// Move R bit to the B bit in REX byte.
|
|
// REX byte is encoded as 0100WRXB, where
|
|
// 0100 is 4bit fixed pattern.
|
|
// REX.W When 1, a 64-bit operand size is used. Otherwise, when 0, the
|
|
// default operand size is used (which is 32-bit for most but not all
|
|
// instructions).
|
|
// REX.R This 1-bit value is an extension to the MODRM.reg field.
|
|
// REX.X This 1-bit value is an extension to the SIB.index field.
|
|
// REX.B This 1-bit value is an extension to the MODRM.rm field or the
|
|
// SIB.base field.
|
|
// See "2.2.1.2 More on REX Prefix Fields " (2-8 Vol. 2A).
|
|
loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2;
|
|
write32le(loc, val);
|
|
return;
|
|
}
|
|
|
|
// If we are here then we need to relax the adc, add, and, cmp, or, sbb, sub
|
|
// or xor operations.
|
|
|
|
// Convert "binop foo@GOTPCREL(%rip), %reg" to "binop $foo, %reg".
|
|
// Logic is close to one for test instruction above, but we also
|
|
// write opcode extension here, see below for details.
|
|
loc[-1] = 0xc0 | (modRm & 0x38) >> 3 | (op & 0x3c); // ModR/M byte.
|
|
|
|
// Primary opcode is 0x81, opcode extension is one of:
|
|
// 000b = ADD, 001b is OR, 010b is ADC, 011b is SBB,
|
|
// 100b is AND, 101b is SUB, 110b is XOR, 111b is CMP.
|
|
// This value was wrote to MODRM.reg in a line above.
|
|
// See "3.2 INSTRUCTIONS (A-M)" (Vol. 2A 3-15),
|
|
// "INSTRUCTION SET REFERENCE, N-Z" (Vol. 2B 4-1) for
|
|
// descriptions about each operation.
|
|
loc[-2] = 0x81;
|
|
loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2;
|
|
write32le(loc, val);
|
|
}
|
|
|
|
static void relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) {
|
|
assert(isInt<32>(val) &&
|
|
"GOTPCRELX should not have been relaxed if it overflows");
|
|
const uint8_t op = loc[-2];
|
|
const uint8_t modRm = loc[-1];
|
|
|
|
// Convert "mov foo@GOTPCREL(%rip),%reg" to "lea foo(%rip),%reg".
|
|
if (op == 0x8b) {
|
|
loc[-2] = 0x8d;
|
|
write32le(loc, val);
|
|
return;
|
|
}
|
|
|
|
if (op != 0xff) {
|
|
// We are relaxing a rip relative to an absolute, so compensate
|
|
// for the old -4 addend.
|
|
assert(!config->isPic);
|
|
relaxGotNoPic(loc, val + 4, op, modRm);
|
|
return;
|
|
}
|
|
|
|
// Convert call/jmp instructions.
|
|
if (modRm == 0x15) {
|
|
// ABI says we can convert "call *foo@GOTPCREL(%rip)" to "nop; call foo".
|
|
// Instead we convert to "addr32 call foo" where addr32 is an instruction
|
|
// prefix. That makes result expression to be a single instruction.
|
|
loc[-2] = 0x67; // addr32 prefix
|
|
loc[-1] = 0xe8; // call
|
|
write32le(loc, val);
|
|
return;
|
|
}
|
|
|
|
// Convert "jmp *foo@GOTPCREL(%rip)" to "jmp foo; nop".
|
|
// jmp doesn't return, so it is fine to use nop here, it is just a stub.
|
|
assert(modRm == 0x25);
|
|
loc[-2] = 0xe9; // jmp
|
|
loc[3] = 0x90; // nop
|
|
write32le(loc - 1, val + 1);
|
|
}
|
|
|
|
// A split-stack prologue starts by checking the amount of stack remaining
|
|
// in one of two ways:
|
|
// A) Comparing of the stack pointer to a field in the tcb.
|
|
// B) Or a load of a stack pointer offset with an lea to r10 or r11.
|
|
bool X86_64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
|
|
uint8_t stOther) const {
|
|
if (!config->is64) {
|
|
error("target doesn't support split stacks");
|
|
return false;
|
|
}
|
|
|
|
if (loc + 8 >= end)
|
|
return false;
|
|
|
|
// Replace "cmp %fs:0x70,%rsp" and subsequent branch
|
|
// with "stc, nopl 0x0(%rax,%rax,1)"
|
|
if (memcmp(loc, "\x64\x48\x3b\x24\x25", 5) == 0) {
|
|
memcpy(loc, "\xf9\x0f\x1f\x84\x00\x00\x00\x00", 8);
|
|
return true;
|
|
}
|
|
|
|
// Adjust "lea X(%rsp),%rYY" to lea "(X - 0x4000)(%rsp),%rYY" where rYY could
|
|
// be r10 or r11. The lea instruction feeds a subsequent compare which checks
|
|
// if there is X available stack space. Making X larger effectively reserves
|
|
// that much additional space. The stack grows downward so subtract the value.
|
|
if (memcmp(loc, "\x4c\x8d\x94\x24", 4) == 0 ||
|
|
memcmp(loc, "\x4c\x8d\x9c\x24", 4) == 0) {
|
|
// The offset bytes are encoded four bytes after the start of the
|
|
// instruction.
|
|
write32le(loc + 4, read32le(loc + 4) - 0x4000);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void X86_64::relocateAlloc(InputSectionBase &sec, uint8_t *buf) const {
|
|
uint64_t secAddr = sec.getOutputSection()->addr;
|
|
if (auto *s = dyn_cast<InputSection>(&sec))
|
|
secAddr += s->outSecOff;
|
|
else if (auto *ehIn = dyn_cast<EhInputSection>(&sec))
|
|
secAddr += ehIn->getParent()->outSecOff;
|
|
for (const Relocation &rel : sec.relocs()) {
|
|
if (rel.expr == R_NONE) // See deleteFallThruJmpInsn
|
|
continue;
|
|
uint8_t *loc = buf + rel.offset;
|
|
const uint64_t val =
|
|
sec.getRelocTargetVA(sec.file, rel.type, rel.addend,
|
|
secAddr + rel.offset, *rel.sym, rel.expr);
|
|
relocate(loc, rel, val);
|
|
}
|
|
if (sec.jumpInstrMod) {
|
|
applyJumpInstrMod(buf + sec.jumpInstrMod->offset,
|
|
sec.jumpInstrMod->original, sec.jumpInstrMod->size);
|
|
}
|
|
}
|
|
|
|
// If Intel Indirect Branch Tracking is enabled, we have to emit special PLT
|
|
// entries containing endbr64 instructions. A PLT entry will be split into two
|
|
// parts, one in .plt.sec (writePlt), and the other in .plt (writeIBTPlt).
|
|
namespace {
|
|
class IntelIBT : public X86_64 {
|
|
public:
|
|
IntelIBT();
|
|
void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
|
|
void writePlt(uint8_t *buf, const Symbol &sym,
|
|
uint64_t pltEntryAddr) const override;
|
|
void writeIBTPlt(uint8_t *buf, size_t numEntries) const override;
|
|
|
|
static const unsigned IBTPltHeaderSize = 16;
|
|
};
|
|
} // namespace
|
|
|
|
IntelIBT::IntelIBT() { pltHeaderSize = 0; }
|
|
|
|
void IntelIBT::writeGotPlt(uint8_t *buf, const Symbol &s) const {
|
|
uint64_t va =
|
|
in.ibtPlt->getVA() + IBTPltHeaderSize + s.getPltIdx() * pltEntrySize;
|
|
write64le(buf, va);
|
|
}
|
|
|
|
void IntelIBT::writePlt(uint8_t *buf, const Symbol &sym,
|
|
uint64_t pltEntryAddr) const {
|
|
const uint8_t Inst[] = {
|
|
0xf3, 0x0f, 0x1e, 0xfa, // endbr64
|
|
0xff, 0x25, 0, 0, 0, 0, // jmpq *got(%rip)
|
|
0x66, 0x0f, 0x1f, 0x44, 0, 0, // nop
|
|
};
|
|
memcpy(buf, Inst, sizeof(Inst));
|
|
write32le(buf + 6, sym.getGotPltVA() - pltEntryAddr - 10);
|
|
}
|
|
|
|
void IntelIBT::writeIBTPlt(uint8_t *buf, size_t numEntries) const {
|
|
writePltHeader(buf);
|
|
buf += IBTPltHeaderSize;
|
|
|
|
const uint8_t inst[] = {
|
|
0xf3, 0x0f, 0x1e, 0xfa, // endbr64
|
|
0x68, 0, 0, 0, 0, // pushq <relocation index>
|
|
0xe9, 0, 0, 0, 0, // jmpq plt[0]
|
|
0x66, 0x90, // nop
|
|
};
|
|
|
|
for (size_t i = 0; i < numEntries; ++i) {
|
|
memcpy(buf, inst, sizeof(inst));
|
|
write32le(buf + 5, i);
|
|
write32le(buf + 10, -pltHeaderSize - sizeof(inst) * i - 30);
|
|
buf += sizeof(inst);
|
|
}
|
|
}
|
|
|
|
// These nonstandard PLT entries are to migtigate Spectre v2 security
|
|
// vulnerability. In order to mitigate Spectre v2, we want to avoid indirect
|
|
// branch instructions such as `jmp *GOTPLT(%rip)`. So, in the following PLT
|
|
// entries, we use a CALL followed by MOV and RET to do the same thing as an
|
|
// indirect jump. That instruction sequence is so-called "retpoline".
|
|
//
|
|
// We have two types of retpoline PLTs as a size optimization. If `-z now`
|
|
// is specified, all dynamic symbols are resolved at load-time. Thus, when
|
|
// that option is given, we can omit code for symbol lazy resolution.
|
|
namespace {
|
|
class Retpoline : public X86_64 {
|
|
public:
|
|
Retpoline();
|
|
void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
|
|
void writePltHeader(uint8_t *buf) const override;
|
|
void writePlt(uint8_t *buf, const Symbol &sym,
|
|
uint64_t pltEntryAddr) const override;
|
|
};
|
|
|
|
class RetpolineZNow : public X86_64 {
|
|
public:
|
|
RetpolineZNow();
|
|
void writeGotPlt(uint8_t *buf, const Symbol &s) const override {}
|
|
void writePltHeader(uint8_t *buf) const override;
|
|
void writePlt(uint8_t *buf, const Symbol &sym,
|
|
uint64_t pltEntryAddr) const override;
|
|
};
|
|
} // namespace
|
|
|
|
Retpoline::Retpoline() {
|
|
pltHeaderSize = 48;
|
|
pltEntrySize = 32;
|
|
ipltEntrySize = 32;
|
|
}
|
|
|
|
void Retpoline::writeGotPlt(uint8_t *buf, const Symbol &s) const {
|
|
write64le(buf, s.getPltVA() + 17);
|
|
}
|
|
|
|
void Retpoline::writePltHeader(uint8_t *buf) const {
|
|
const uint8_t insn[] = {
|
|
0xff, 0x35, 0, 0, 0, 0, // 0: pushq GOTPLT+8(%rip)
|
|
0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // 6: mov GOTPLT+16(%rip), %r11
|
|
0xe8, 0x0e, 0x00, 0x00, 0x00, // d: callq next
|
|
0xf3, 0x90, // 12: loop: pause
|
|
0x0f, 0xae, 0xe8, // 14: lfence
|
|
0xeb, 0xf9, // 17: jmp loop
|
|
0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 19: int3; .align 16
|
|
0x4c, 0x89, 0x1c, 0x24, // 20: next: mov %r11, (%rsp)
|
|
0xc3, // 24: ret
|
|
0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 25: int3; padding
|
|
0xcc, 0xcc, 0xcc, 0xcc, // 2c: int3; padding
|
|
};
|
|
memcpy(buf, insn, sizeof(insn));
|
|
|
|
uint64_t gotPlt = in.gotPlt->getVA();
|
|
uint64_t plt = in.plt->getVA();
|
|
write32le(buf + 2, gotPlt - plt - 6 + 8);
|
|
write32le(buf + 9, gotPlt - plt - 13 + 16);
|
|
}
|
|
|
|
void Retpoline::writePlt(uint8_t *buf, const Symbol &sym,
|
|
uint64_t pltEntryAddr) const {
|
|
const uint8_t insn[] = {
|
|
0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // 0: mov foo@GOTPLT(%rip), %r11
|
|
0xe8, 0, 0, 0, 0, // 7: callq plt+0x20
|
|
0xe9, 0, 0, 0, 0, // c: jmp plt+0x12
|
|
0x68, 0, 0, 0, 0, // 11: pushq <relocation index>
|
|
0xe9, 0, 0, 0, 0, // 16: jmp plt+0
|
|
0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1b: int3; padding
|
|
};
|
|
memcpy(buf, insn, sizeof(insn));
|
|
|
|
uint64_t off = pltEntryAddr - in.plt->getVA();
|
|
|
|
write32le(buf + 3, sym.getGotPltVA() - pltEntryAddr - 7);
|
|
write32le(buf + 8, -off - 12 + 32);
|
|
write32le(buf + 13, -off - 17 + 18);
|
|
write32le(buf + 18, sym.getPltIdx());
|
|
write32le(buf + 23, -off - 27);
|
|
}
|
|
|
|
RetpolineZNow::RetpolineZNow() {
|
|
pltHeaderSize = 32;
|
|
pltEntrySize = 16;
|
|
ipltEntrySize = 16;
|
|
}
|
|
|
|
void RetpolineZNow::writePltHeader(uint8_t *buf) const {
|
|
const uint8_t insn[] = {
|
|
0xe8, 0x0b, 0x00, 0x00, 0x00, // 0: call next
|
|
0xf3, 0x90, // 5: loop: pause
|
|
0x0f, 0xae, 0xe8, // 7: lfence
|
|
0xeb, 0xf9, // a: jmp loop
|
|
0xcc, 0xcc, 0xcc, 0xcc, // c: int3; .align 16
|
|
0x4c, 0x89, 0x1c, 0x24, // 10: next: mov %r11, (%rsp)
|
|
0xc3, // 14: ret
|
|
0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 15: int3; padding
|
|
0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1a: int3; padding
|
|
0xcc, // 1f: int3; padding
|
|
};
|
|
memcpy(buf, insn, sizeof(insn));
|
|
}
|
|
|
|
void RetpolineZNow::writePlt(uint8_t *buf, const Symbol &sym,
|
|
uint64_t pltEntryAddr) const {
|
|
const uint8_t insn[] = {
|
|
0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // mov foo@GOTPLT(%rip), %r11
|
|
0xe9, 0, 0, 0, 0, // jmp plt+0
|
|
0xcc, 0xcc, 0xcc, 0xcc, // int3; padding
|
|
};
|
|
memcpy(buf, insn, sizeof(insn));
|
|
|
|
write32le(buf + 3, sym.getGotPltVA() - pltEntryAddr - 7);
|
|
write32le(buf + 8, in.plt->getVA() - pltEntryAddr - 12);
|
|
}
|
|
|
|
static TargetInfo *getTargetInfo() {
|
|
if (config->zRetpolineplt) {
|
|
if (config->zNow) {
|
|
static RetpolineZNow t;
|
|
return &t;
|
|
}
|
|
static Retpoline t;
|
|
return &t;
|
|
}
|
|
|
|
if (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT) {
|
|
static IntelIBT t;
|
|
return &t;
|
|
}
|
|
|
|
static X86_64 t;
|
|
return &t;
|
|
}
|
|
|
|
TargetInfo *elf::getX86_64TargetInfo() { return getTargetInfo(); }
|