Files
clang-p2996/lld/test/ELF/separate-segments.s
Fangrui Song 5a58e98c20 [ELF] Align the end of PT_GNU_RELRO associated PT_LOAD to a common-page-size boundary (#66042)
Close #57618: currently we align the end of PT_GNU_RELRO to a
common-page-size
boundary, but do not align the end of the associated PT_LOAD. This is
benign
when runtime_page_size >= common-page-size.

However, when runtime_page_size < common-page-size, it is possible that
`alignUp(end(PT_LOAD), page_size) < alignDown(end(PT_GNU_RELRO),
page_size)`.
In this case, rtld's mprotect call for PT_GNU_RELRO will apply to
unmapped
regions and lead to an error, e.g.

```
error while loading shared libraries: cannot apply additional memory protection after relocation: Cannot allocate memory
```

To fix the issue, add a padding section .relro_padding like mold, which
is contained in the PT_GNU_RELRO segment and the associated PT_LOAD
segment. The section also prevents strip from corrupting PT_LOAD program
headers.

.relro_padding has the largest `sortRank` among RELRO sections.
Therefore, it is naturally placed at the end of `PT_GNU_RELRO` segment
in the absence of `PHDRS`/`SECTIONS` commands.

In the presence of `SECTIONS` commands, we place .relro_padding
immediately before a symbol assignment using DATA_SEGMENT_RELRO_END (see
also https://reviews.llvm.org/D124656), if present.
DATA_SEGMENT_RELRO_END is changed to align to max-page-size instead of
common-page-size.

Some edge cases worth mentioning:

* ppc64-toc-addis-nop.s: when PHDRS is present, do not append
.relro_padding
* avoid-empty-program-headers.s: when the only RELRO section is .tbss,
it is not part of PT_LOAD segment, therefore we do not append
.relro_padding.

---

Close #65002: GNU ld from 2.39 onwards aligns the end of PT_GNU_RELRO to
a
max-page-size boundary (https://sourceware.org/PR28824) so that the last
page is
protected even if runtime_page_size > common-page-size.

In my opinion, losing protection for the last page when the runtime page
size is
larger than common-page-size is not really an issue. Double mapping a
page of up
to max-common-page for the protection could cause undesired VM waste.
Internally
we had users complaining about 2MiB max-page-size applying to shared
objects.

Therefore, the end of .relro_padding is padded to a common-page-size
boundary. Users who are really anxious can set common-page-size to match
their runtime page size.

---

17 tests need updating as there are lots of change detectors.
2023-09-14 10:33:11 -07:00

34 lines
1.8 KiB
ArmAsm

# REQUIRES: x86
# RUN: llvm-mc -filetype=obj -triple=x86_64 %s -o %t.o
## -z noseparate-code is the default. All PT_LOAD can have overlapping p_offset
## ranges at runtime.
# RUN: ld.lld -pie %t.o -o %t
# RUN: llvm-readelf -l %t | FileCheck --check-prefix=NONE %s
# NONE: LOAD 0x000000 0x0000000000000000 0x0000000000000000 0x000245 0x000245 R 0x1000
# NONE-NEXT: LOAD 0x000248 0x0000000000001248 0x0000000000001248 0x000001 0x000001 R E 0x1000
# NONE-NEXT: LOAD 0x000250 0x0000000000002250 0x0000000000002250 0x000090 0x000db0 RW 0x1000
# NONE-NEXT: LOAD 0x0002e0 0x00000000000032e0 0x00000000000032e0 0x000001 0x000001 RW 0x1000
## -z separate-code makes text segment (RX) separate.
## The two RW can have overlapping p_offset ranges at runtime.
# RUN: ld.lld -pie %t.o -z separate-code -o %t
# RUN: llvm-readelf -l %t | FileCheck --check-prefix=CODE %s
# CODE: LOAD 0x000000 0x0000000000000000 0x0000000000000000 0x000245 0x000245 R 0x1000
# CODE-NEXT: LOAD 0x001000 0x0000000000001000 0x0000000000001000 0x000001 0x000001 R E 0x1000
# CODE-NEXT: LOAD 0x002000 0x0000000000002000 0x0000000000002000 0x000090 0x001000 RW 0x1000
# CODE-NEXT: LOAD 0x002090 0x0000000000003090 0x0000000000003090 0x000001 0x000001 RW 0x1000
## -z separate-loadable-segments makes all segments separate.
# RUN: ld.lld -pie %t.o -z separate-loadable-segments -o %t
# RUN: llvm-readelf -l %t | FileCheck --check-prefix=ALL %s
# ALL: LOAD 0x000000 0x0000000000000000 0x0000000000000000 0x000245 0x000245 R 0x1000
# ALL-NEXT: LOAD 0x001000 0x0000000000001000 0x0000000000001000 0x000001 0x000001 R E 0x1000
# ALL-NEXT: LOAD 0x002000 0x0000000000002000 0x0000000000002000 0x000090 0x001000 RW 0x1000
# ALL-NEXT: LOAD 0x003000 0x0000000000003000 0x0000000000003000 0x000001 0x000001 RW 0x1000
nop
.data
.byte 0