Files
clang-p2996/lldb/source/Plugins/Architecture/Mips/ArchitectureMips.cpp
Pavel Labath c34698a811 [lldb] Rename Logging.h to LLDBLog.h and clean up includes
Most of our code was including Log.h even though that is not where the
"lldb" log channel is defined (Log.h defines the generic logging
infrastructure). This worked because Log.h included Logging.h, even
though it should.

After the recent refactor, it became impossible the two files include
each other in this direction (the opposite inclusion is needed), so this
patch removes the workaround that was put in place and cleans up all
files to include the right thing. It also renames the file to LLDBLog to
better reflect its purpose.
2022-02-03 14:47:01 +01:00

233 lines
7.6 KiB
C++

//===-- ArchitectureMips.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Plugins/Architecture/Mips/ArchitectureMips.h"
#include "lldb/Core/Address.h"
#include "lldb/Core/Disassembler.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Symbol/Function.h"
#include "lldb/Symbol/SymbolContext.h"
#include "lldb/Target/SectionLoadList.h"
#include "lldb/Target/Target.h"
#include "lldb/Utility/ArchSpec.h"
#include "lldb/Utility/LLDBLog.h"
#include "lldb/Utility/Log.h"
using namespace lldb_private;
using namespace lldb;
LLDB_PLUGIN_DEFINE(ArchitectureMips)
void ArchitectureMips::Initialize() {
PluginManager::RegisterPlugin(GetPluginNameStatic(),
"Mips-specific algorithms",
&ArchitectureMips::Create);
}
void ArchitectureMips::Terminate() {
PluginManager::UnregisterPlugin(&ArchitectureMips::Create);
}
std::unique_ptr<Architecture> ArchitectureMips::Create(const ArchSpec &arch) {
return arch.IsMIPS() ?
std::unique_ptr<Architecture>(new ArchitectureMips(arch)) : nullptr;
}
addr_t ArchitectureMips::GetCallableLoadAddress(addr_t code_addr,
AddressClass addr_class) const {
bool is_alternate_isa = false;
switch (addr_class) {
case AddressClass::eData:
case AddressClass::eDebug:
return LLDB_INVALID_ADDRESS;
case AddressClass::eCodeAlternateISA:
is_alternate_isa = true;
break;
default: break;
}
if ((code_addr & 2ull) || is_alternate_isa)
return code_addr | 1u;
return code_addr;
}
addr_t ArchitectureMips::GetOpcodeLoadAddress(addr_t opcode_addr,
AddressClass addr_class) const {
switch (addr_class) {
case AddressClass::eData:
case AddressClass::eDebug:
return LLDB_INVALID_ADDRESS;
default: break;
}
return opcode_addr & ~(1ull);
}
lldb::addr_t ArchitectureMips::GetBreakableLoadAddress(lldb::addr_t addr,
Target &target) const {
Log *log = GetLog(LLDBLog::Breakpoints);
Address resolved_addr;
SectionLoadList &section_load_list = target.GetSectionLoadList();
if (section_load_list.IsEmpty())
// No sections are loaded, so we must assume we are not running yet and
// need to operate only on file address.
target.ResolveFileAddress(addr, resolved_addr);
else
target.ResolveLoadAddress(addr, resolved_addr);
addr_t current_offset = 0;
// Get the function boundaries to make sure we don't scan back before the
// beginning of the current function.
ModuleSP temp_addr_module_sp(resolved_addr.GetModule());
if (temp_addr_module_sp) {
SymbolContext sc;
SymbolContextItem resolve_scope =
eSymbolContextFunction | eSymbolContextSymbol;
temp_addr_module_sp->ResolveSymbolContextForAddress(resolved_addr,
resolve_scope, sc);
Address sym_addr;
if (sc.function)
sym_addr = sc.function->GetAddressRange().GetBaseAddress();
else if (sc.symbol)
sym_addr = sc.symbol->GetAddress();
addr_t function_start = sym_addr.GetLoadAddress(&target);
if (function_start == LLDB_INVALID_ADDRESS)
function_start = sym_addr.GetFileAddress();
if (function_start)
current_offset = addr - function_start;
}
// If breakpoint address is start of function then we dont have to do
// anything.
if (current_offset == 0)
return addr;
auto insn = GetInstructionAtAddress(target, current_offset, addr);
if (nullptr == insn || !insn->HasDelaySlot())
return addr;
// Adjust the breakable address
uint64_t breakable_addr = addr - insn->GetOpcode().GetByteSize();
LLDB_LOGF(log,
"Target::%s Breakpoint at 0x%8.8" PRIx64
" is adjusted to 0x%8.8" PRIx64 " due to delay slot\n",
__FUNCTION__, addr, breakable_addr);
return breakable_addr;
}
Instruction *ArchitectureMips::GetInstructionAtAddress(
Target &target, const Address &resolved_addr, addr_t symbol_offset) const {
auto loop_count = symbol_offset / 2;
uint32_t arch_flags = m_arch.GetFlags();
bool IsMips16 = arch_flags & ArchSpec::eMIPSAse_mips16;
bool IsMicromips = arch_flags & ArchSpec::eMIPSAse_micromips;
if (loop_count > 3) {
// Scan previous 6 bytes
if (IsMips16 | IsMicromips)
loop_count = 3;
// For mips-only, instructions are always 4 bytes, so scan previous 4
// bytes only.
else
loop_count = 2;
}
// Create Disassembler Instance
lldb::DisassemblerSP disasm_sp(
Disassembler::FindPlugin(m_arch, nullptr, nullptr));
InstructionList instruction_list;
InstructionSP prev_insn;
uint32_t inst_to_choose = 0;
Address addr = resolved_addr;
for (uint32_t i = 1; i <= loop_count; i++) {
// Adjust the address to read from.
addr.Slide(-2);
uint32_t insn_size = 0;
disasm_sp->ParseInstructions(target, addr,
{Disassembler::Limit::Bytes, i * 2}, nullptr);
uint32_t num_insns = disasm_sp->GetInstructionList().GetSize();
if (num_insns) {
prev_insn = disasm_sp->GetInstructionList().GetInstructionAtIndex(0);
insn_size = prev_insn->GetOpcode().GetByteSize();
if (i == 1 && insn_size == 2) {
// This looks like a valid 2-byte instruction (but it could be a part
// of upper 4 byte instruction).
instruction_list.Append(prev_insn);
inst_to_choose = 1;
}
else if (i == 2) {
// Here we may get one 4-byte instruction or two 2-byte instructions.
if (num_insns == 2) {
// Looks like there are two 2-byte instructions above our
// breakpoint target address. Now the upper 2-byte instruction is
// either a valid 2-byte instruction or could be a part of it's
// upper 4-byte instruction. In both cases we don't care because in
// this case lower 2-byte instruction is definitely a valid
// instruction and whatever i=1 iteration has found out is true.
inst_to_choose = 1;
break;
}
else if (insn_size == 4) {
// This instruction claims its a valid 4-byte instruction. But it
// could be a part of it's upper 4-byte instruction. Lets try
// scanning upper 2 bytes to verify this.
instruction_list.Append(prev_insn);
inst_to_choose = 2;
}
}
else if (i == 3) {
if (insn_size == 4)
// FIXME: We reached here that means instruction at [target - 4] has
// already claimed to be a 4-byte instruction, and now instruction
// at [target - 6] is also claiming that it's a 4-byte instruction.
// This can not be true. In this case we can not decide the valid
// previous instruction so we let lldb set the breakpoint at the
// address given by user.
inst_to_choose = 0;
else
// This is straight-forward
inst_to_choose = 2;
break;
}
}
else {
// Decode failed, bytes do not form a valid instruction. So whatever
// previous iteration has found out is true.
if (i > 1) {
inst_to_choose = i - 1;
break;
}
}
}
// Check if we are able to find any valid instruction.
if (inst_to_choose) {
if (inst_to_choose > instruction_list.GetSize())
inst_to_choose--;
return instruction_list.GetInstructionAtIndex(inst_to_choose - 1).get();
}
return nullptr;
}