Files
clang-p2996/llvm/lib/ProfileData/InstrProfCorrelator.cpp
Zequan Wu ab3430f891 [Profile] Add binary profile correlation for code coverage. (#69493)
## Motivation
Since we don't need the metadata sections at runtime, we can somehow
offload them from memory at runtime. Initially, I explored [debug info
correlation](https://discourse.llvm.org/t/instrprofiling-lightweight-instrumentation/59113),
which is used for PGO with value profiling disabled. However, it
currently only works with DWARF and it's be hard to add such artificial
debug info for every function in to CodeView which is used on Windows.
So, offloading profile metadata sections at runtime seems to be a
platform independent option.

## Design
The idea is to use new section names for profile name and data sections
and mark them as metadata sections. Under this mode, the new sections
are non-SHF_ALLOC in ELF. So, they are not loaded into memory at runtime
and can be stripped away as a post-linking step. After the process
exits, the generated raw profiles will contains only headers + counters.
llvm-profdata can be used correlate raw profiles with the unstripped
binary to generate indexed profile.

## Data
For chromium base_unittests with code coverage on linux, the binary size
overhead due to instrumentation reduced from 64M to 38.8M (39.4%) and
the raw profile files size reduce from 128M to 68M (46.9%)
```
$ bloaty out/cov/base_unittests.stripped -- out/no-cov/base_unittests.stripped
    FILE SIZE        VM SIZE
 --------------  --------------
  +121% +30.4Mi  +121% +30.4Mi    .text
  [NEW] +14.6Mi  [NEW] +14.6Mi    __llvm_prf_data
  [NEW] +10.6Mi  [NEW] +10.6Mi    __llvm_prf_names
  [NEW] +5.86Mi  [NEW] +5.86Mi    __llvm_prf_cnts
   +95% +1.75Mi   +95% +1.75Mi    .eh_frame
  +108%  +400Ki  +108%  +400Ki    .eh_frame_hdr
  +9.5%  +211Ki  +9.5%  +211Ki    .rela.dyn
  +9.2% +95.0Ki  +9.2% +95.0Ki    .data.rel.ro
  +5.0% +87.3Ki  +5.0% +87.3Ki    .rodata
  [ = ]       0   +13% +47.0Ki    .bss
   +40% +1.78Ki   +40% +1.78Ki    .got
   +12% +1.49Ki   +12% +1.49Ki    .gcc_except_table
  [ = ]       0   +65% +1.23Ki    .relro_padding
   +62% +1.20Ki  [ = ]       0    [Unmapped]
   +13%    +448   +19%    +448    .init_array
  +8.8%    +192  [ = ]       0    [ELF Section Headers]
  +0.0%    +136  +0.0%     +80    [7 Others]
  +0.1%     +96  +0.1%     +96    .dynsym
  +1.2%     +96  +1.2%     +96    .rela.plt
  +1.5%     +80  +1.2%     +64    .plt
  [ = ]       0 -99.2% -3.68Ki    [LOAD #5 [RW]]
  +195% +64.0Mi  +194% +64.0Mi    TOTAL
$ bloaty out/cov-cor/base_unittests.stripped -- out/no-cov/base_unittests.stripped
    FILE SIZE        VM SIZE
 --------------  --------------
  +121% +30.4Mi  +121% +30.4Mi    .text
  [NEW] +5.86Mi  [NEW] +5.86Mi    __llvm_prf_cnts
   +95% +1.75Mi   +95% +1.75Mi    .eh_frame
  +108%  +400Ki  +108%  +400Ki    .eh_frame_hdr
  +9.5%  +211Ki  +9.5%  +211Ki    .rela.dyn
  +9.2% +95.0Ki  +9.2% +95.0Ki    .data.rel.ro
  +5.0% +87.3Ki  +5.0% +87.3Ki    .rodata
  [ = ]       0   +13% +47.0Ki    .bss
   +40% +1.78Ki   +40% +1.78Ki    .got
   +12% +1.49Ki   +12% +1.49Ki    .gcc_except_table
   +13%    +448   +19%    +448    .init_array
  +0.1%     +96  +0.1%     +96    .dynsym
  +1.2%     +96  +1.2%     +96    .rela.plt
  +1.2%     +64  +1.2%     +64    .plt
  +2.9%     +64  [ = ]       0    [ELF Section Headers]
  +0.0%     +40  +0.0%     +40    .data
  +1.2%     +32  +1.2%     +32    .got.plt
  +0.0%     +24  +0.0%      +8    [5 Others]
  [ = ]       0 -22.9%    -872    [LOAD #5 [RW]]
 -74.5% -1.44Ki  [ = ]       0    [Unmapped]
  [ = ]       0 -76.5% -1.45Ki    .relro_padding
  +118% +38.8Mi  +117% +38.8Mi    TOTAL
```

A few things to note:
1. llvm-profdata doesn't support filter raw profiles by binary id yet,
so when a raw profile doesn't belongs to the binary being digested by
llvm-profdata, merging will fail. Once this is implemented,
llvm-profdata should be able to only merge raw profiles with the same
binary id as the binary and discard the rest (with mismatched/missing
binary id). The workflow I have in mind is to have scripts invoke
llvm-profdata to get all binary ids for all raw profiles, and
selectively choose the raw pnrofiles with matching binary id and the
binary to llvm-profdata for merging.
2. Note: In COFF, currently they are still loaded into memory but not
used. I didn't do it in this patch because I noticed that `.lcovmap` and
`.lcovfunc` are loaded into memory. A separate patch will address it.
3. This should works with PGO when value profiling is disabled as debug
info correlation currently doing, though I haven't tested this yet.
2023-12-14 14:16:38 -05:00

484 lines
19 KiB
C++

//===-- InstrProfCorrelator.cpp -------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ProfileData/InstrProfCorrelator.h"
#include "llvm/DebugInfo/DIContext.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/DebugInfo/DWARF/DWARFDie.h"
#include "llvm/DebugInfo/DWARF/DWARFExpression.h"
#include "llvm/DebugInfo/DWARF/DWARFFormValue.h"
#include "llvm/DebugInfo/DWARF/DWARFLocationExpression.h"
#include "llvm/DebugInfo/DWARF/DWARFUnit.h"
#include "llvm/Object/MachO.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/WithColor.h"
#include <optional>
#define DEBUG_TYPE "correlator"
using namespace llvm;
/// Get profile section.
Expected<object::SectionRef> getInstrProfSection(const object::ObjectFile &Obj,
InstrProfSectKind IPSK) {
// On COFF, the getInstrProfSectionName returns the section names may followed
// by "$M". The linker removes the dollar and everything after it in the final
// binary. Do the same to match.
Triple::ObjectFormatType ObjFormat = Obj.getTripleObjectFormat();
auto StripSuffix = [ObjFormat](StringRef N) {
return ObjFormat == Triple::COFF ? N.split('$').first : N;
};
std::string ExpectedSectionName =
getInstrProfSectionName(IPSK, ObjFormat,
/*AddSegmentInfo=*/false);
ExpectedSectionName = StripSuffix(ExpectedSectionName);
for (auto &Section : Obj.sections()) {
if (auto SectionName = Section.getName())
if (*SectionName == ExpectedSectionName)
return Section;
}
return make_error<InstrProfError>(
instrprof_error::unable_to_correlate_profile,
"could not find section (" + Twine(ExpectedSectionName) + ")");
}
const char *InstrProfCorrelator::FunctionNameAttributeName = "Function Name";
const char *InstrProfCorrelator::CFGHashAttributeName = "CFG Hash";
const char *InstrProfCorrelator::NumCountersAttributeName = "Num Counters";
llvm::Expected<std::unique_ptr<InstrProfCorrelator::Context>>
InstrProfCorrelator::Context::get(std::unique_ptr<MemoryBuffer> Buffer,
const object::ObjectFile &Obj,
ProfCorrelatorKind FileKind) {
auto C = std::make_unique<Context>();
auto CountersSection = getInstrProfSection(Obj, IPSK_cnts);
if (auto Err = CountersSection.takeError())
return std::move(Err);
if (FileKind == InstrProfCorrelator::BINARY) {
auto DataSection = getInstrProfSection(Obj, IPSK_covdata);
if (auto Err = DataSection.takeError())
return std::move(Err);
auto DataOrErr = DataSection->getContents();
if (!DataOrErr)
return DataOrErr.takeError();
auto NameSection = getInstrProfSection(Obj, IPSK_covname);
if (auto Err = NameSection.takeError())
return std::move(Err);
auto NameOrErr = NameSection->getContents();
if (!NameOrErr)
return NameOrErr.takeError();
C->DataStart = DataOrErr->data();
C->DataEnd = DataOrErr->data() + DataOrErr->size();
C->NameStart = NameOrErr->data();
C->NameSize = NameOrErr->size();
}
C->Buffer = std::move(Buffer);
C->CountersSectionStart = CountersSection->getAddress();
C->CountersSectionEnd = C->CountersSectionStart + CountersSection->getSize();
// In COFF object file, there's a null byte at the beginning of the counter
// section which doesn't exist in raw profile.
if (Obj.getTripleObjectFormat() == Triple::COFF)
++C->CountersSectionStart;
C->ShouldSwapBytes = Obj.isLittleEndian() != sys::IsLittleEndianHost;
return Expected<std::unique_ptr<Context>>(std::move(C));
}
llvm::Expected<std::unique_ptr<InstrProfCorrelator>>
InstrProfCorrelator::get(StringRef Filename, ProfCorrelatorKind FileKind) {
if (FileKind == DEBUG_INFO) {
auto DsymObjectsOrErr =
object::MachOObjectFile::findDsymObjectMembers(Filename);
if (auto Err = DsymObjectsOrErr.takeError())
return std::move(Err);
if (!DsymObjectsOrErr->empty()) {
// TODO: Enable profile correlation when there are multiple objects in a
// dSYM bundle.
if (DsymObjectsOrErr->size() > 1)
return make_error<InstrProfError>(
instrprof_error::unable_to_correlate_profile,
"using multiple objects is not yet supported");
Filename = *DsymObjectsOrErr->begin();
}
auto BufferOrErr = errorOrToExpected(MemoryBuffer::getFile(Filename));
if (auto Err = BufferOrErr.takeError())
return std::move(Err);
return get(std::move(*BufferOrErr), FileKind);
}
if (FileKind == BINARY) {
auto BufferOrErr = errorOrToExpected(MemoryBuffer::getFile(Filename));
if (auto Err = BufferOrErr.takeError())
return std::move(Err);
return get(std::move(*BufferOrErr), FileKind);
}
return make_error<InstrProfError>(
instrprof_error::unable_to_correlate_profile,
"unsupported correlation kind (only DWARF debug info and Binary format "
"(ELF/COFF) are supported)");
}
llvm::Expected<std::unique_ptr<InstrProfCorrelator>>
InstrProfCorrelator::get(std::unique_ptr<MemoryBuffer> Buffer,
ProfCorrelatorKind FileKind) {
auto BinOrErr = object::createBinary(*Buffer);
if (auto Err = BinOrErr.takeError())
return std::move(Err);
if (auto *Obj = dyn_cast<object::ObjectFile>(BinOrErr->get())) {
auto CtxOrErr = Context::get(std::move(Buffer), *Obj, FileKind);
if (auto Err = CtxOrErr.takeError())
return std::move(Err);
auto T = Obj->makeTriple();
if (T.isArch64Bit())
return InstrProfCorrelatorImpl<uint64_t>::get(std::move(*CtxOrErr), *Obj,
FileKind);
if (T.isArch32Bit())
return InstrProfCorrelatorImpl<uint32_t>::get(std::move(*CtxOrErr), *Obj,
FileKind);
}
return make_error<InstrProfError>(
instrprof_error::unable_to_correlate_profile, "not an object file");
}
std::optional<size_t> InstrProfCorrelator::getDataSize() const {
if (auto *C = dyn_cast<InstrProfCorrelatorImpl<uint32_t>>(this)) {
return C->getDataSize();
} else if (auto *C = dyn_cast<InstrProfCorrelatorImpl<uint64_t>>(this)) {
return C->getDataSize();
}
return {};
}
namespace llvm {
template <>
InstrProfCorrelatorImpl<uint32_t>::InstrProfCorrelatorImpl(
std::unique_ptr<InstrProfCorrelator::Context> Ctx)
: InstrProfCorrelatorImpl(InstrProfCorrelatorKind::CK_32Bit,
std::move(Ctx)) {}
template <>
InstrProfCorrelatorImpl<uint64_t>::InstrProfCorrelatorImpl(
std::unique_ptr<InstrProfCorrelator::Context> Ctx)
: InstrProfCorrelatorImpl(InstrProfCorrelatorKind::CK_64Bit,
std::move(Ctx)) {}
template <>
bool InstrProfCorrelatorImpl<uint32_t>::classof(const InstrProfCorrelator *C) {
return C->getKind() == InstrProfCorrelatorKind::CK_32Bit;
}
template <>
bool InstrProfCorrelatorImpl<uint64_t>::classof(const InstrProfCorrelator *C) {
return C->getKind() == InstrProfCorrelatorKind::CK_64Bit;
}
} // end namespace llvm
template <class IntPtrT>
llvm::Expected<std::unique_ptr<InstrProfCorrelatorImpl<IntPtrT>>>
InstrProfCorrelatorImpl<IntPtrT>::get(
std::unique_ptr<InstrProfCorrelator::Context> Ctx,
const object::ObjectFile &Obj, ProfCorrelatorKind FileKind) {
if (FileKind == DEBUG_INFO) {
if (Obj.isELF() || Obj.isMachO()) {
auto DICtx = DWARFContext::create(Obj);
return std::make_unique<DwarfInstrProfCorrelator<IntPtrT>>(
std::move(DICtx), std::move(Ctx));
}
return make_error<InstrProfError>(
instrprof_error::unable_to_correlate_profile,
"unsupported debug info format (only DWARF is supported)");
}
if (Obj.isELF() || Obj.isCOFF())
return std::make_unique<BinaryInstrProfCorrelator<IntPtrT>>(std::move(Ctx));
return make_error<InstrProfError>(
instrprof_error::unable_to_correlate_profile,
"unsupported binary format (only ELF and COFF are supported)");
}
template <class IntPtrT>
Error InstrProfCorrelatorImpl<IntPtrT>::correlateProfileData(int MaxWarnings) {
assert(Data.empty() && Names.empty() && NamesVec.empty());
correlateProfileDataImpl(MaxWarnings);
if (this->Data.empty())
return make_error<InstrProfError>(
instrprof_error::unable_to_correlate_profile,
"could not find any profile data metadata in correlated file");
Error Result = correlateProfileNameImpl();
this->CounterOffsets.clear();
this->NamesVec.clear();
return Result;
}
template <> struct yaml::MappingTraits<InstrProfCorrelator::CorrelationData> {
static void mapping(yaml::IO &io,
InstrProfCorrelator::CorrelationData &Data) {
io.mapRequired("Probes", Data.Probes);
}
};
template <> struct yaml::MappingTraits<InstrProfCorrelator::Probe> {
static void mapping(yaml::IO &io, InstrProfCorrelator::Probe &P) {
io.mapRequired("Function Name", P.FunctionName);
io.mapOptional("Linkage Name", P.LinkageName);
io.mapRequired("CFG Hash", P.CFGHash);
io.mapRequired("Counter Offset", P.CounterOffset);
io.mapRequired("Num Counters", P.NumCounters);
io.mapOptional("File", P.FilePath);
io.mapOptional("Line", P.LineNumber);
}
};
template <> struct yaml::SequenceElementTraits<InstrProfCorrelator::Probe> {
static const bool flow = false;
};
template <class IntPtrT>
Error InstrProfCorrelatorImpl<IntPtrT>::dumpYaml(int MaxWarnings,
raw_ostream &OS) {
InstrProfCorrelator::CorrelationData Data;
correlateProfileDataImpl(MaxWarnings, &Data);
if (Data.Probes.empty())
return make_error<InstrProfError>(
instrprof_error::unable_to_correlate_profile,
"could not find any profile data metadata in debug info");
yaml::Output YamlOS(OS);
YamlOS << Data;
return Error::success();
}
template <class IntPtrT>
void InstrProfCorrelatorImpl<IntPtrT>::addDataProbe(uint64_t NameRef,
uint64_t CFGHash,
IntPtrT CounterOffset,
IntPtrT FunctionPtr,
uint32_t NumCounters) {
// Check if a probe was already added for this counter offset.
if (!CounterOffsets.insert(CounterOffset).second)
return;
Data.push_back({
maybeSwap<uint64_t>(NameRef),
maybeSwap<uint64_t>(CFGHash),
// In this mode, CounterPtr actually stores the section relative address
// of the counter.
maybeSwap<IntPtrT>(CounterOffset),
// TODO: MC/DC is not yet supported.
/*BitmapOffset=*/maybeSwap<IntPtrT>(0),
maybeSwap<IntPtrT>(FunctionPtr),
// TODO: Value profiling is not yet supported.
/*ValuesPtr=*/maybeSwap<IntPtrT>(0),
maybeSwap<uint32_t>(NumCounters),
/*NumValueSites=*/{maybeSwap<uint16_t>(0), maybeSwap<uint16_t>(0)},
// TODO: MC/DC is not yet supported.
/*NumBitmapBytes=*/maybeSwap<uint32_t>(0),
});
}
template <class IntPtrT>
std::optional<uint64_t>
DwarfInstrProfCorrelator<IntPtrT>::getLocation(const DWARFDie &Die) const {
auto Locations = Die.getLocations(dwarf::DW_AT_location);
if (!Locations) {
consumeError(Locations.takeError());
return {};
}
auto &DU = *Die.getDwarfUnit();
auto AddressSize = DU.getAddressByteSize();
for (auto &Location : *Locations) {
DataExtractor Data(Location.Expr, DICtx->isLittleEndian(), AddressSize);
DWARFExpression Expr(Data, AddressSize);
for (auto &Op : Expr) {
if (Op.getCode() == dwarf::DW_OP_addr) {
return Op.getRawOperand(0);
} else if (Op.getCode() == dwarf::DW_OP_addrx) {
uint64_t Index = Op.getRawOperand(0);
if (auto SA = DU.getAddrOffsetSectionItem(Index))
return SA->Address;
}
}
}
return {};
}
template <class IntPtrT>
bool DwarfInstrProfCorrelator<IntPtrT>::isDIEOfProbe(const DWARFDie &Die) {
const auto &ParentDie = Die.getParent();
if (!Die.isValid() || !ParentDie.isValid() || Die.isNULL())
return false;
if (Die.getTag() != dwarf::DW_TAG_variable)
return false;
if (!ParentDie.isSubprogramDIE())
return false;
if (!Die.hasChildren())
return false;
if (const char *Name = Die.getName(DINameKind::ShortName))
return StringRef(Name).starts_with(getInstrProfCountersVarPrefix());
return false;
}
template <class IntPtrT>
void DwarfInstrProfCorrelator<IntPtrT>::correlateProfileDataImpl(
int MaxWarnings, InstrProfCorrelator::CorrelationData *Data) {
bool UnlimitedWarnings = (MaxWarnings == 0);
// -N suppressed warnings means we can emit up to N (unsuppressed) warnings
int NumSuppressedWarnings = -MaxWarnings;
auto maybeAddProbe = [&](DWARFDie Die) {
if (!isDIEOfProbe(Die))
return;
std::optional<const char *> FunctionName;
std::optional<uint64_t> CFGHash;
std::optional<uint64_t> CounterPtr = getLocation(Die);
auto FnDie = Die.getParent();
auto FunctionPtr = dwarf::toAddress(FnDie.find(dwarf::DW_AT_low_pc));
std::optional<uint64_t> NumCounters;
for (const DWARFDie &Child : Die.children()) {
if (Child.getTag() != dwarf::DW_TAG_LLVM_annotation)
continue;
auto AnnotationFormName = Child.find(dwarf::DW_AT_name);
auto AnnotationFormValue = Child.find(dwarf::DW_AT_const_value);
if (!AnnotationFormName || !AnnotationFormValue)
continue;
auto AnnotationNameOrErr = AnnotationFormName->getAsCString();
if (auto Err = AnnotationNameOrErr.takeError()) {
consumeError(std::move(Err));
continue;
}
StringRef AnnotationName = *AnnotationNameOrErr;
if (AnnotationName.compare(
InstrProfCorrelator::FunctionNameAttributeName) == 0) {
if (auto EC =
AnnotationFormValue->getAsCString().moveInto(FunctionName))
consumeError(std::move(EC));
} else if (AnnotationName.compare(
InstrProfCorrelator::CFGHashAttributeName) == 0) {
CFGHash = AnnotationFormValue->getAsUnsignedConstant();
} else if (AnnotationName.compare(
InstrProfCorrelator::NumCountersAttributeName) == 0) {
NumCounters = AnnotationFormValue->getAsUnsignedConstant();
}
}
if (!FunctionName || !CFGHash || !CounterPtr || !NumCounters) {
if (UnlimitedWarnings || ++NumSuppressedWarnings < 1) {
WithColor::warning()
<< "Incomplete DIE for function " << FunctionName
<< ": CFGHash=" << CFGHash << " CounterPtr=" << CounterPtr
<< " NumCounters=" << NumCounters << "\n";
LLVM_DEBUG(Die.dump(dbgs()));
}
return;
}
uint64_t CountersStart = this->Ctx->CountersSectionStart;
uint64_t CountersEnd = this->Ctx->CountersSectionEnd;
if (*CounterPtr < CountersStart || *CounterPtr >= CountersEnd) {
if (UnlimitedWarnings || ++NumSuppressedWarnings < 1) {
WithColor::warning()
<< format("CounterPtr out of range for function %s: Actual=0x%x "
"Expected=[0x%x, 0x%x)\n",
*FunctionName, *CounterPtr, CountersStart, CountersEnd);
LLVM_DEBUG(Die.dump(dbgs()));
}
return;
}
if (!FunctionPtr && (UnlimitedWarnings || ++NumSuppressedWarnings < 1)) {
WithColor::warning() << format("Could not find address of function %s\n",
*FunctionName);
LLVM_DEBUG(Die.dump(dbgs()));
}
// In debug info correlation mode, the CounterPtr is an absolute address of
// the counter, but it's expected to be relative later when iterating Data.
IntPtrT CounterOffset = *CounterPtr - CountersStart;
if (Data) {
InstrProfCorrelator::Probe P;
P.FunctionName = *FunctionName;
if (auto Name = FnDie.getName(DINameKind::LinkageName))
P.LinkageName = Name;
P.CFGHash = *CFGHash;
P.CounterOffset = CounterOffset;
P.NumCounters = *NumCounters;
auto FilePath = FnDie.getDeclFile(
DILineInfoSpecifier::FileLineInfoKind::RelativeFilePath);
if (!FilePath.empty())
P.FilePath = FilePath;
if (auto LineNumber = FnDie.getDeclLine())
P.LineNumber = LineNumber;
Data->Probes.push_back(P);
} else {
this->addDataProbe(IndexedInstrProf::ComputeHash(*FunctionName), *CFGHash,
CounterOffset, FunctionPtr.value_or(0), *NumCounters);
this->NamesVec.push_back(*FunctionName);
}
};
for (auto &CU : DICtx->normal_units())
for (const auto &Entry : CU->dies())
maybeAddProbe(DWARFDie(CU.get(), &Entry));
for (auto &CU : DICtx->dwo_units())
for (const auto &Entry : CU->dies())
maybeAddProbe(DWARFDie(CU.get(), &Entry));
if (!UnlimitedWarnings && NumSuppressedWarnings > 0)
WithColor::warning() << format("Suppressed %d additional warnings\n",
NumSuppressedWarnings);
}
template <class IntPtrT>
Error DwarfInstrProfCorrelator<IntPtrT>::correlateProfileNameImpl() {
if (this->NamesVec.empty()) {
return make_error<InstrProfError>(
instrprof_error::unable_to_correlate_profile,
"could not find any profile name metadata in debug info");
}
auto Result =
collectGlobalObjectNameStrings(this->NamesVec,
/*doCompression=*/false, this->Names);
return Result;
}
template <class IntPtrT>
void BinaryInstrProfCorrelator<IntPtrT>::correlateProfileDataImpl(
int MaxWarnings, InstrProfCorrelator::CorrelationData *CorrelateData) {
using RawProfData = RawInstrProf::ProfileData<IntPtrT>;
bool UnlimitedWarnings = (MaxWarnings == 0);
// -N suppressed warnings means we can emit up to N (unsuppressed) warnings
int NumSuppressedWarnings = -MaxWarnings;
const RawProfData *DataStart = (const RawProfData *)this->Ctx->DataStart;
const RawProfData *DataEnd = (const RawProfData *)this->Ctx->DataEnd;
// We need to use < here because the last data record may have no padding.
for (const RawProfData *I = DataStart; I < DataEnd; ++I) {
uint64_t CounterPtr = this->template maybeSwap<IntPtrT>(I->CounterPtr);
uint64_t CountersStart = this->Ctx->CountersSectionStart;
uint64_t CountersEnd = this->Ctx->CountersSectionEnd;
if (CounterPtr < CountersStart || CounterPtr >= CountersEnd) {
if (UnlimitedWarnings || ++NumSuppressedWarnings < 1) {
WithColor::warning()
<< format("CounterPtr out of range for function: Actual=0x%x "
"Expected=[0x%x, 0x%x) at data offset=0x%x\n",
CounterPtr, CountersStart, CountersEnd,
(I - DataStart) * sizeof(RawProfData));
}
}
// In binary correlation mode, the CounterPtr is an absolute address of the
// counter, but it's expected to be relative later when iterating Data.
IntPtrT CounterOffset = CounterPtr - CountersStart;
this->addDataProbe(I->NameRef, I->FuncHash, CounterOffset,
I->FunctionPointer, I->NumCounters);
}
}
template <class IntPtrT>
Error BinaryInstrProfCorrelator<IntPtrT>::correlateProfileNameImpl() {
if (this->Ctx->NameSize == 0) {
return make_error<InstrProfError>(
instrprof_error::unable_to_correlate_profile,
"could not find any profile data metadata in object file");
}
this->Names.append(this->Ctx->NameStart, this->Ctx->NameSize);
return Error::success();
}