Switch from `.weak` to `.common` linkage for common global variables where possible. The `.common` linkage is described in [PTX ISA 11.6.4. Linking Directives: .common] (https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#linking-directives-common) > Declares identifier to be globally visible but “common”. > >Common symbols are similar to globally visible symbols. However multiple object files may declare the same common symbol and they may have different types and sizes and references to a symbol get resolved against a common symbol with the largest size. > >Only one object file can initialize a common symbol and that must have the largest size among all other definitions of that common symbol from different object files. > >.common linking directive can be used only on variables with .global storage. It cannot be used on function symbols or on symbols with opaque type. I've updated the logic and tests to only use `.common` for PTX 5.0 or greater and verified that the new tests now pass with `ptxas`.
2264 lines
72 KiB
C++
2264 lines
72 KiB
C++
//===-- NVPTXAsmPrinter.cpp - NVPTX LLVM assembly writer ------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains a printer that converts from our internal representation
|
|
// of machine-dependent LLVM code to NVPTX assembly language.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "NVPTXAsmPrinter.h"
|
|
#include "MCTargetDesc/NVPTXBaseInfo.h"
|
|
#include "MCTargetDesc/NVPTXInstPrinter.h"
|
|
#include "MCTargetDesc/NVPTXMCAsmInfo.h"
|
|
#include "MCTargetDesc/NVPTXTargetStreamer.h"
|
|
#include "NVPTX.h"
|
|
#include "NVPTXMCExpr.h"
|
|
#include "NVPTXMachineFunctionInfo.h"
|
|
#include "NVPTXRegisterInfo.h"
|
|
#include "NVPTXSubtarget.h"
|
|
#include "NVPTXTargetMachine.h"
|
|
#include "NVPTXUtilities.h"
|
|
#include "TargetInfo/NVPTXTargetInfo.h"
|
|
#include "cl_common_defines.h"
|
|
#include "llvm/ADT/APFloat.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/Analysis/ConstantFolding.h"
|
|
#include "llvm/CodeGen/Analysis.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetRegisterInfo.h"
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/CodeGenTypes/MachineValueType.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DebugInfo.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalAlias.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/MC/MCExpr.h"
|
|
#include "llvm/MC/MCInst.h"
|
|
#include "llvm/MC/MCInstrDesc.h"
|
|
#include "llvm/MC/MCStreamer.h"
|
|
#include "llvm/MC/MCSymbol.h"
|
|
#include "llvm/MC/TargetRegistry.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Endian.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/NativeFormatting.h"
|
|
#include "llvm/Support/Path.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetLoweringObjectFile.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/TargetParser/Triple.h"
|
|
#include "llvm/Transforms/Utils/UnrollLoop.h"
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <cstring>
|
|
#include <new>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool>
|
|
LowerCtorDtor("nvptx-lower-global-ctor-dtor",
|
|
cl::desc("Lower GPU ctor / dtors to globals on the device."),
|
|
cl::init(false), cl::Hidden);
|
|
|
|
#define DEPOTNAME "__local_depot"
|
|
|
|
/// DiscoverDependentGlobals - Return a set of GlobalVariables on which \p V
|
|
/// depends.
|
|
static void
|
|
DiscoverDependentGlobals(const Value *V,
|
|
DenseSet<const GlobalVariable *> &Globals) {
|
|
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
|
|
Globals.insert(GV);
|
|
else {
|
|
if (const User *U = dyn_cast<User>(V)) {
|
|
for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i) {
|
|
DiscoverDependentGlobals(U->getOperand(i), Globals);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// VisitGlobalVariableForEmission - Add \p GV to the list of GlobalVariable
|
|
/// instances to be emitted, but only after any dependents have been added
|
|
/// first.s
|
|
static void
|
|
VisitGlobalVariableForEmission(const GlobalVariable *GV,
|
|
SmallVectorImpl<const GlobalVariable *> &Order,
|
|
DenseSet<const GlobalVariable *> &Visited,
|
|
DenseSet<const GlobalVariable *> &Visiting) {
|
|
// Have we already visited this one?
|
|
if (Visited.count(GV))
|
|
return;
|
|
|
|
// Do we have a circular dependency?
|
|
if (!Visiting.insert(GV).second)
|
|
report_fatal_error("Circular dependency found in global variable set");
|
|
|
|
// Make sure we visit all dependents first
|
|
DenseSet<const GlobalVariable *> Others;
|
|
for (unsigned i = 0, e = GV->getNumOperands(); i != e; ++i)
|
|
DiscoverDependentGlobals(GV->getOperand(i), Others);
|
|
|
|
for (const GlobalVariable *GV : Others)
|
|
VisitGlobalVariableForEmission(GV, Order, Visited, Visiting);
|
|
|
|
// Now we can visit ourself
|
|
Order.push_back(GV);
|
|
Visited.insert(GV);
|
|
Visiting.erase(GV);
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitInstruction(const MachineInstr *MI) {
|
|
NVPTX_MC::verifyInstructionPredicates(MI->getOpcode(),
|
|
getSubtargetInfo().getFeatureBits());
|
|
|
|
MCInst Inst;
|
|
lowerToMCInst(MI, Inst);
|
|
EmitToStreamer(*OutStreamer, Inst);
|
|
}
|
|
|
|
// Handle symbol backtracking for targets that do not support image handles
|
|
bool NVPTXAsmPrinter::lowerImageHandleOperand(const MachineInstr *MI,
|
|
unsigned OpNo, MCOperand &MCOp) {
|
|
const MachineOperand &MO = MI->getOperand(OpNo);
|
|
const MCInstrDesc &MCID = MI->getDesc();
|
|
|
|
if (MCID.TSFlags & NVPTXII::IsTexFlag) {
|
|
// This is a texture fetch, so operand 4 is a texref and operand 5 is
|
|
// a samplerref
|
|
if (OpNo == 4 && MO.isImm()) {
|
|
lowerImageHandleSymbol(MO.getImm(), MCOp);
|
|
return true;
|
|
}
|
|
if (OpNo == 5 && MO.isImm() && !(MCID.TSFlags & NVPTXII::IsTexModeUnifiedFlag)) {
|
|
lowerImageHandleSymbol(MO.getImm(), MCOp);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
} else if (MCID.TSFlags & NVPTXII::IsSuldMask) {
|
|
unsigned VecSize =
|
|
1 << (((MCID.TSFlags & NVPTXII::IsSuldMask) >> NVPTXII::IsSuldShift) - 1);
|
|
|
|
// For a surface load of vector size N, the Nth operand will be the surfref
|
|
if (OpNo == VecSize && MO.isImm()) {
|
|
lowerImageHandleSymbol(MO.getImm(), MCOp);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
} else if (MCID.TSFlags & NVPTXII::IsSustFlag) {
|
|
// This is a surface store, so operand 0 is a surfref
|
|
if (OpNo == 0 && MO.isImm()) {
|
|
lowerImageHandleSymbol(MO.getImm(), MCOp);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
} else if (MCID.TSFlags & NVPTXII::IsSurfTexQueryFlag) {
|
|
// This is a query, so operand 1 is a surfref/texref
|
|
if (OpNo == 1 && MO.isImm()) {
|
|
lowerImageHandleSymbol(MO.getImm(), MCOp);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void NVPTXAsmPrinter::lowerImageHandleSymbol(unsigned Index, MCOperand &MCOp) {
|
|
// Ewwww
|
|
LLVMTargetMachine &TM = const_cast<LLVMTargetMachine&>(MF->getTarget());
|
|
NVPTXTargetMachine &nvTM = static_cast<NVPTXTargetMachine&>(TM);
|
|
const NVPTXMachineFunctionInfo *MFI = MF->getInfo<NVPTXMachineFunctionInfo>();
|
|
const char *Sym = MFI->getImageHandleSymbol(Index);
|
|
StringRef SymName = nvTM.getStrPool().save(Sym);
|
|
MCOp = GetSymbolRef(OutContext.getOrCreateSymbol(SymName));
|
|
}
|
|
|
|
void NVPTXAsmPrinter::lowerToMCInst(const MachineInstr *MI, MCInst &OutMI) {
|
|
OutMI.setOpcode(MI->getOpcode());
|
|
// Special: Do not mangle symbol operand of CALL_PROTOTYPE
|
|
if (MI->getOpcode() == NVPTX::CALL_PROTOTYPE) {
|
|
const MachineOperand &MO = MI->getOperand(0);
|
|
OutMI.addOperand(GetSymbolRef(
|
|
OutContext.getOrCreateSymbol(Twine(MO.getSymbolName()))));
|
|
return;
|
|
}
|
|
|
|
const NVPTXSubtarget &STI = MI->getMF()->getSubtarget<NVPTXSubtarget>();
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = MI->getOperand(i);
|
|
|
|
MCOperand MCOp;
|
|
if (!STI.hasImageHandles()) {
|
|
if (lowerImageHandleOperand(MI, i, MCOp)) {
|
|
OutMI.addOperand(MCOp);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (lowerOperand(MO, MCOp))
|
|
OutMI.addOperand(MCOp);
|
|
}
|
|
}
|
|
|
|
bool NVPTXAsmPrinter::lowerOperand(const MachineOperand &MO,
|
|
MCOperand &MCOp) {
|
|
switch (MO.getType()) {
|
|
default: llvm_unreachable("unknown operand type");
|
|
case MachineOperand::MO_Register:
|
|
MCOp = MCOperand::createReg(encodeVirtualRegister(MO.getReg()));
|
|
break;
|
|
case MachineOperand::MO_Immediate:
|
|
MCOp = MCOperand::createImm(MO.getImm());
|
|
break;
|
|
case MachineOperand::MO_MachineBasicBlock:
|
|
MCOp = MCOperand::createExpr(MCSymbolRefExpr::create(
|
|
MO.getMBB()->getSymbol(), OutContext));
|
|
break;
|
|
case MachineOperand::MO_ExternalSymbol:
|
|
MCOp = GetSymbolRef(GetExternalSymbolSymbol(MO.getSymbolName()));
|
|
break;
|
|
case MachineOperand::MO_GlobalAddress:
|
|
MCOp = GetSymbolRef(getSymbol(MO.getGlobal()));
|
|
break;
|
|
case MachineOperand::MO_FPImmediate: {
|
|
const ConstantFP *Cnt = MO.getFPImm();
|
|
const APFloat &Val = Cnt->getValueAPF();
|
|
|
|
switch (Cnt->getType()->getTypeID()) {
|
|
default: report_fatal_error("Unsupported FP type"); break;
|
|
case Type::HalfTyID:
|
|
MCOp = MCOperand::createExpr(
|
|
NVPTXFloatMCExpr::createConstantFPHalf(Val, OutContext));
|
|
break;
|
|
case Type::BFloatTyID:
|
|
MCOp = MCOperand::createExpr(
|
|
NVPTXFloatMCExpr::createConstantBFPHalf(Val, OutContext));
|
|
break;
|
|
case Type::FloatTyID:
|
|
MCOp = MCOperand::createExpr(
|
|
NVPTXFloatMCExpr::createConstantFPSingle(Val, OutContext));
|
|
break;
|
|
case Type::DoubleTyID:
|
|
MCOp = MCOperand::createExpr(
|
|
NVPTXFloatMCExpr::createConstantFPDouble(Val, OutContext));
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
unsigned NVPTXAsmPrinter::encodeVirtualRegister(unsigned Reg) {
|
|
if (Register::isVirtualRegister(Reg)) {
|
|
const TargetRegisterClass *RC = MRI->getRegClass(Reg);
|
|
|
|
DenseMap<unsigned, unsigned> &RegMap = VRegMapping[RC];
|
|
unsigned RegNum = RegMap[Reg];
|
|
|
|
// Encode the register class in the upper 4 bits
|
|
// Must be kept in sync with NVPTXInstPrinter::printRegName
|
|
unsigned Ret = 0;
|
|
if (RC == &NVPTX::Int1RegsRegClass) {
|
|
Ret = (1 << 28);
|
|
} else if (RC == &NVPTX::Int16RegsRegClass) {
|
|
Ret = (2 << 28);
|
|
} else if (RC == &NVPTX::Int32RegsRegClass) {
|
|
Ret = (3 << 28);
|
|
} else if (RC == &NVPTX::Int64RegsRegClass) {
|
|
Ret = (4 << 28);
|
|
} else if (RC == &NVPTX::Float32RegsRegClass) {
|
|
Ret = (5 << 28);
|
|
} else if (RC == &NVPTX::Float64RegsRegClass) {
|
|
Ret = (6 << 28);
|
|
} else {
|
|
report_fatal_error("Bad register class");
|
|
}
|
|
|
|
// Insert the vreg number
|
|
Ret |= (RegNum & 0x0FFFFFFF);
|
|
return Ret;
|
|
} else {
|
|
// Some special-use registers are actually physical registers.
|
|
// Encode this as the register class ID of 0 and the real register ID.
|
|
return Reg & 0x0FFFFFFF;
|
|
}
|
|
}
|
|
|
|
MCOperand NVPTXAsmPrinter::GetSymbolRef(const MCSymbol *Symbol) {
|
|
const MCExpr *Expr;
|
|
Expr = MCSymbolRefExpr::create(Symbol, MCSymbolRefExpr::VK_None,
|
|
OutContext);
|
|
return MCOperand::createExpr(Expr);
|
|
}
|
|
|
|
static bool ShouldPassAsArray(Type *Ty) {
|
|
return Ty->isAggregateType() || Ty->isVectorTy() || Ty->isIntegerTy(128) ||
|
|
Ty->isHalfTy() || Ty->isBFloatTy();
|
|
}
|
|
|
|
void NVPTXAsmPrinter::printReturnValStr(const Function *F, raw_ostream &O) {
|
|
const DataLayout &DL = getDataLayout();
|
|
const NVPTXSubtarget &STI = TM.getSubtarget<NVPTXSubtarget>(*F);
|
|
const auto *TLI = cast<NVPTXTargetLowering>(STI.getTargetLowering());
|
|
|
|
Type *Ty = F->getReturnType();
|
|
|
|
bool isABI = (STI.getSmVersion() >= 20);
|
|
|
|
if (Ty->getTypeID() == Type::VoidTyID)
|
|
return;
|
|
O << " (";
|
|
|
|
if (isABI) {
|
|
if ((Ty->isFloatingPointTy() || Ty->isIntegerTy()) &&
|
|
!ShouldPassAsArray(Ty)) {
|
|
unsigned size = 0;
|
|
if (auto *ITy = dyn_cast<IntegerType>(Ty)) {
|
|
size = ITy->getBitWidth();
|
|
} else {
|
|
assert(Ty->isFloatingPointTy() && "Floating point type expected here");
|
|
size = Ty->getPrimitiveSizeInBits();
|
|
}
|
|
size = promoteScalarArgumentSize(size);
|
|
O << ".param .b" << size << " func_retval0";
|
|
} else if (isa<PointerType>(Ty)) {
|
|
O << ".param .b" << TLI->getPointerTy(DL).getSizeInBits()
|
|
<< " func_retval0";
|
|
} else if (ShouldPassAsArray(Ty)) {
|
|
unsigned totalsz = DL.getTypeAllocSize(Ty);
|
|
unsigned retAlignment = 0;
|
|
if (!getAlign(*F, 0, retAlignment))
|
|
retAlignment = TLI->getFunctionParamOptimizedAlign(F, Ty, DL).value();
|
|
O << ".param .align " << retAlignment << " .b8 func_retval0[" << totalsz
|
|
<< "]";
|
|
} else
|
|
llvm_unreachable("Unknown return type");
|
|
} else {
|
|
SmallVector<EVT, 16> vtparts;
|
|
ComputeValueVTs(*TLI, DL, Ty, vtparts);
|
|
unsigned idx = 0;
|
|
for (unsigned i = 0, e = vtparts.size(); i != e; ++i) {
|
|
unsigned elems = 1;
|
|
EVT elemtype = vtparts[i];
|
|
if (vtparts[i].isVector()) {
|
|
elems = vtparts[i].getVectorNumElements();
|
|
elemtype = vtparts[i].getVectorElementType();
|
|
}
|
|
|
|
for (unsigned j = 0, je = elems; j != je; ++j) {
|
|
unsigned sz = elemtype.getSizeInBits();
|
|
if (elemtype.isInteger())
|
|
sz = promoteScalarArgumentSize(sz);
|
|
O << ".reg .b" << sz << " func_retval" << idx;
|
|
if (j < je - 1)
|
|
O << ", ";
|
|
++idx;
|
|
}
|
|
if (i < e - 1)
|
|
O << ", ";
|
|
}
|
|
}
|
|
O << ") ";
|
|
}
|
|
|
|
void NVPTXAsmPrinter::printReturnValStr(const MachineFunction &MF,
|
|
raw_ostream &O) {
|
|
const Function &F = MF.getFunction();
|
|
printReturnValStr(&F, O);
|
|
}
|
|
|
|
// Return true if MBB is the header of a loop marked with
|
|
// llvm.loop.unroll.disable or llvm.loop.unroll.count=1.
|
|
bool NVPTXAsmPrinter::isLoopHeaderOfNoUnroll(
|
|
const MachineBasicBlock &MBB) const {
|
|
MachineLoopInfo &LI = getAnalysis<MachineLoopInfo>();
|
|
// We insert .pragma "nounroll" only to the loop header.
|
|
if (!LI.isLoopHeader(&MBB))
|
|
return false;
|
|
|
|
// llvm.loop.unroll.disable is marked on the back edges of a loop. Therefore,
|
|
// we iterate through each back edge of the loop with header MBB, and check
|
|
// whether its metadata contains llvm.loop.unroll.disable.
|
|
for (const MachineBasicBlock *PMBB : MBB.predecessors()) {
|
|
if (LI.getLoopFor(PMBB) != LI.getLoopFor(&MBB)) {
|
|
// Edges from other loops to MBB are not back edges.
|
|
continue;
|
|
}
|
|
if (const BasicBlock *PBB = PMBB->getBasicBlock()) {
|
|
if (MDNode *LoopID =
|
|
PBB->getTerminator()->getMetadata(LLVMContext::MD_loop)) {
|
|
if (GetUnrollMetadata(LoopID, "llvm.loop.unroll.disable"))
|
|
return true;
|
|
if (MDNode *UnrollCountMD =
|
|
GetUnrollMetadata(LoopID, "llvm.loop.unroll.count")) {
|
|
if (mdconst::extract<ConstantInt>(UnrollCountMD->getOperand(1))
|
|
->isOne())
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) {
|
|
AsmPrinter::emitBasicBlockStart(MBB);
|
|
if (isLoopHeaderOfNoUnroll(MBB))
|
|
OutStreamer->emitRawText(StringRef("\t.pragma \"nounroll\";\n"));
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitFunctionEntryLabel() {
|
|
SmallString<128> Str;
|
|
raw_svector_ostream O(Str);
|
|
|
|
if (!GlobalsEmitted) {
|
|
emitGlobals(*MF->getFunction().getParent());
|
|
GlobalsEmitted = true;
|
|
}
|
|
|
|
// Set up
|
|
MRI = &MF->getRegInfo();
|
|
F = &MF->getFunction();
|
|
emitLinkageDirective(F, O);
|
|
if (isKernelFunction(*F))
|
|
O << ".entry ";
|
|
else {
|
|
O << ".func ";
|
|
printReturnValStr(*MF, O);
|
|
}
|
|
|
|
CurrentFnSym->print(O, MAI);
|
|
|
|
emitFunctionParamList(F, O);
|
|
O << "\n";
|
|
|
|
if (isKernelFunction(*F))
|
|
emitKernelFunctionDirectives(*F, O);
|
|
|
|
if (shouldEmitPTXNoReturn(F, TM))
|
|
O << ".noreturn";
|
|
|
|
OutStreamer->emitRawText(O.str());
|
|
|
|
VRegMapping.clear();
|
|
// Emit open brace for function body.
|
|
OutStreamer->emitRawText(StringRef("{\n"));
|
|
setAndEmitFunctionVirtualRegisters(*MF);
|
|
// Emit initial .loc debug directive for correct relocation symbol data.
|
|
if (const DISubprogram *SP = MF->getFunction().getSubprogram()) {
|
|
assert(SP->getUnit());
|
|
if (!SP->getUnit()->isDebugDirectivesOnly() && MMI && MMI->hasDebugInfo())
|
|
emitInitialRawDwarfLocDirective(*MF);
|
|
}
|
|
}
|
|
|
|
bool NVPTXAsmPrinter::runOnMachineFunction(MachineFunction &F) {
|
|
bool Result = AsmPrinter::runOnMachineFunction(F);
|
|
// Emit closing brace for the body of function F.
|
|
// The closing brace must be emitted here because we need to emit additional
|
|
// debug labels/data after the last basic block.
|
|
// We need to emit the closing brace here because we don't have function that
|
|
// finished emission of the function body.
|
|
OutStreamer->emitRawText(StringRef("}\n"));
|
|
return Result;
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitFunctionBodyStart() {
|
|
SmallString<128> Str;
|
|
raw_svector_ostream O(Str);
|
|
emitDemotedVars(&MF->getFunction(), O);
|
|
OutStreamer->emitRawText(O.str());
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitFunctionBodyEnd() {
|
|
VRegMapping.clear();
|
|
}
|
|
|
|
const MCSymbol *NVPTXAsmPrinter::getFunctionFrameSymbol() const {
|
|
SmallString<128> Str;
|
|
raw_svector_ostream(Str) << DEPOTNAME << getFunctionNumber();
|
|
return OutContext.getOrCreateSymbol(Str);
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
|
|
Register RegNo = MI->getOperand(0).getReg();
|
|
if (RegNo.isVirtual()) {
|
|
OutStreamer->AddComment(Twine("implicit-def: ") +
|
|
getVirtualRegisterName(RegNo));
|
|
} else {
|
|
const NVPTXSubtarget &STI = MI->getMF()->getSubtarget<NVPTXSubtarget>();
|
|
OutStreamer->AddComment(Twine("implicit-def: ") +
|
|
STI.getRegisterInfo()->getName(RegNo));
|
|
}
|
|
OutStreamer->addBlankLine();
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitKernelFunctionDirectives(const Function &F,
|
|
raw_ostream &O) const {
|
|
// If the NVVM IR has some of reqntid* specified, then output
|
|
// the reqntid directive, and set the unspecified ones to 1.
|
|
// If none of Reqntid* is specified, don't output reqntid directive.
|
|
unsigned Reqntidx, Reqntidy, Reqntidz;
|
|
Reqntidx = Reqntidy = Reqntidz = 1;
|
|
bool ReqSpecified = false;
|
|
ReqSpecified |= getReqNTIDx(F, Reqntidx);
|
|
ReqSpecified |= getReqNTIDy(F, Reqntidy);
|
|
ReqSpecified |= getReqNTIDz(F, Reqntidz);
|
|
|
|
if (ReqSpecified)
|
|
O << ".reqntid " << Reqntidx << ", " << Reqntidy << ", " << Reqntidz
|
|
<< "\n";
|
|
|
|
// If the NVVM IR has some of maxntid* specified, then output
|
|
// the maxntid directive, and set the unspecified ones to 1.
|
|
// If none of maxntid* is specified, don't output maxntid directive.
|
|
unsigned Maxntidx, Maxntidy, Maxntidz;
|
|
Maxntidx = Maxntidy = Maxntidz = 1;
|
|
bool MaxSpecified = false;
|
|
MaxSpecified |= getMaxNTIDx(F, Maxntidx);
|
|
MaxSpecified |= getMaxNTIDy(F, Maxntidy);
|
|
MaxSpecified |= getMaxNTIDz(F, Maxntidz);
|
|
|
|
if (MaxSpecified)
|
|
O << ".maxntid " << Maxntidx << ", " << Maxntidy << ", " << Maxntidz
|
|
<< "\n";
|
|
|
|
unsigned Mincta = 0;
|
|
if (getMinCTASm(F, Mincta))
|
|
O << ".minnctapersm " << Mincta << "\n";
|
|
|
|
unsigned Maxnreg = 0;
|
|
if (getMaxNReg(F, Maxnreg))
|
|
O << ".maxnreg " << Maxnreg << "\n";
|
|
|
|
// .maxclusterrank directive requires SM_90 or higher, make sure that we
|
|
// filter it out for lower SM versions, as it causes a hard ptxas crash.
|
|
const NVPTXTargetMachine &NTM = static_cast<const NVPTXTargetMachine &>(TM);
|
|
const auto *STI = static_cast<const NVPTXSubtarget *>(NTM.getSubtargetImpl());
|
|
unsigned Maxclusterrank = 0;
|
|
if (getMaxClusterRank(F, Maxclusterrank) && STI->getSmVersion() >= 90)
|
|
O << ".maxclusterrank " << Maxclusterrank << "\n";
|
|
}
|
|
|
|
std::string NVPTXAsmPrinter::getVirtualRegisterName(unsigned Reg) const {
|
|
const TargetRegisterClass *RC = MRI->getRegClass(Reg);
|
|
|
|
std::string Name;
|
|
raw_string_ostream NameStr(Name);
|
|
|
|
VRegRCMap::const_iterator I = VRegMapping.find(RC);
|
|
assert(I != VRegMapping.end() && "Bad register class");
|
|
const DenseMap<unsigned, unsigned> &RegMap = I->second;
|
|
|
|
VRegMap::const_iterator VI = RegMap.find(Reg);
|
|
assert(VI != RegMap.end() && "Bad virtual register");
|
|
unsigned MappedVR = VI->second;
|
|
|
|
NameStr << getNVPTXRegClassStr(RC) << MappedVR;
|
|
|
|
NameStr.flush();
|
|
return Name;
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitVirtualRegister(unsigned int vr,
|
|
raw_ostream &O) {
|
|
O << getVirtualRegisterName(vr);
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitAliasDeclaration(const GlobalAlias *GA,
|
|
raw_ostream &O) {
|
|
const Function *F = dyn_cast_or_null<Function>(GA->getAliaseeObject());
|
|
if (!F || isKernelFunction(*F) || F->isDeclaration())
|
|
report_fatal_error(
|
|
"NVPTX aliasee must be a non-kernel function definition");
|
|
|
|
if (GA->hasLinkOnceLinkage() || GA->hasWeakLinkage() ||
|
|
GA->hasAvailableExternallyLinkage() || GA->hasCommonLinkage())
|
|
report_fatal_error("NVPTX aliasee must not be '.weak'");
|
|
|
|
emitDeclarationWithName(F, getSymbol(GA), O);
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitDeclaration(const Function *F, raw_ostream &O) {
|
|
emitDeclarationWithName(F, getSymbol(F), O);
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitDeclarationWithName(const Function *F, MCSymbol *S,
|
|
raw_ostream &O) {
|
|
emitLinkageDirective(F, O);
|
|
if (isKernelFunction(*F))
|
|
O << ".entry ";
|
|
else
|
|
O << ".func ";
|
|
printReturnValStr(F, O);
|
|
S->print(O, MAI);
|
|
O << "\n";
|
|
emitFunctionParamList(F, O);
|
|
O << "\n";
|
|
if (shouldEmitPTXNoReturn(F, TM))
|
|
O << ".noreturn";
|
|
O << ";\n";
|
|
}
|
|
|
|
static bool usedInGlobalVarDef(const Constant *C) {
|
|
if (!C)
|
|
return false;
|
|
|
|
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
|
|
return GV->getName() != "llvm.used";
|
|
}
|
|
|
|
for (const User *U : C->users())
|
|
if (const Constant *C = dyn_cast<Constant>(U))
|
|
if (usedInGlobalVarDef(C))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool usedInOneFunc(const User *U, Function const *&oneFunc) {
|
|
if (const GlobalVariable *othergv = dyn_cast<GlobalVariable>(U)) {
|
|
if (othergv->getName() == "llvm.used")
|
|
return true;
|
|
}
|
|
|
|
if (const Instruction *instr = dyn_cast<Instruction>(U)) {
|
|
if (instr->getParent() && instr->getParent()->getParent()) {
|
|
const Function *curFunc = instr->getParent()->getParent();
|
|
if (oneFunc && (curFunc != oneFunc))
|
|
return false;
|
|
oneFunc = curFunc;
|
|
return true;
|
|
} else
|
|
return false;
|
|
}
|
|
|
|
for (const User *UU : U->users())
|
|
if (!usedInOneFunc(UU, oneFunc))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Find out if a global variable can be demoted to local scope.
|
|
* Currently, this is valid for CUDA shared variables, which have local
|
|
* scope and global lifetime. So the conditions to check are :
|
|
* 1. Is the global variable in shared address space?
|
|
* 2. Does it have local linkage?
|
|
* 3. Is the global variable referenced only in one function?
|
|
*/
|
|
static bool canDemoteGlobalVar(const GlobalVariable *gv, Function const *&f) {
|
|
if (!gv->hasLocalLinkage())
|
|
return false;
|
|
PointerType *Pty = gv->getType();
|
|
if (Pty->getAddressSpace() != ADDRESS_SPACE_SHARED)
|
|
return false;
|
|
|
|
const Function *oneFunc = nullptr;
|
|
|
|
bool flag = usedInOneFunc(gv, oneFunc);
|
|
if (!flag)
|
|
return false;
|
|
if (!oneFunc)
|
|
return false;
|
|
f = oneFunc;
|
|
return true;
|
|
}
|
|
|
|
static bool useFuncSeen(const Constant *C,
|
|
DenseMap<const Function *, bool> &seenMap) {
|
|
for (const User *U : C->users()) {
|
|
if (const Constant *cu = dyn_cast<Constant>(U)) {
|
|
if (useFuncSeen(cu, seenMap))
|
|
return true;
|
|
} else if (const Instruction *I = dyn_cast<Instruction>(U)) {
|
|
const BasicBlock *bb = I->getParent();
|
|
if (!bb)
|
|
continue;
|
|
const Function *caller = bb->getParent();
|
|
if (!caller)
|
|
continue;
|
|
if (seenMap.contains(caller))
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitDeclarations(const Module &M, raw_ostream &O) {
|
|
DenseMap<const Function *, bool> seenMap;
|
|
for (const Function &F : M) {
|
|
if (F.getAttributes().hasFnAttr("nvptx-libcall-callee")) {
|
|
emitDeclaration(&F, O);
|
|
continue;
|
|
}
|
|
|
|
if (F.isDeclaration()) {
|
|
if (F.use_empty())
|
|
continue;
|
|
if (F.getIntrinsicID())
|
|
continue;
|
|
emitDeclaration(&F, O);
|
|
continue;
|
|
}
|
|
for (const User *U : F.users()) {
|
|
if (const Constant *C = dyn_cast<Constant>(U)) {
|
|
if (usedInGlobalVarDef(C)) {
|
|
// The use is in the initialization of a global variable
|
|
// that is a function pointer, so print a declaration
|
|
// for the original function
|
|
emitDeclaration(&F, O);
|
|
break;
|
|
}
|
|
// Emit a declaration of this function if the function that
|
|
// uses this constant expr has already been seen.
|
|
if (useFuncSeen(C, seenMap)) {
|
|
emitDeclaration(&F, O);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!isa<Instruction>(U))
|
|
continue;
|
|
const Instruction *instr = cast<Instruction>(U);
|
|
const BasicBlock *bb = instr->getParent();
|
|
if (!bb)
|
|
continue;
|
|
const Function *caller = bb->getParent();
|
|
if (!caller)
|
|
continue;
|
|
|
|
// If a caller has already been seen, then the caller is
|
|
// appearing in the module before the callee. so print out
|
|
// a declaration for the callee.
|
|
if (seenMap.contains(caller)) {
|
|
emitDeclaration(&F, O);
|
|
break;
|
|
}
|
|
}
|
|
seenMap[&F] = true;
|
|
}
|
|
for (const GlobalAlias &GA : M.aliases())
|
|
emitAliasDeclaration(&GA, O);
|
|
}
|
|
|
|
static bool isEmptyXXStructor(GlobalVariable *GV) {
|
|
if (!GV) return true;
|
|
const ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
|
|
if (!InitList) return true; // Not an array; we don't know how to parse.
|
|
return InitList->getNumOperands() == 0;
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitStartOfAsmFile(Module &M) {
|
|
// Construct a default subtarget off of the TargetMachine defaults. The
|
|
// rest of NVPTX isn't friendly to change subtargets per function and
|
|
// so the default TargetMachine will have all of the options.
|
|
const NVPTXTargetMachine &NTM = static_cast<const NVPTXTargetMachine &>(TM);
|
|
const auto* STI = static_cast<const NVPTXSubtarget*>(NTM.getSubtargetImpl());
|
|
SmallString<128> Str1;
|
|
raw_svector_ostream OS1(Str1);
|
|
|
|
// Emit header before any dwarf directives are emitted below.
|
|
emitHeader(M, OS1, *STI);
|
|
OutStreamer->emitRawText(OS1.str());
|
|
}
|
|
|
|
bool NVPTXAsmPrinter::doInitialization(Module &M) {
|
|
const NVPTXTargetMachine &NTM = static_cast<const NVPTXTargetMachine &>(TM);
|
|
const NVPTXSubtarget &STI =
|
|
*static_cast<const NVPTXSubtarget *>(NTM.getSubtargetImpl());
|
|
if (M.alias_size() && (STI.getPTXVersion() < 63 || STI.getSmVersion() < 30))
|
|
report_fatal_error(".alias requires PTX version >= 6.3 and sm_30");
|
|
|
|
// OpenMP supports NVPTX global constructors and destructors.
|
|
bool IsOpenMP = M.getModuleFlag("openmp") != nullptr;
|
|
|
|
if (!isEmptyXXStructor(M.getNamedGlobal("llvm.global_ctors")) &&
|
|
!LowerCtorDtor && !IsOpenMP) {
|
|
report_fatal_error(
|
|
"Module has a nontrivial global ctor, which NVPTX does not support.");
|
|
return true; // error
|
|
}
|
|
if (!isEmptyXXStructor(M.getNamedGlobal("llvm.global_dtors")) &&
|
|
!LowerCtorDtor && !IsOpenMP) {
|
|
report_fatal_error(
|
|
"Module has a nontrivial global dtor, which NVPTX does not support.");
|
|
return true; // error
|
|
}
|
|
|
|
// We need to call the parent's one explicitly.
|
|
bool Result = AsmPrinter::doInitialization(M);
|
|
|
|
GlobalsEmitted = false;
|
|
|
|
return Result;
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitGlobals(const Module &M) {
|
|
SmallString<128> Str2;
|
|
raw_svector_ostream OS2(Str2);
|
|
|
|
emitDeclarations(M, OS2);
|
|
|
|
// As ptxas does not support forward references of globals, we need to first
|
|
// sort the list of module-level globals in def-use order. We visit each
|
|
// global variable in order, and ensure that we emit it *after* its dependent
|
|
// globals. We use a little extra memory maintaining both a set and a list to
|
|
// have fast searches while maintaining a strict ordering.
|
|
SmallVector<const GlobalVariable *, 8> Globals;
|
|
DenseSet<const GlobalVariable *> GVVisited;
|
|
DenseSet<const GlobalVariable *> GVVisiting;
|
|
|
|
// Visit each global variable, in order
|
|
for (const GlobalVariable &I : M.globals())
|
|
VisitGlobalVariableForEmission(&I, Globals, GVVisited, GVVisiting);
|
|
|
|
assert(GVVisited.size() == M.global_size() && "Missed a global variable");
|
|
assert(GVVisiting.size() == 0 && "Did not fully process a global variable");
|
|
|
|
const NVPTXTargetMachine &NTM = static_cast<const NVPTXTargetMachine &>(TM);
|
|
const NVPTXSubtarget &STI =
|
|
*static_cast<const NVPTXSubtarget *>(NTM.getSubtargetImpl());
|
|
|
|
// Print out module-level global variables in proper order
|
|
for (unsigned i = 0, e = Globals.size(); i != e; ++i)
|
|
printModuleLevelGV(Globals[i], OS2, /*processDemoted=*/false, STI);
|
|
|
|
OS2 << '\n';
|
|
|
|
OutStreamer->emitRawText(OS2.str());
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitGlobalAlias(const Module &M, const GlobalAlias &GA) {
|
|
SmallString<128> Str;
|
|
raw_svector_ostream OS(Str);
|
|
|
|
MCSymbol *Name = getSymbol(&GA);
|
|
|
|
OS << ".alias " << Name->getName() << ", " << GA.getAliaseeObject()->getName()
|
|
<< ";\n";
|
|
|
|
OutStreamer->emitRawText(OS.str());
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitHeader(Module &M, raw_ostream &O,
|
|
const NVPTXSubtarget &STI) {
|
|
O << "//\n";
|
|
O << "// Generated by LLVM NVPTX Back-End\n";
|
|
O << "//\n";
|
|
O << "\n";
|
|
|
|
unsigned PTXVersion = STI.getPTXVersion();
|
|
O << ".version " << (PTXVersion / 10) << "." << (PTXVersion % 10) << "\n";
|
|
|
|
O << ".target ";
|
|
O << STI.getTargetName();
|
|
|
|
const NVPTXTargetMachine &NTM = static_cast<const NVPTXTargetMachine &>(TM);
|
|
if (NTM.getDrvInterface() == NVPTX::NVCL)
|
|
O << ", texmode_independent";
|
|
|
|
bool HasFullDebugInfo = false;
|
|
for (DICompileUnit *CU : M.debug_compile_units()) {
|
|
switch(CU->getEmissionKind()) {
|
|
case DICompileUnit::NoDebug:
|
|
case DICompileUnit::DebugDirectivesOnly:
|
|
break;
|
|
case DICompileUnit::LineTablesOnly:
|
|
case DICompileUnit::FullDebug:
|
|
HasFullDebugInfo = true;
|
|
break;
|
|
}
|
|
if (HasFullDebugInfo)
|
|
break;
|
|
}
|
|
if (MMI && MMI->hasDebugInfo() && HasFullDebugInfo)
|
|
O << ", debug";
|
|
|
|
O << "\n";
|
|
|
|
O << ".address_size ";
|
|
if (NTM.is64Bit())
|
|
O << "64";
|
|
else
|
|
O << "32";
|
|
O << "\n";
|
|
|
|
O << "\n";
|
|
}
|
|
|
|
bool NVPTXAsmPrinter::doFinalization(Module &M) {
|
|
bool HasDebugInfo = MMI && MMI->hasDebugInfo();
|
|
|
|
// If we did not emit any functions, then the global declarations have not
|
|
// yet been emitted.
|
|
if (!GlobalsEmitted) {
|
|
emitGlobals(M);
|
|
GlobalsEmitted = true;
|
|
}
|
|
|
|
// call doFinalization
|
|
bool ret = AsmPrinter::doFinalization(M);
|
|
|
|
clearAnnotationCache(&M);
|
|
|
|
auto *TS =
|
|
static_cast<NVPTXTargetStreamer *>(OutStreamer->getTargetStreamer());
|
|
// Close the last emitted section
|
|
if (HasDebugInfo) {
|
|
TS->closeLastSection();
|
|
// Emit empty .debug_loc section for better support of the empty files.
|
|
OutStreamer->emitRawText("\t.section\t.debug_loc\t{\t}");
|
|
}
|
|
|
|
// Output last DWARF .file directives, if any.
|
|
TS->outputDwarfFileDirectives();
|
|
|
|
return ret;
|
|
}
|
|
|
|
// This function emits appropriate linkage directives for
|
|
// functions and global variables.
|
|
//
|
|
// extern function declaration -> .extern
|
|
// extern function definition -> .visible
|
|
// external global variable with init -> .visible
|
|
// external without init -> .extern
|
|
// appending -> not allowed, assert.
|
|
// for any linkage other than
|
|
// internal, private, linker_private,
|
|
// linker_private_weak, linker_private_weak_def_auto,
|
|
// we emit -> .weak.
|
|
|
|
void NVPTXAsmPrinter::emitLinkageDirective(const GlobalValue *V,
|
|
raw_ostream &O) {
|
|
if (static_cast<NVPTXTargetMachine &>(TM).getDrvInterface() == NVPTX::CUDA) {
|
|
if (V->hasExternalLinkage()) {
|
|
if (isa<GlobalVariable>(V)) {
|
|
const GlobalVariable *GVar = cast<GlobalVariable>(V);
|
|
if (GVar) {
|
|
if (GVar->hasInitializer())
|
|
O << ".visible ";
|
|
else
|
|
O << ".extern ";
|
|
}
|
|
} else if (V->isDeclaration())
|
|
O << ".extern ";
|
|
else
|
|
O << ".visible ";
|
|
} else if (V->hasAppendingLinkage()) {
|
|
std::string msg;
|
|
msg.append("Error: ");
|
|
msg.append("Symbol ");
|
|
if (V->hasName())
|
|
msg.append(std::string(V->getName()));
|
|
msg.append("has unsupported appending linkage type");
|
|
llvm_unreachable(msg.c_str());
|
|
} else if (!V->hasInternalLinkage() &&
|
|
!V->hasPrivateLinkage()) {
|
|
O << ".weak ";
|
|
}
|
|
}
|
|
}
|
|
|
|
void NVPTXAsmPrinter::printModuleLevelGV(const GlobalVariable *GVar,
|
|
raw_ostream &O, bool processDemoted,
|
|
const NVPTXSubtarget &STI) {
|
|
// Skip meta data
|
|
if (GVar->hasSection()) {
|
|
if (GVar->getSection() == "llvm.metadata")
|
|
return;
|
|
}
|
|
|
|
// Skip LLVM intrinsic global variables
|
|
if (GVar->getName().starts_with("llvm.") ||
|
|
GVar->getName().starts_with("nvvm."))
|
|
return;
|
|
|
|
const DataLayout &DL = getDataLayout();
|
|
|
|
// GlobalVariables are always constant pointers themselves.
|
|
Type *ETy = GVar->getValueType();
|
|
|
|
if (GVar->hasExternalLinkage()) {
|
|
if (GVar->hasInitializer())
|
|
O << ".visible ";
|
|
else
|
|
O << ".extern ";
|
|
} else if (STI.getPTXVersion() >= 50 && GVar->hasCommonLinkage() &&
|
|
GVar->getAddressSpace() == ADDRESS_SPACE_GLOBAL) {
|
|
O << ".common ";
|
|
} else if (GVar->hasLinkOnceLinkage() || GVar->hasWeakLinkage() ||
|
|
GVar->hasAvailableExternallyLinkage() ||
|
|
GVar->hasCommonLinkage()) {
|
|
O << ".weak ";
|
|
}
|
|
|
|
if (isTexture(*GVar)) {
|
|
O << ".global .texref " << getTextureName(*GVar) << ";\n";
|
|
return;
|
|
}
|
|
|
|
if (isSurface(*GVar)) {
|
|
O << ".global .surfref " << getSurfaceName(*GVar) << ";\n";
|
|
return;
|
|
}
|
|
|
|
if (GVar->isDeclaration()) {
|
|
// (extern) declarations, no definition or initializer
|
|
// Currently the only known declaration is for an automatic __local
|
|
// (.shared) promoted to global.
|
|
emitPTXGlobalVariable(GVar, O, STI);
|
|
O << ";\n";
|
|
return;
|
|
}
|
|
|
|
if (isSampler(*GVar)) {
|
|
O << ".global .samplerref " << getSamplerName(*GVar);
|
|
|
|
const Constant *Initializer = nullptr;
|
|
if (GVar->hasInitializer())
|
|
Initializer = GVar->getInitializer();
|
|
const ConstantInt *CI = nullptr;
|
|
if (Initializer)
|
|
CI = dyn_cast<ConstantInt>(Initializer);
|
|
if (CI) {
|
|
unsigned sample = CI->getZExtValue();
|
|
|
|
O << " = { ";
|
|
|
|
for (int i = 0,
|
|
addr = ((sample & __CLK_ADDRESS_MASK) >> __CLK_ADDRESS_BASE);
|
|
i < 3; i++) {
|
|
O << "addr_mode_" << i << " = ";
|
|
switch (addr) {
|
|
case 0:
|
|
O << "wrap";
|
|
break;
|
|
case 1:
|
|
O << "clamp_to_border";
|
|
break;
|
|
case 2:
|
|
O << "clamp_to_edge";
|
|
break;
|
|
case 3:
|
|
O << "wrap";
|
|
break;
|
|
case 4:
|
|
O << "mirror";
|
|
break;
|
|
}
|
|
O << ", ";
|
|
}
|
|
O << "filter_mode = ";
|
|
switch ((sample & __CLK_FILTER_MASK) >> __CLK_FILTER_BASE) {
|
|
case 0:
|
|
O << "nearest";
|
|
break;
|
|
case 1:
|
|
O << "linear";
|
|
break;
|
|
case 2:
|
|
llvm_unreachable("Anisotropic filtering is not supported");
|
|
default:
|
|
O << "nearest";
|
|
break;
|
|
}
|
|
if (!((sample & __CLK_NORMALIZED_MASK) >> __CLK_NORMALIZED_BASE)) {
|
|
O << ", force_unnormalized_coords = 1";
|
|
}
|
|
O << " }";
|
|
}
|
|
|
|
O << ";\n";
|
|
return;
|
|
}
|
|
|
|
if (GVar->hasPrivateLinkage()) {
|
|
if (strncmp(GVar->getName().data(), "unrollpragma", 12) == 0)
|
|
return;
|
|
|
|
// FIXME - need better way (e.g. Metadata) to avoid generating this global
|
|
if (strncmp(GVar->getName().data(), "filename", 8) == 0)
|
|
return;
|
|
if (GVar->use_empty())
|
|
return;
|
|
}
|
|
|
|
const Function *demotedFunc = nullptr;
|
|
if (!processDemoted && canDemoteGlobalVar(GVar, demotedFunc)) {
|
|
O << "// " << GVar->getName() << " has been demoted\n";
|
|
if (localDecls.find(demotedFunc) != localDecls.end())
|
|
localDecls[demotedFunc].push_back(GVar);
|
|
else {
|
|
std::vector<const GlobalVariable *> temp;
|
|
temp.push_back(GVar);
|
|
localDecls[demotedFunc] = temp;
|
|
}
|
|
return;
|
|
}
|
|
|
|
O << ".";
|
|
emitPTXAddressSpace(GVar->getAddressSpace(), O);
|
|
|
|
if (isManaged(*GVar)) {
|
|
if (STI.getPTXVersion() < 40 || STI.getSmVersion() < 30) {
|
|
report_fatal_error(
|
|
".attribute(.managed) requires PTX version >= 4.0 and sm_30");
|
|
}
|
|
O << " .attribute(.managed)";
|
|
}
|
|
|
|
if (MaybeAlign A = GVar->getAlign())
|
|
O << " .align " << A->value();
|
|
else
|
|
O << " .align " << (int)DL.getPrefTypeAlign(ETy).value();
|
|
|
|
if (ETy->isFloatingPointTy() || ETy->isPointerTy() ||
|
|
(ETy->isIntegerTy() && ETy->getScalarSizeInBits() <= 64)) {
|
|
O << " .";
|
|
// Special case: ABI requires that we use .u8 for predicates
|
|
if (ETy->isIntegerTy(1))
|
|
O << "u8";
|
|
else
|
|
O << getPTXFundamentalTypeStr(ETy, false);
|
|
O << " ";
|
|
getSymbol(GVar)->print(O, MAI);
|
|
|
|
// Ptx allows variable initilization only for constant and global state
|
|
// spaces.
|
|
if (GVar->hasInitializer()) {
|
|
if ((GVar->getAddressSpace() == ADDRESS_SPACE_GLOBAL) ||
|
|
(GVar->getAddressSpace() == ADDRESS_SPACE_CONST)) {
|
|
const Constant *Initializer = GVar->getInitializer();
|
|
// 'undef' is treated as there is no value specified.
|
|
if (!Initializer->isNullValue() && !isa<UndefValue>(Initializer)) {
|
|
O << " = ";
|
|
printScalarConstant(Initializer, O);
|
|
}
|
|
} else {
|
|
// The frontend adds zero-initializer to device and constant variables
|
|
// that don't have an initial value, and UndefValue to shared
|
|
// variables, so skip warning for this case.
|
|
if (!GVar->getInitializer()->isNullValue() &&
|
|
!isa<UndefValue>(GVar->getInitializer())) {
|
|
report_fatal_error("initial value of '" + GVar->getName() +
|
|
"' is not allowed in addrspace(" +
|
|
Twine(GVar->getAddressSpace()) + ")");
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
uint64_t ElementSize = 0;
|
|
|
|
// Although PTX has direct support for struct type and array type and
|
|
// LLVM IR is very similar to PTX, the LLVM CodeGen does not support for
|
|
// targets that support these high level field accesses. Structs, arrays
|
|
// and vectors are lowered into arrays of bytes.
|
|
switch (ETy->getTypeID()) {
|
|
case Type::IntegerTyID: // Integers larger than 64 bits
|
|
case Type::StructTyID:
|
|
case Type::ArrayTyID:
|
|
case Type::FixedVectorTyID:
|
|
ElementSize = DL.getTypeStoreSize(ETy);
|
|
// Ptx allows variable initilization only for constant and
|
|
// global state spaces.
|
|
if (((GVar->getAddressSpace() == ADDRESS_SPACE_GLOBAL) ||
|
|
(GVar->getAddressSpace() == ADDRESS_SPACE_CONST)) &&
|
|
GVar->hasInitializer()) {
|
|
const Constant *Initializer = GVar->getInitializer();
|
|
if (!isa<UndefValue>(Initializer) && !Initializer->isNullValue()) {
|
|
AggBuffer aggBuffer(ElementSize, *this);
|
|
bufferAggregateConstant(Initializer, &aggBuffer);
|
|
if (aggBuffer.numSymbols()) {
|
|
unsigned int ptrSize = MAI->getCodePointerSize();
|
|
if (ElementSize % ptrSize ||
|
|
!aggBuffer.allSymbolsAligned(ptrSize)) {
|
|
// Print in bytes and use the mask() operator for pointers.
|
|
if (!STI.hasMaskOperator())
|
|
report_fatal_error(
|
|
"initialized packed aggregate with pointers '" +
|
|
GVar->getName() +
|
|
"' requires at least PTX ISA version 7.1");
|
|
O << " .u8 ";
|
|
getSymbol(GVar)->print(O, MAI);
|
|
O << "[" << ElementSize << "] = {";
|
|
aggBuffer.printBytes(O);
|
|
O << "}";
|
|
} else {
|
|
O << " .u" << ptrSize * 8 << " ";
|
|
getSymbol(GVar)->print(O, MAI);
|
|
O << "[" << ElementSize / ptrSize << "] = {";
|
|
aggBuffer.printWords(O);
|
|
O << "}";
|
|
}
|
|
} else {
|
|
O << " .b8 ";
|
|
getSymbol(GVar)->print(O, MAI);
|
|
O << "[" << ElementSize << "] = {";
|
|
aggBuffer.printBytes(O);
|
|
O << "}";
|
|
}
|
|
} else {
|
|
O << " .b8 ";
|
|
getSymbol(GVar)->print(O, MAI);
|
|
if (ElementSize) {
|
|
O << "[";
|
|
O << ElementSize;
|
|
O << "]";
|
|
}
|
|
}
|
|
} else {
|
|
O << " .b8 ";
|
|
getSymbol(GVar)->print(O, MAI);
|
|
if (ElementSize) {
|
|
O << "[";
|
|
O << ElementSize;
|
|
O << "]";
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
llvm_unreachable("type not supported yet");
|
|
}
|
|
}
|
|
O << ";\n";
|
|
}
|
|
|
|
void NVPTXAsmPrinter::AggBuffer::printSymbol(unsigned nSym, raw_ostream &os) {
|
|
const Value *v = Symbols[nSym];
|
|
const Value *v0 = SymbolsBeforeStripping[nSym];
|
|
if (const GlobalValue *GVar = dyn_cast<GlobalValue>(v)) {
|
|
MCSymbol *Name = AP.getSymbol(GVar);
|
|
PointerType *PTy = dyn_cast<PointerType>(v0->getType());
|
|
// Is v0 a generic pointer?
|
|
bool isGenericPointer = PTy && PTy->getAddressSpace() == 0;
|
|
if (EmitGeneric && isGenericPointer && !isa<Function>(v)) {
|
|
os << "generic(";
|
|
Name->print(os, AP.MAI);
|
|
os << ")";
|
|
} else {
|
|
Name->print(os, AP.MAI);
|
|
}
|
|
} else if (const ConstantExpr *CExpr = dyn_cast<ConstantExpr>(v0)) {
|
|
const MCExpr *Expr = AP.lowerConstantForGV(cast<Constant>(CExpr), false);
|
|
AP.printMCExpr(*Expr, os);
|
|
} else
|
|
llvm_unreachable("symbol type unknown");
|
|
}
|
|
|
|
void NVPTXAsmPrinter::AggBuffer::printBytes(raw_ostream &os) {
|
|
unsigned int ptrSize = AP.MAI->getCodePointerSize();
|
|
// Do not emit trailing zero initializers. They will be zero-initialized by
|
|
// ptxas. This saves on both space requirements for the generated PTX and on
|
|
// memory use by ptxas. (See:
|
|
// https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#global-state-space)
|
|
unsigned int InitializerCount = size;
|
|
// TODO: symbols make this harder, but it would still be good to trim trailing
|
|
// 0s for aggs with symbols as well.
|
|
if (numSymbols() == 0)
|
|
while (InitializerCount >= 1 && !buffer[InitializerCount - 1])
|
|
InitializerCount--;
|
|
|
|
symbolPosInBuffer.push_back(InitializerCount);
|
|
unsigned int nSym = 0;
|
|
unsigned int nextSymbolPos = symbolPosInBuffer[nSym];
|
|
for (unsigned int pos = 0; pos < InitializerCount;) {
|
|
if (pos)
|
|
os << ", ";
|
|
if (pos != nextSymbolPos) {
|
|
os << (unsigned int)buffer[pos];
|
|
++pos;
|
|
continue;
|
|
}
|
|
// Generate a per-byte mask() operator for the symbol, which looks like:
|
|
// .global .u8 addr[] = {0xFF(foo), 0xFF00(foo), 0xFF0000(foo), ...};
|
|
// See https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#initializers
|
|
std::string symText;
|
|
llvm::raw_string_ostream oss(symText);
|
|
printSymbol(nSym, oss);
|
|
for (unsigned i = 0; i < ptrSize; ++i) {
|
|
if (i)
|
|
os << ", ";
|
|
llvm::write_hex(os, 0xFFULL << i * 8, HexPrintStyle::PrefixUpper);
|
|
os << "(" << symText << ")";
|
|
}
|
|
pos += ptrSize;
|
|
nextSymbolPos = symbolPosInBuffer[++nSym];
|
|
assert(nextSymbolPos >= pos);
|
|
}
|
|
}
|
|
|
|
void NVPTXAsmPrinter::AggBuffer::printWords(raw_ostream &os) {
|
|
unsigned int ptrSize = AP.MAI->getCodePointerSize();
|
|
symbolPosInBuffer.push_back(size);
|
|
unsigned int nSym = 0;
|
|
unsigned int nextSymbolPos = symbolPosInBuffer[nSym];
|
|
assert(nextSymbolPos % ptrSize == 0);
|
|
for (unsigned int pos = 0; pos < size; pos += ptrSize) {
|
|
if (pos)
|
|
os << ", ";
|
|
if (pos == nextSymbolPos) {
|
|
printSymbol(nSym, os);
|
|
nextSymbolPos = symbolPosInBuffer[++nSym];
|
|
assert(nextSymbolPos % ptrSize == 0);
|
|
assert(nextSymbolPos >= pos + ptrSize);
|
|
} else if (ptrSize == 4)
|
|
os << support::endian::read32le(&buffer[pos]);
|
|
else
|
|
os << support::endian::read64le(&buffer[pos]);
|
|
}
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitDemotedVars(const Function *f, raw_ostream &O) {
|
|
if (localDecls.find(f) == localDecls.end())
|
|
return;
|
|
|
|
std::vector<const GlobalVariable *> &gvars = localDecls[f];
|
|
|
|
const NVPTXTargetMachine &NTM = static_cast<const NVPTXTargetMachine &>(TM);
|
|
const NVPTXSubtarget &STI =
|
|
*static_cast<const NVPTXSubtarget *>(NTM.getSubtargetImpl());
|
|
|
|
for (const GlobalVariable *GV : gvars) {
|
|
O << "\t// demoted variable\n\t";
|
|
printModuleLevelGV(GV, O, /*processDemoted=*/true, STI);
|
|
}
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitPTXAddressSpace(unsigned int AddressSpace,
|
|
raw_ostream &O) const {
|
|
switch (AddressSpace) {
|
|
case ADDRESS_SPACE_LOCAL:
|
|
O << "local";
|
|
break;
|
|
case ADDRESS_SPACE_GLOBAL:
|
|
O << "global";
|
|
break;
|
|
case ADDRESS_SPACE_CONST:
|
|
O << "const";
|
|
break;
|
|
case ADDRESS_SPACE_SHARED:
|
|
O << "shared";
|
|
break;
|
|
default:
|
|
report_fatal_error("Bad address space found while emitting PTX: " +
|
|
llvm::Twine(AddressSpace));
|
|
break;
|
|
}
|
|
}
|
|
|
|
std::string
|
|
NVPTXAsmPrinter::getPTXFundamentalTypeStr(Type *Ty, bool useB4PTR) const {
|
|
switch (Ty->getTypeID()) {
|
|
case Type::IntegerTyID: {
|
|
unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
|
|
if (NumBits == 1)
|
|
return "pred";
|
|
else if (NumBits <= 64) {
|
|
std::string name = "u";
|
|
return name + utostr(NumBits);
|
|
} else {
|
|
llvm_unreachable("Integer too large");
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case Type::BFloatTyID:
|
|
case Type::HalfTyID:
|
|
// fp16 and bf16 are stored as .b16 for compatibility with pre-sm_53
|
|
// PTX assembly.
|
|
return "b16";
|
|
case Type::FloatTyID:
|
|
return "f32";
|
|
case Type::DoubleTyID:
|
|
return "f64";
|
|
case Type::PointerTyID: {
|
|
unsigned PtrSize = TM.getPointerSizeInBits(Ty->getPointerAddressSpace());
|
|
assert((PtrSize == 64 || PtrSize == 32) && "Unexpected pointer size");
|
|
|
|
if (PtrSize == 64)
|
|
if (useB4PTR)
|
|
return "b64";
|
|
else
|
|
return "u64";
|
|
else if (useB4PTR)
|
|
return "b32";
|
|
else
|
|
return "u32";
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
llvm_unreachable("unexpected type");
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitPTXGlobalVariable(const GlobalVariable *GVar,
|
|
raw_ostream &O,
|
|
const NVPTXSubtarget &STI) {
|
|
const DataLayout &DL = getDataLayout();
|
|
|
|
// GlobalVariables are always constant pointers themselves.
|
|
Type *ETy = GVar->getValueType();
|
|
|
|
O << ".";
|
|
emitPTXAddressSpace(GVar->getType()->getAddressSpace(), O);
|
|
if (isManaged(*GVar)) {
|
|
if (STI.getPTXVersion() < 40 || STI.getSmVersion() < 30) {
|
|
report_fatal_error(
|
|
".attribute(.managed) requires PTX version >= 4.0 and sm_30");
|
|
}
|
|
O << " .attribute(.managed)";
|
|
}
|
|
if (MaybeAlign A = GVar->getAlign())
|
|
O << " .align " << A->value();
|
|
else
|
|
O << " .align " << (int)DL.getPrefTypeAlign(ETy).value();
|
|
|
|
// Special case for i128
|
|
if (ETy->isIntegerTy(128)) {
|
|
O << " .b8 ";
|
|
getSymbol(GVar)->print(O, MAI);
|
|
O << "[16]";
|
|
return;
|
|
}
|
|
|
|
if (ETy->isFloatingPointTy() || ETy->isIntOrPtrTy()) {
|
|
O << " .";
|
|
O << getPTXFundamentalTypeStr(ETy);
|
|
O << " ";
|
|
getSymbol(GVar)->print(O, MAI);
|
|
return;
|
|
}
|
|
|
|
int64_t ElementSize = 0;
|
|
|
|
// Although PTX has direct support for struct type and array type and LLVM IR
|
|
// is very similar to PTX, the LLVM CodeGen does not support for targets that
|
|
// support these high level field accesses. Structs and arrays are lowered
|
|
// into arrays of bytes.
|
|
switch (ETy->getTypeID()) {
|
|
case Type::StructTyID:
|
|
case Type::ArrayTyID:
|
|
case Type::FixedVectorTyID:
|
|
ElementSize = DL.getTypeStoreSize(ETy);
|
|
O << " .b8 ";
|
|
getSymbol(GVar)->print(O, MAI);
|
|
O << "[";
|
|
if (ElementSize) {
|
|
O << ElementSize;
|
|
}
|
|
O << "]";
|
|
break;
|
|
default:
|
|
llvm_unreachable("type not supported yet");
|
|
}
|
|
}
|
|
|
|
void NVPTXAsmPrinter::emitFunctionParamList(const Function *F, raw_ostream &O) {
|
|
const DataLayout &DL = getDataLayout();
|
|
const AttributeList &PAL = F->getAttributes();
|
|
const NVPTXSubtarget &STI = TM.getSubtarget<NVPTXSubtarget>(*F);
|
|
const auto *TLI = cast<NVPTXTargetLowering>(STI.getTargetLowering());
|
|
|
|
Function::const_arg_iterator I, E;
|
|
unsigned paramIndex = 0;
|
|
bool first = true;
|
|
bool isKernelFunc = isKernelFunction(*F);
|
|
bool isABI = (STI.getSmVersion() >= 20);
|
|
bool hasImageHandles = STI.hasImageHandles();
|
|
|
|
if (F->arg_empty() && !F->isVarArg()) {
|
|
O << "()";
|
|
return;
|
|
}
|
|
|
|
O << "(\n";
|
|
|
|
for (I = F->arg_begin(), E = F->arg_end(); I != E; ++I, paramIndex++) {
|
|
Type *Ty = I->getType();
|
|
|
|
if (!first)
|
|
O << ",\n";
|
|
|
|
first = false;
|
|
|
|
// Handle image/sampler parameters
|
|
if (isKernelFunction(*F)) {
|
|
if (isSampler(*I) || isImage(*I)) {
|
|
if (isImage(*I)) {
|
|
if (isImageWriteOnly(*I) || isImageReadWrite(*I)) {
|
|
if (hasImageHandles)
|
|
O << "\t.param .u64 .ptr .surfref ";
|
|
else
|
|
O << "\t.param .surfref ";
|
|
O << TLI->getParamName(F, paramIndex);
|
|
}
|
|
else { // Default image is read_only
|
|
if (hasImageHandles)
|
|
O << "\t.param .u64 .ptr .texref ";
|
|
else
|
|
O << "\t.param .texref ";
|
|
O << TLI->getParamName(F, paramIndex);
|
|
}
|
|
} else {
|
|
if (hasImageHandles)
|
|
O << "\t.param .u64 .ptr .samplerref ";
|
|
else
|
|
O << "\t.param .samplerref ";
|
|
O << TLI->getParamName(F, paramIndex);
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
|
|
auto getOptimalAlignForParam = [TLI, &DL, &PAL, F,
|
|
paramIndex](Type *Ty) -> Align {
|
|
Align TypeAlign = TLI->getFunctionParamOptimizedAlign(F, Ty, DL);
|
|
MaybeAlign ParamAlign = PAL.getParamAlignment(paramIndex);
|
|
return std::max(TypeAlign, ParamAlign.valueOrOne());
|
|
};
|
|
|
|
if (!PAL.hasParamAttr(paramIndex, Attribute::ByVal)) {
|
|
if (ShouldPassAsArray(Ty)) {
|
|
// Just print .param .align <a> .b8 .param[size];
|
|
// <a> = optimal alignment for the element type; always multiple of
|
|
// PAL.getParamAlignment
|
|
// size = typeallocsize of element type
|
|
Align OptimalAlign = getOptimalAlignForParam(Ty);
|
|
|
|
O << "\t.param .align " << OptimalAlign.value() << " .b8 ";
|
|
O << TLI->getParamName(F, paramIndex);
|
|
O << "[" << DL.getTypeAllocSize(Ty) << "]";
|
|
|
|
continue;
|
|
}
|
|
// Just a scalar
|
|
auto *PTy = dyn_cast<PointerType>(Ty);
|
|
unsigned PTySizeInBits = 0;
|
|
if (PTy) {
|
|
PTySizeInBits =
|
|
TLI->getPointerTy(DL, PTy->getAddressSpace()).getSizeInBits();
|
|
assert(PTySizeInBits && "Invalid pointer size");
|
|
}
|
|
|
|
if (isKernelFunc) {
|
|
if (PTy) {
|
|
// Special handling for pointer arguments to kernel
|
|
O << "\t.param .u" << PTySizeInBits << " ";
|
|
|
|
if (static_cast<NVPTXTargetMachine &>(TM).getDrvInterface() !=
|
|
NVPTX::CUDA) {
|
|
int addrSpace = PTy->getAddressSpace();
|
|
switch (addrSpace) {
|
|
default:
|
|
O << ".ptr ";
|
|
break;
|
|
case ADDRESS_SPACE_CONST:
|
|
O << ".ptr .const ";
|
|
break;
|
|
case ADDRESS_SPACE_SHARED:
|
|
O << ".ptr .shared ";
|
|
break;
|
|
case ADDRESS_SPACE_GLOBAL:
|
|
O << ".ptr .global ";
|
|
break;
|
|
}
|
|
Align ParamAlign = I->getParamAlign().valueOrOne();
|
|
O << ".align " << ParamAlign.value() << " ";
|
|
}
|
|
O << TLI->getParamName(F, paramIndex);
|
|
continue;
|
|
}
|
|
|
|
// non-pointer scalar to kernel func
|
|
O << "\t.param .";
|
|
// Special case: predicate operands become .u8 types
|
|
if (Ty->isIntegerTy(1))
|
|
O << "u8";
|
|
else
|
|
O << getPTXFundamentalTypeStr(Ty);
|
|
O << " ";
|
|
O << TLI->getParamName(F, paramIndex);
|
|
continue;
|
|
}
|
|
// Non-kernel function, just print .param .b<size> for ABI
|
|
// and .reg .b<size> for non-ABI
|
|
unsigned sz = 0;
|
|
if (isa<IntegerType>(Ty)) {
|
|
sz = cast<IntegerType>(Ty)->getBitWidth();
|
|
sz = promoteScalarArgumentSize(sz);
|
|
} else if (PTy) {
|
|
assert(PTySizeInBits && "Invalid pointer size");
|
|
sz = PTySizeInBits;
|
|
} else
|
|
sz = Ty->getPrimitiveSizeInBits();
|
|
if (isABI)
|
|
O << "\t.param .b" << sz << " ";
|
|
else
|
|
O << "\t.reg .b" << sz << " ";
|
|
O << TLI->getParamName(F, paramIndex);
|
|
continue;
|
|
}
|
|
|
|
// param has byVal attribute.
|
|
Type *ETy = PAL.getParamByValType(paramIndex);
|
|
assert(ETy && "Param should have byval type");
|
|
|
|
if (isABI || isKernelFunc) {
|
|
// Just print .param .align <a> .b8 .param[size];
|
|
// <a> = optimal alignment for the element type; always multiple of
|
|
// PAL.getParamAlignment
|
|
// size = typeallocsize of element type
|
|
Align OptimalAlign =
|
|
isKernelFunc
|
|
? getOptimalAlignForParam(ETy)
|
|
: TLI->getFunctionByValParamAlign(
|
|
F, ETy, PAL.getParamAlignment(paramIndex).valueOrOne(), DL);
|
|
|
|
unsigned sz = DL.getTypeAllocSize(ETy);
|
|
O << "\t.param .align " << OptimalAlign.value() << " .b8 ";
|
|
O << TLI->getParamName(F, paramIndex);
|
|
O << "[" << sz << "]";
|
|
continue;
|
|
} else {
|
|
// Split the ETy into constituent parts and
|
|
// print .param .b<size> <name> for each part.
|
|
// Further, if a part is vector, print the above for
|
|
// each vector element.
|
|
SmallVector<EVT, 16> vtparts;
|
|
ComputeValueVTs(*TLI, DL, ETy, vtparts);
|
|
for (unsigned i = 0, e = vtparts.size(); i != e; ++i) {
|
|
unsigned elems = 1;
|
|
EVT elemtype = vtparts[i];
|
|
if (vtparts[i].isVector()) {
|
|
elems = vtparts[i].getVectorNumElements();
|
|
elemtype = vtparts[i].getVectorElementType();
|
|
}
|
|
|
|
for (unsigned j = 0, je = elems; j != je; ++j) {
|
|
unsigned sz = elemtype.getSizeInBits();
|
|
if (elemtype.isInteger())
|
|
sz = promoteScalarArgumentSize(sz);
|
|
O << "\t.reg .b" << sz << " ";
|
|
O << TLI->getParamName(F, paramIndex);
|
|
if (j < je - 1)
|
|
O << ",\n";
|
|
++paramIndex;
|
|
}
|
|
if (i < e - 1)
|
|
O << ",\n";
|
|
}
|
|
--paramIndex;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (F->isVarArg()) {
|
|
if (!first)
|
|
O << ",\n";
|
|
O << "\t.param .align " << STI.getMaxRequiredAlignment();
|
|
O << " .b8 ";
|
|
O << TLI->getParamName(F, /* vararg */ -1) << "[]";
|
|
}
|
|
|
|
O << "\n)";
|
|
}
|
|
|
|
void NVPTXAsmPrinter::setAndEmitFunctionVirtualRegisters(
|
|
const MachineFunction &MF) {
|
|
SmallString<128> Str;
|
|
raw_svector_ostream O(Str);
|
|
|
|
// Map the global virtual register number to a register class specific
|
|
// virtual register number starting from 1 with that class.
|
|
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
|
|
//unsigned numRegClasses = TRI->getNumRegClasses();
|
|
|
|
// Emit the Fake Stack Object
|
|
const MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
int64_t NumBytes = MFI.getStackSize();
|
|
if (NumBytes) {
|
|
O << "\t.local .align " << MFI.getMaxAlign().value() << " .b8 \t"
|
|
<< DEPOTNAME << getFunctionNumber() << "[" << NumBytes << "];\n";
|
|
if (static_cast<const NVPTXTargetMachine &>(MF.getTarget()).is64Bit()) {
|
|
O << "\t.reg .b64 \t%SP;\n";
|
|
O << "\t.reg .b64 \t%SPL;\n";
|
|
} else {
|
|
O << "\t.reg .b32 \t%SP;\n";
|
|
O << "\t.reg .b32 \t%SPL;\n";
|
|
}
|
|
}
|
|
|
|
// Go through all virtual registers to establish the mapping between the
|
|
// global virtual
|
|
// register number and the per class virtual register number.
|
|
// We use the per class virtual register number in the ptx output.
|
|
unsigned int numVRs = MRI->getNumVirtRegs();
|
|
for (unsigned i = 0; i < numVRs; i++) {
|
|
Register vr = Register::index2VirtReg(i);
|
|
const TargetRegisterClass *RC = MRI->getRegClass(vr);
|
|
DenseMap<unsigned, unsigned> ®map = VRegMapping[RC];
|
|
int n = regmap.size();
|
|
regmap.insert(std::make_pair(vr, n + 1));
|
|
}
|
|
|
|
// Emit register declarations
|
|
// @TODO: Extract out the real register usage
|
|
// O << "\t.reg .pred %p<" << NVPTXNumRegisters << ">;\n";
|
|
// O << "\t.reg .s16 %rc<" << NVPTXNumRegisters << ">;\n";
|
|
// O << "\t.reg .s16 %rs<" << NVPTXNumRegisters << ">;\n";
|
|
// O << "\t.reg .s32 %r<" << NVPTXNumRegisters << ">;\n";
|
|
// O << "\t.reg .s64 %rd<" << NVPTXNumRegisters << ">;\n";
|
|
// O << "\t.reg .f32 %f<" << NVPTXNumRegisters << ">;\n";
|
|
// O << "\t.reg .f64 %fd<" << NVPTXNumRegisters << ">;\n";
|
|
|
|
// Emit declaration of the virtual registers or 'physical' registers for
|
|
// each register class
|
|
for (unsigned i=0; i< TRI->getNumRegClasses(); i++) {
|
|
const TargetRegisterClass *RC = TRI->getRegClass(i);
|
|
DenseMap<unsigned, unsigned> ®map = VRegMapping[RC];
|
|
std::string rcname = getNVPTXRegClassName(RC);
|
|
std::string rcStr = getNVPTXRegClassStr(RC);
|
|
int n = regmap.size();
|
|
|
|
// Only declare those registers that may be used.
|
|
if (n) {
|
|
O << "\t.reg " << rcname << " \t" << rcStr << "<" << (n+1)
|
|
<< ">;\n";
|
|
}
|
|
}
|
|
|
|
OutStreamer->emitRawText(O.str());
|
|
}
|
|
|
|
void NVPTXAsmPrinter::printFPConstant(const ConstantFP *Fp, raw_ostream &O) {
|
|
APFloat APF = APFloat(Fp->getValueAPF()); // make a copy
|
|
bool ignored;
|
|
unsigned int numHex;
|
|
const char *lead;
|
|
|
|
if (Fp->getType()->getTypeID() == Type::FloatTyID) {
|
|
numHex = 8;
|
|
lead = "0f";
|
|
APF.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &ignored);
|
|
} else if (Fp->getType()->getTypeID() == Type::DoubleTyID) {
|
|
numHex = 16;
|
|
lead = "0d";
|
|
APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &ignored);
|
|
} else
|
|
llvm_unreachable("unsupported fp type");
|
|
|
|
APInt API = APF.bitcastToAPInt();
|
|
O << lead << format_hex_no_prefix(API.getZExtValue(), numHex, /*Upper=*/true);
|
|
}
|
|
|
|
void NVPTXAsmPrinter::printScalarConstant(const Constant *CPV, raw_ostream &O) {
|
|
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
|
|
O << CI->getValue();
|
|
return;
|
|
}
|
|
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CPV)) {
|
|
printFPConstant(CFP, O);
|
|
return;
|
|
}
|
|
if (isa<ConstantPointerNull>(CPV)) {
|
|
O << "0";
|
|
return;
|
|
}
|
|
if (const GlobalValue *GVar = dyn_cast<GlobalValue>(CPV)) {
|
|
bool IsNonGenericPointer = false;
|
|
if (GVar->getType()->getAddressSpace() != 0) {
|
|
IsNonGenericPointer = true;
|
|
}
|
|
if (EmitGeneric && !isa<Function>(CPV) && !IsNonGenericPointer) {
|
|
O << "generic(";
|
|
getSymbol(GVar)->print(O, MAI);
|
|
O << ")";
|
|
} else {
|
|
getSymbol(GVar)->print(O, MAI);
|
|
}
|
|
return;
|
|
}
|
|
if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
|
|
const MCExpr *E = lowerConstantForGV(cast<Constant>(Cexpr), false);
|
|
printMCExpr(*E, O);
|
|
return;
|
|
}
|
|
llvm_unreachable("Not scalar type found in printScalarConstant()");
|
|
}
|
|
|
|
void NVPTXAsmPrinter::bufferLEByte(const Constant *CPV, int Bytes,
|
|
AggBuffer *AggBuffer) {
|
|
const DataLayout &DL = getDataLayout();
|
|
int AllocSize = DL.getTypeAllocSize(CPV->getType());
|
|
if (isa<UndefValue>(CPV) || CPV->isNullValue()) {
|
|
// Non-zero Bytes indicates that we need to zero-fill everything. Otherwise,
|
|
// only the space allocated by CPV.
|
|
AggBuffer->addZeros(Bytes ? Bytes : AllocSize);
|
|
return;
|
|
}
|
|
|
|
// Helper for filling AggBuffer with APInts.
|
|
auto AddIntToBuffer = [AggBuffer, Bytes](const APInt &Val) {
|
|
size_t NumBytes = (Val.getBitWidth() + 7) / 8;
|
|
SmallVector<unsigned char, 16> Buf(NumBytes);
|
|
for (unsigned I = 0; I < NumBytes; ++I) {
|
|
Buf[I] = Val.extractBitsAsZExtValue(8, I * 8);
|
|
}
|
|
AggBuffer->addBytes(Buf.data(), NumBytes, Bytes);
|
|
};
|
|
|
|
switch (CPV->getType()->getTypeID()) {
|
|
case Type::IntegerTyID:
|
|
if (const auto CI = dyn_cast<ConstantInt>(CPV)) {
|
|
AddIntToBuffer(CI->getValue());
|
|
break;
|
|
}
|
|
if (const auto *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
|
|
if (const auto *CI =
|
|
dyn_cast<ConstantInt>(ConstantFoldConstant(Cexpr, DL))) {
|
|
AddIntToBuffer(CI->getValue());
|
|
break;
|
|
}
|
|
if (Cexpr->getOpcode() == Instruction::PtrToInt) {
|
|
Value *V = Cexpr->getOperand(0)->stripPointerCasts();
|
|
AggBuffer->addSymbol(V, Cexpr->getOperand(0));
|
|
AggBuffer->addZeros(AllocSize);
|
|
break;
|
|
}
|
|
}
|
|
llvm_unreachable("unsupported integer const type");
|
|
break;
|
|
|
|
case Type::HalfTyID:
|
|
case Type::BFloatTyID:
|
|
case Type::FloatTyID:
|
|
case Type::DoubleTyID:
|
|
AddIntToBuffer(cast<ConstantFP>(CPV)->getValueAPF().bitcastToAPInt());
|
|
break;
|
|
|
|
case Type::PointerTyID: {
|
|
if (const GlobalValue *GVar = dyn_cast<GlobalValue>(CPV)) {
|
|
AggBuffer->addSymbol(GVar, GVar);
|
|
} else if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
|
|
const Value *v = Cexpr->stripPointerCasts();
|
|
AggBuffer->addSymbol(v, Cexpr);
|
|
}
|
|
AggBuffer->addZeros(AllocSize);
|
|
break;
|
|
}
|
|
|
|
case Type::ArrayTyID:
|
|
case Type::FixedVectorTyID:
|
|
case Type::StructTyID: {
|
|
if (isa<ConstantAggregate>(CPV) || isa<ConstantDataSequential>(CPV)) {
|
|
bufferAggregateConstant(CPV, AggBuffer);
|
|
if (Bytes > AllocSize)
|
|
AggBuffer->addZeros(Bytes - AllocSize);
|
|
} else if (isa<ConstantAggregateZero>(CPV))
|
|
AggBuffer->addZeros(Bytes);
|
|
else
|
|
llvm_unreachable("Unexpected Constant type");
|
|
break;
|
|
}
|
|
|
|
default:
|
|
llvm_unreachable("unsupported type");
|
|
}
|
|
}
|
|
|
|
void NVPTXAsmPrinter::bufferAggregateConstant(const Constant *CPV,
|
|
AggBuffer *aggBuffer) {
|
|
const DataLayout &DL = getDataLayout();
|
|
int Bytes;
|
|
|
|
// Integers of arbitrary width
|
|
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
|
|
APInt Val = CI->getValue();
|
|
for (unsigned I = 0, E = DL.getTypeAllocSize(CPV->getType()); I < E; ++I) {
|
|
uint8_t Byte = Val.getLoBits(8).getZExtValue();
|
|
aggBuffer->addBytes(&Byte, 1, 1);
|
|
Val.lshrInPlace(8);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Old constants
|
|
if (isa<ConstantArray>(CPV) || isa<ConstantVector>(CPV)) {
|
|
if (CPV->getNumOperands())
|
|
for (unsigned i = 0, e = CPV->getNumOperands(); i != e; ++i)
|
|
bufferLEByte(cast<Constant>(CPV->getOperand(i)), 0, aggBuffer);
|
|
return;
|
|
}
|
|
|
|
if (const ConstantDataSequential *CDS =
|
|
dyn_cast<ConstantDataSequential>(CPV)) {
|
|
if (CDS->getNumElements())
|
|
for (unsigned i = 0; i < CDS->getNumElements(); ++i)
|
|
bufferLEByte(cast<Constant>(CDS->getElementAsConstant(i)), 0,
|
|
aggBuffer);
|
|
return;
|
|
}
|
|
|
|
if (isa<ConstantStruct>(CPV)) {
|
|
if (CPV->getNumOperands()) {
|
|
StructType *ST = cast<StructType>(CPV->getType());
|
|
for (unsigned i = 0, e = CPV->getNumOperands(); i != e; ++i) {
|
|
if (i == (e - 1))
|
|
Bytes = DL.getStructLayout(ST)->getElementOffset(0) +
|
|
DL.getTypeAllocSize(ST) -
|
|
DL.getStructLayout(ST)->getElementOffset(i);
|
|
else
|
|
Bytes = DL.getStructLayout(ST)->getElementOffset(i + 1) -
|
|
DL.getStructLayout(ST)->getElementOffset(i);
|
|
bufferLEByte(cast<Constant>(CPV->getOperand(i)), Bytes, aggBuffer);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
llvm_unreachable("unsupported constant type in printAggregateConstant()");
|
|
}
|
|
|
|
/// lowerConstantForGV - Return an MCExpr for the given Constant. This is mostly
|
|
/// a copy from AsmPrinter::lowerConstant, except customized to only handle
|
|
/// expressions that are representable in PTX and create
|
|
/// NVPTXGenericMCSymbolRefExpr nodes for addrspacecast instructions.
|
|
const MCExpr *
|
|
NVPTXAsmPrinter::lowerConstantForGV(const Constant *CV, bool ProcessingGeneric) {
|
|
MCContext &Ctx = OutContext;
|
|
|
|
if (CV->isNullValue() || isa<UndefValue>(CV))
|
|
return MCConstantExpr::create(0, Ctx);
|
|
|
|
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
|
|
return MCConstantExpr::create(CI->getZExtValue(), Ctx);
|
|
|
|
if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
|
|
const MCSymbolRefExpr *Expr =
|
|
MCSymbolRefExpr::create(getSymbol(GV), Ctx);
|
|
if (ProcessingGeneric) {
|
|
return NVPTXGenericMCSymbolRefExpr::create(Expr, Ctx);
|
|
} else {
|
|
return Expr;
|
|
}
|
|
}
|
|
|
|
const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
|
|
if (!CE) {
|
|
llvm_unreachable("Unknown constant value to lower!");
|
|
}
|
|
|
|
switch (CE->getOpcode()) {
|
|
default:
|
|
break; // Error
|
|
|
|
case Instruction::AddrSpaceCast: {
|
|
// Strip the addrspacecast and pass along the operand
|
|
PointerType *DstTy = cast<PointerType>(CE->getType());
|
|
if (DstTy->getAddressSpace() == 0)
|
|
return lowerConstantForGV(cast<const Constant>(CE->getOperand(0)), true);
|
|
|
|
break; // Error
|
|
}
|
|
|
|
case Instruction::GetElementPtr: {
|
|
const DataLayout &DL = getDataLayout();
|
|
|
|
// Generate a symbolic expression for the byte address
|
|
APInt OffsetAI(DL.getPointerTypeSizeInBits(CE->getType()), 0);
|
|
cast<GEPOperator>(CE)->accumulateConstantOffset(DL, OffsetAI);
|
|
|
|
const MCExpr *Base = lowerConstantForGV(CE->getOperand(0),
|
|
ProcessingGeneric);
|
|
if (!OffsetAI)
|
|
return Base;
|
|
|
|
int64_t Offset = OffsetAI.getSExtValue();
|
|
return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
|
|
Ctx);
|
|
}
|
|
|
|
case Instruction::Trunc:
|
|
// We emit the value and depend on the assembler to truncate the generated
|
|
// expression properly. This is important for differences between
|
|
// blockaddress labels. Since the two labels are in the same function, it
|
|
// is reasonable to treat their delta as a 32-bit value.
|
|
[[fallthrough]];
|
|
case Instruction::BitCast:
|
|
return lowerConstantForGV(CE->getOperand(0), ProcessingGeneric);
|
|
|
|
case Instruction::IntToPtr: {
|
|
const DataLayout &DL = getDataLayout();
|
|
|
|
// Handle casts to pointers by changing them into casts to the appropriate
|
|
// integer type. This promotes constant folding and simplifies this code.
|
|
Constant *Op = CE->getOperand(0);
|
|
Op = ConstantFoldIntegerCast(Op, DL.getIntPtrType(CV->getType()),
|
|
/*IsSigned*/ false, DL);
|
|
if (Op)
|
|
return lowerConstantForGV(Op, ProcessingGeneric);
|
|
|
|
break; // Error
|
|
}
|
|
|
|
case Instruction::PtrToInt: {
|
|
const DataLayout &DL = getDataLayout();
|
|
|
|
// Support only foldable casts to/from pointers that can be eliminated by
|
|
// changing the pointer to the appropriately sized integer type.
|
|
Constant *Op = CE->getOperand(0);
|
|
Type *Ty = CE->getType();
|
|
|
|
const MCExpr *OpExpr = lowerConstantForGV(Op, ProcessingGeneric);
|
|
|
|
// We can emit the pointer value into this slot if the slot is an
|
|
// integer slot equal to the size of the pointer.
|
|
if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType()))
|
|
return OpExpr;
|
|
|
|
// Otherwise the pointer is smaller than the resultant integer, mask off
|
|
// the high bits so we are sure to get a proper truncation if the input is
|
|
// a constant expr.
|
|
unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
|
|
const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
|
|
return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
|
|
}
|
|
|
|
// The MC library also has a right-shift operator, but it isn't consistently
|
|
// signed or unsigned between different targets.
|
|
case Instruction::Add: {
|
|
const MCExpr *LHS = lowerConstantForGV(CE->getOperand(0), ProcessingGeneric);
|
|
const MCExpr *RHS = lowerConstantForGV(CE->getOperand(1), ProcessingGeneric);
|
|
switch (CE->getOpcode()) {
|
|
default: llvm_unreachable("Unknown binary operator constant cast expr");
|
|
case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the code isn't optimized, there may be outstanding folding
|
|
// opportunities. Attempt to fold the expression using DataLayout as a
|
|
// last resort before giving up.
|
|
Constant *C = ConstantFoldConstant(CE, getDataLayout());
|
|
if (C != CE)
|
|
return lowerConstantForGV(C, ProcessingGeneric);
|
|
|
|
// Otherwise report the problem to the user.
|
|
std::string S;
|
|
raw_string_ostream OS(S);
|
|
OS << "Unsupported expression in static initializer: ";
|
|
CE->printAsOperand(OS, /*PrintType=*/false,
|
|
!MF ? nullptr : MF->getFunction().getParent());
|
|
report_fatal_error(Twine(OS.str()));
|
|
}
|
|
|
|
// Copy of MCExpr::print customized for NVPTX
|
|
void NVPTXAsmPrinter::printMCExpr(const MCExpr &Expr, raw_ostream &OS) {
|
|
switch (Expr.getKind()) {
|
|
case MCExpr::Target:
|
|
return cast<MCTargetExpr>(&Expr)->printImpl(OS, MAI);
|
|
case MCExpr::Constant:
|
|
OS << cast<MCConstantExpr>(Expr).getValue();
|
|
return;
|
|
|
|
case MCExpr::SymbolRef: {
|
|
const MCSymbolRefExpr &SRE = cast<MCSymbolRefExpr>(Expr);
|
|
const MCSymbol &Sym = SRE.getSymbol();
|
|
Sym.print(OS, MAI);
|
|
return;
|
|
}
|
|
|
|
case MCExpr::Unary: {
|
|
const MCUnaryExpr &UE = cast<MCUnaryExpr>(Expr);
|
|
switch (UE.getOpcode()) {
|
|
case MCUnaryExpr::LNot: OS << '!'; break;
|
|
case MCUnaryExpr::Minus: OS << '-'; break;
|
|
case MCUnaryExpr::Not: OS << '~'; break;
|
|
case MCUnaryExpr::Plus: OS << '+'; break;
|
|
}
|
|
printMCExpr(*UE.getSubExpr(), OS);
|
|
return;
|
|
}
|
|
|
|
case MCExpr::Binary: {
|
|
const MCBinaryExpr &BE = cast<MCBinaryExpr>(Expr);
|
|
|
|
// Only print parens around the LHS if it is non-trivial.
|
|
if (isa<MCConstantExpr>(BE.getLHS()) || isa<MCSymbolRefExpr>(BE.getLHS()) ||
|
|
isa<NVPTXGenericMCSymbolRefExpr>(BE.getLHS())) {
|
|
printMCExpr(*BE.getLHS(), OS);
|
|
} else {
|
|
OS << '(';
|
|
printMCExpr(*BE.getLHS(), OS);
|
|
OS<< ')';
|
|
}
|
|
|
|
switch (BE.getOpcode()) {
|
|
case MCBinaryExpr::Add:
|
|
// Print "X-42" instead of "X+-42".
|
|
if (const MCConstantExpr *RHSC = dyn_cast<MCConstantExpr>(BE.getRHS())) {
|
|
if (RHSC->getValue() < 0) {
|
|
OS << RHSC->getValue();
|
|
return;
|
|
}
|
|
}
|
|
|
|
OS << '+';
|
|
break;
|
|
default: llvm_unreachable("Unhandled binary operator");
|
|
}
|
|
|
|
// Only print parens around the LHS if it is non-trivial.
|
|
if (isa<MCConstantExpr>(BE.getRHS()) || isa<MCSymbolRefExpr>(BE.getRHS())) {
|
|
printMCExpr(*BE.getRHS(), OS);
|
|
} else {
|
|
OS << '(';
|
|
printMCExpr(*BE.getRHS(), OS);
|
|
OS << ')';
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("Invalid expression kind!");
|
|
}
|
|
|
|
/// PrintAsmOperand - Print out an operand for an inline asm expression.
|
|
///
|
|
bool NVPTXAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
|
|
const char *ExtraCode, raw_ostream &O) {
|
|
if (ExtraCode && ExtraCode[0]) {
|
|
if (ExtraCode[1] != 0)
|
|
return true; // Unknown modifier.
|
|
|
|
switch (ExtraCode[0]) {
|
|
default:
|
|
// See if this is a generic print operand
|
|
return AsmPrinter::PrintAsmOperand(MI, OpNo, ExtraCode, O);
|
|
case 'r':
|
|
break;
|
|
}
|
|
}
|
|
|
|
printOperand(MI, OpNo, O);
|
|
|
|
return false;
|
|
}
|
|
|
|
bool NVPTXAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
|
|
unsigned OpNo,
|
|
const char *ExtraCode,
|
|
raw_ostream &O) {
|
|
if (ExtraCode && ExtraCode[0])
|
|
return true; // Unknown modifier
|
|
|
|
O << '[';
|
|
printMemOperand(MI, OpNo, O);
|
|
O << ']';
|
|
|
|
return false;
|
|
}
|
|
|
|
void NVPTXAsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNum,
|
|
raw_ostream &O) {
|
|
const MachineOperand &MO = MI->getOperand(OpNum);
|
|
switch (MO.getType()) {
|
|
case MachineOperand::MO_Register:
|
|
if (MO.getReg().isPhysical()) {
|
|
if (MO.getReg() == NVPTX::VRDepot)
|
|
O << DEPOTNAME << getFunctionNumber();
|
|
else
|
|
O << NVPTXInstPrinter::getRegisterName(MO.getReg());
|
|
} else {
|
|
emitVirtualRegister(MO.getReg(), O);
|
|
}
|
|
break;
|
|
|
|
case MachineOperand::MO_Immediate:
|
|
O << MO.getImm();
|
|
break;
|
|
|
|
case MachineOperand::MO_FPImmediate:
|
|
printFPConstant(MO.getFPImm(), O);
|
|
break;
|
|
|
|
case MachineOperand::MO_GlobalAddress:
|
|
PrintSymbolOperand(MO, O);
|
|
break;
|
|
|
|
case MachineOperand::MO_MachineBasicBlock:
|
|
MO.getMBB()->getSymbol()->print(O, MAI);
|
|
break;
|
|
|
|
default:
|
|
llvm_unreachable("Operand type not supported.");
|
|
}
|
|
}
|
|
|
|
void NVPTXAsmPrinter::printMemOperand(const MachineInstr *MI, unsigned OpNum,
|
|
raw_ostream &O, const char *Modifier) {
|
|
printOperand(MI, OpNum, O);
|
|
|
|
if (Modifier && strcmp(Modifier, "add") == 0) {
|
|
O << ", ";
|
|
printOperand(MI, OpNum + 1, O);
|
|
} else {
|
|
if (MI->getOperand(OpNum + 1).isImm() &&
|
|
MI->getOperand(OpNum + 1).getImm() == 0)
|
|
return; // don't print ',0' or '+0'
|
|
O << "+";
|
|
printOperand(MI, OpNum + 1, O);
|
|
}
|
|
}
|
|
|
|
// Force static initialization.
|
|
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeNVPTXAsmPrinter() {
|
|
RegisterAsmPrinter<NVPTXAsmPrinter> X(getTheNVPTXTarget32());
|
|
RegisterAsmPrinter<NVPTXAsmPrinter> Y(getTheNVPTXTarget64());
|
|
}
|