Files
clang-p2996/llvm/lib/Target/RISCV/AsmParser/RISCVAsmParser.cpp
Craig Topper 158401493a [RISCV] Check that the stack adjust immediate for cm.push/pop* has the correct sign and is divisible by 16. (#85295)
To do this I've added a new AsmOperand for cm.push to expect a negative
value. We also use that to customize the print function so that we don't
need to detect cm.push opcode to add the negative sign.

I've renamed some places that used Spimm to be StackAdj since that's
what is being parsed. I'm still not about where we should use Spimm or
StackAdj.

I've removed the printSpimm helper function which in one usage printed
the sp[5:4]<<4 value and the other usage printed the full stack
adjustment. There wasn't anything interesting about how it was printed
it just passed the value to the raw_stream. If there was something
special needed, it's unclear whether it would be the same for the two
different usages so I inlined it.

One open question is whether we need to support stack adjustments
expressed as an expression rather than a literal integer.
2024-03-26 13:31:21 -07:00

3679 lines
127 KiB
C++

//===-- RISCVAsmParser.cpp - Parse RISC-V assembly to MCInst instructions -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/RISCVAsmBackend.h"
#include "MCTargetDesc/RISCVBaseInfo.h"
#include "MCTargetDesc/RISCVInstPrinter.h"
#include "MCTargetDesc/RISCVMCExpr.h"
#include "MCTargetDesc/RISCVMCTargetDesc.h"
#include "MCTargetDesc/RISCVMatInt.h"
#include "MCTargetDesc/RISCVTargetStreamer.h"
#include "TargetInfo/RISCVTargetInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstBuilder.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCParser/MCTargetAsmParser.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCValue.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/RISCVAttributes.h"
#include "llvm/Support/RISCVISAInfo.h"
#include <limits>
using namespace llvm;
#define DEBUG_TYPE "riscv-asm-parser"
STATISTIC(RISCVNumInstrsCompressed,
"Number of RISC-V Compressed instructions emitted");
static cl::opt<bool> AddBuildAttributes("riscv-add-build-attributes",
cl::init(false));
namespace llvm {
extern const SubtargetFeatureKV RISCVFeatureKV[RISCV::NumSubtargetFeatures];
} // namespace llvm
namespace {
struct RISCVOperand;
struct ParserOptionsSet {
bool IsPicEnabled;
};
class RISCVAsmParser : public MCTargetAsmParser {
// This tracks the parsing of the 4 operands that make up the vtype portion
// of vset(i)vli instructions which are separated by commas. The state names
// represent the next expected operand with Done meaning no other operands are
// expected.
enum VTypeState {
VTypeState_SEW,
VTypeState_LMUL,
VTypeState_TailPolicy,
VTypeState_MaskPolicy,
VTypeState_Done,
};
SmallVector<FeatureBitset, 4> FeatureBitStack;
SmallVector<ParserOptionsSet, 4> ParserOptionsStack;
ParserOptionsSet ParserOptions;
SMLoc getLoc() const { return getParser().getTok().getLoc(); }
bool isRV64() const { return getSTI().hasFeature(RISCV::Feature64Bit); }
bool isRVE() const { return getSTI().hasFeature(RISCV::FeatureRVE); }
RISCVTargetStreamer &getTargetStreamer() {
assert(getParser().getStreamer().getTargetStreamer() &&
"do not have a target streamer");
MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
return static_cast<RISCVTargetStreamer &>(TS);
}
unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
unsigned Kind) override;
unsigned checkTargetMatchPredicate(MCInst &Inst) override;
bool generateImmOutOfRangeError(OperandVector &Operands, uint64_t ErrorInfo,
int64_t Lower, int64_t Upper,
const Twine &Msg);
bool generateImmOutOfRangeError(SMLoc ErrorLoc, int64_t Lower, int64_t Upper,
const Twine &Msg);
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands, MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) override;
MCRegister matchRegisterNameHelper(StringRef Name) const;
bool parseRegister(MCRegister &Reg, SMLoc &StartLoc, SMLoc &EndLoc) override;
ParseStatus tryParseRegister(MCRegister &Reg, SMLoc &StartLoc,
SMLoc &EndLoc) override;
bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) override;
ParseStatus parseDirective(AsmToken DirectiveID) override;
bool parseVTypeToken(StringRef Identifier, VTypeState &State, unsigned &Sew,
unsigned &Lmul, bool &Fractional, bool &TailAgnostic,
bool &MaskAgnostic);
bool generateVTypeError(SMLoc ErrorLoc);
// Helper to actually emit an instruction to the MCStreamer. Also, when
// possible, compression of the instruction is performed.
void emitToStreamer(MCStreamer &S, const MCInst &Inst);
// Helper to emit a combination of LUI, ADDI(W), and SLLI instructions that
// synthesize the desired immedate value into the destination register.
void emitLoadImm(MCRegister DestReg, int64_t Value, MCStreamer &Out);
// Helper to emit a combination of AUIPC and SecondOpcode. Used to implement
// helpers such as emitLoadLocalAddress and emitLoadAddress.
void emitAuipcInstPair(MCOperand DestReg, MCOperand TmpReg,
const MCExpr *Symbol, RISCVMCExpr::VariantKind VKHi,
unsigned SecondOpcode, SMLoc IDLoc, MCStreamer &Out);
// Helper to emit pseudo instruction "lla" used in PC-rel addressing.
void emitLoadLocalAddress(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
// Helper to emit pseudo instruction "lga" used in GOT-rel addressing.
void emitLoadGlobalAddress(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
// Helper to emit pseudo instruction "la" used in GOT/PC-rel addressing.
void emitLoadAddress(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
// Helper to emit pseudo instruction "la.tls.ie" used in initial-exec TLS
// addressing.
void emitLoadTLSIEAddress(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
// Helper to emit pseudo instruction "la.tls.gd" used in global-dynamic TLS
// addressing.
void emitLoadTLSGDAddress(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
// Helper to emit pseudo load/store instruction with a symbol.
void emitLoadStoreSymbol(MCInst &Inst, unsigned Opcode, SMLoc IDLoc,
MCStreamer &Out, bool HasTmpReg);
// Helper to emit pseudo sign/zero extend instruction.
void emitPseudoExtend(MCInst &Inst, bool SignExtend, int64_t Width,
SMLoc IDLoc, MCStreamer &Out);
// Helper to emit pseudo vmsge{u}.vx instruction.
void emitVMSGE(MCInst &Inst, unsigned Opcode, SMLoc IDLoc, MCStreamer &Out);
// Checks that a PseudoAddTPRel is using x4/tp in its second input operand.
// Enforcing this using a restricted register class for the second input
// operand of PseudoAddTPRel results in a poor diagnostic due to the fact
// 'add' is an overloaded mnemonic.
bool checkPseudoAddTPRel(MCInst &Inst, OperandVector &Operands);
// Checks that a PseudoTLSDESCCall is using x5/t0 in its output operand.
// Enforcing this using a restricted register class for the output
// operand of PseudoTLSDESCCall results in a poor diagnostic due to the fact
// 'jalr' is an overloaded mnemonic.
bool checkPseudoTLSDESCCall(MCInst &Inst, OperandVector &Operands);
// Check instruction constraints.
bool validateInstruction(MCInst &Inst, OperandVector &Operands);
/// Helper for processing MC instructions that have been successfully matched
/// by MatchAndEmitInstruction. Modifications to the emitted instructions,
/// like the expansion of pseudo instructions (e.g., "li"), can be performed
/// in this method.
bool processInstruction(MCInst &Inst, SMLoc IDLoc, OperandVector &Operands,
MCStreamer &Out);
// Auto-generated instruction matching functions
#define GET_ASSEMBLER_HEADER
#include "RISCVGenAsmMatcher.inc"
ParseStatus parseCSRSystemRegister(OperandVector &Operands);
ParseStatus parseFPImm(OperandVector &Operands);
ParseStatus parseImmediate(OperandVector &Operands);
ParseStatus parseRegister(OperandVector &Operands, bool AllowParens = false);
ParseStatus parseMemOpBaseReg(OperandVector &Operands);
ParseStatus parseZeroOffsetMemOp(OperandVector &Operands);
ParseStatus parseOperandWithModifier(OperandVector &Operands);
ParseStatus parseBareSymbol(OperandVector &Operands);
ParseStatus parseCallSymbol(OperandVector &Operands);
ParseStatus parsePseudoJumpSymbol(OperandVector &Operands);
ParseStatus parseJALOffset(OperandVector &Operands);
ParseStatus parseVTypeI(OperandVector &Operands);
ParseStatus parseMaskReg(OperandVector &Operands);
ParseStatus parseInsnDirectiveOpcode(OperandVector &Operands);
ParseStatus parseInsnCDirectiveOpcode(OperandVector &Operands);
ParseStatus parseGPRAsFPR(OperandVector &Operands);
template <bool IsRV64Inst> ParseStatus parseGPRPair(OperandVector &Operands);
ParseStatus parseGPRPair(OperandVector &Operands, bool IsRV64Inst);
ParseStatus parseFRMArg(OperandVector &Operands);
ParseStatus parseFenceArg(OperandVector &Operands);
ParseStatus parseReglist(OperandVector &Operands);
ParseStatus parseRegReg(OperandVector &Operands);
ParseStatus parseRetval(OperandVector &Operands);
ParseStatus parseZcmpStackAdj(OperandVector &Operands,
bool ExpectNegative = false);
ParseStatus parseZcmpNegStackAdj(OperandVector &Operands) {
return parseZcmpStackAdj(Operands, /*ExpectNegative*/ true);
}
bool parseOperand(OperandVector &Operands, StringRef Mnemonic);
bool parseDirectiveOption();
bool parseDirectiveAttribute();
bool parseDirectiveInsn(SMLoc L);
bool parseDirectiveVariantCC();
/// Helper to reset target features for a new arch string. It
/// also records the new arch string that is expanded by RISCVISAInfo
/// and reports error for invalid arch string.
bool resetToArch(StringRef Arch, SMLoc Loc, std::string &Result,
bool FromOptionDirective);
void setFeatureBits(uint64_t Feature, StringRef FeatureString) {
if (!(getSTI().hasFeature(Feature))) {
MCSubtargetInfo &STI = copySTI();
setAvailableFeatures(
ComputeAvailableFeatures(STI.ToggleFeature(FeatureString)));
}
}
void clearFeatureBits(uint64_t Feature, StringRef FeatureString) {
if (getSTI().hasFeature(Feature)) {
MCSubtargetInfo &STI = copySTI();
setAvailableFeatures(
ComputeAvailableFeatures(STI.ToggleFeature(FeatureString)));
}
}
void pushFeatureBits() {
assert(FeatureBitStack.size() == ParserOptionsStack.size() &&
"These two stacks must be kept synchronized");
FeatureBitStack.push_back(getSTI().getFeatureBits());
ParserOptionsStack.push_back(ParserOptions);
}
bool popFeatureBits() {
assert(FeatureBitStack.size() == ParserOptionsStack.size() &&
"These two stacks must be kept synchronized");
if (FeatureBitStack.empty())
return true;
FeatureBitset FeatureBits = FeatureBitStack.pop_back_val();
copySTI().setFeatureBits(FeatureBits);
setAvailableFeatures(ComputeAvailableFeatures(FeatureBits));
ParserOptions = ParserOptionsStack.pop_back_val();
return false;
}
std::unique_ptr<RISCVOperand> defaultMaskRegOp() const;
std::unique_ptr<RISCVOperand> defaultFRMArgOp() const;
std::unique_ptr<RISCVOperand> defaultFRMArgLegacyOp() const;
public:
enum RISCVMatchResultTy {
Match_Dummy = FIRST_TARGET_MATCH_RESULT_TY,
Match_RequiresEvenGPRs,
#define GET_OPERAND_DIAGNOSTIC_TYPES
#include "RISCVGenAsmMatcher.inc"
#undef GET_OPERAND_DIAGNOSTIC_TYPES
};
static bool classifySymbolRef(const MCExpr *Expr,
RISCVMCExpr::VariantKind &Kind);
static bool isSymbolDiff(const MCExpr *Expr);
RISCVAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser,
const MCInstrInfo &MII, const MCTargetOptions &Options)
: MCTargetAsmParser(Options, STI, MII) {
MCAsmParserExtension::Initialize(Parser);
Parser.addAliasForDirective(".half", ".2byte");
Parser.addAliasForDirective(".hword", ".2byte");
Parser.addAliasForDirective(".word", ".4byte");
Parser.addAliasForDirective(".dword", ".8byte");
setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
auto ABIName = StringRef(Options.ABIName);
if (ABIName.ends_with("f") && !getSTI().hasFeature(RISCV::FeatureStdExtF)) {
errs() << "Hard-float 'f' ABI can't be used for a target that "
"doesn't support the F instruction set extension (ignoring "
"target-abi)\n";
} else if (ABIName.ends_with("d") &&
!getSTI().hasFeature(RISCV::FeatureStdExtD)) {
errs() << "Hard-float 'd' ABI can't be used for a target that "
"doesn't support the D instruction set extension (ignoring "
"target-abi)\n";
}
// Use computeTargetABI to check if ABIName is valid. If invalid, output
// error message.
RISCVABI::computeTargetABI(STI.getTargetTriple(), STI.getFeatureBits(),
ABIName);
const MCObjectFileInfo *MOFI = Parser.getContext().getObjectFileInfo();
ParserOptions.IsPicEnabled = MOFI->isPositionIndependent();
if (AddBuildAttributes)
getTargetStreamer().emitTargetAttributes(STI, /*EmitStackAlign*/ false);
}
};
/// RISCVOperand - Instances of this class represent a parsed machine
/// instruction
struct RISCVOperand final : public MCParsedAsmOperand {
enum class KindTy {
Token,
Register,
Immediate,
FPImmediate,
SystemRegister,
VType,
FRM,
Fence,
Rlist,
Spimm,
RegReg,
} Kind;
struct RegOp {
MCRegister RegNum;
bool IsGPRAsFPR;
};
struct ImmOp {
const MCExpr *Val;
bool IsRV64;
};
struct FPImmOp {
uint64_t Val;
};
struct SysRegOp {
const char *Data;
unsigned Length;
unsigned Encoding;
// FIXME: Add the Encoding parsed fields as needed for checks,
// e.g.: read/write or user/supervisor/machine privileges.
};
struct VTypeOp {
unsigned Val;
};
struct FRMOp {
RISCVFPRndMode::RoundingMode FRM;
};
struct FenceOp {
unsigned Val;
};
struct RlistOp {
unsigned Val;
};
struct SpimmOp {
unsigned Val;
};
struct RegRegOp {
MCRegister Reg1;
MCRegister Reg2;
};
SMLoc StartLoc, EndLoc;
union {
StringRef Tok;
RegOp Reg;
ImmOp Imm;
FPImmOp FPImm;
struct SysRegOp SysReg;
struct VTypeOp VType;
struct FRMOp FRM;
struct FenceOp Fence;
struct RlistOp Rlist;
struct SpimmOp Spimm;
struct RegRegOp RegReg;
};
RISCVOperand(KindTy K) : Kind(K) {}
public:
RISCVOperand(const RISCVOperand &o) : MCParsedAsmOperand() {
Kind = o.Kind;
StartLoc = o.StartLoc;
EndLoc = o.EndLoc;
switch (Kind) {
case KindTy::Register:
Reg = o.Reg;
break;
case KindTy::Immediate:
Imm = o.Imm;
break;
case KindTy::FPImmediate:
FPImm = o.FPImm;
break;
case KindTy::Token:
Tok = o.Tok;
break;
case KindTy::SystemRegister:
SysReg = o.SysReg;
break;
case KindTy::VType:
VType = o.VType;
break;
case KindTy::FRM:
FRM = o.FRM;
break;
case KindTy::Fence:
Fence = o.Fence;
break;
case KindTy::Rlist:
Rlist = o.Rlist;
break;
case KindTy::Spimm:
Spimm = o.Spimm;
break;
case KindTy::RegReg:
RegReg = o.RegReg;
break;
}
}
bool isToken() const override { return Kind == KindTy::Token; }
bool isReg() const override { return Kind == KindTy::Register; }
bool isV0Reg() const {
return Kind == KindTy::Register && Reg.RegNum == RISCV::V0;
}
bool isAnyReg() const {
return Kind == KindTy::Register &&
(RISCVMCRegisterClasses[RISCV::GPRRegClassID].contains(Reg.RegNum) ||
RISCVMCRegisterClasses[RISCV::FPR64RegClassID].contains(Reg.RegNum) ||
RISCVMCRegisterClasses[RISCV::VRRegClassID].contains(Reg.RegNum));
}
bool isAnyRegC() const {
return Kind == KindTy::Register &&
(RISCVMCRegisterClasses[RISCV::GPRCRegClassID].contains(
Reg.RegNum) ||
RISCVMCRegisterClasses[RISCV::FPR64CRegClassID].contains(
Reg.RegNum));
}
bool isImm() const override { return Kind == KindTy::Immediate; }
bool isMem() const override { return false; }
bool isSystemRegister() const { return Kind == KindTy::SystemRegister; }
bool isRegReg() const { return Kind == KindTy::RegReg; }
bool isRlist() const { return Kind == KindTy::Rlist; }
bool isSpimm() const { return Kind == KindTy::Spimm; }
bool isGPR() const {
return Kind == KindTy::Register &&
RISCVMCRegisterClasses[RISCV::GPRRegClassID].contains(Reg.RegNum);
}
bool isGPRAsFPR() const { return isGPR() && Reg.IsGPRAsFPR; }
bool isGPRPair() const {
return Kind == KindTy::Register &&
RISCVMCRegisterClasses[RISCV::GPRPairRegClassID].contains(
Reg.RegNum);
}
static bool evaluateConstantImm(const MCExpr *Expr, int64_t &Imm,
RISCVMCExpr::VariantKind &VK) {
if (auto *RE = dyn_cast<RISCVMCExpr>(Expr)) {
VK = RE->getKind();
return RE->evaluateAsConstant(Imm);
}
if (auto CE = dyn_cast<MCConstantExpr>(Expr)) {
VK = RISCVMCExpr::VK_RISCV_None;
Imm = CE->getValue();
return true;
}
return false;
}
// True if operand is a symbol with no modifiers, or a constant with no
// modifiers and isShiftedInt<N-1, 1>(Op).
template <int N> bool isBareSimmNLsb0() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
if (!isImm())
return false;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
bool IsValid;
if (!IsConstantImm)
IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK);
else
IsValid = isShiftedInt<N - 1, 1>(Imm);
return IsValid && VK == RISCVMCExpr::VK_RISCV_None;
}
// Predicate methods for AsmOperands defined in RISCVInstrInfo.td
bool isBareSymbol() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
// Must be of 'immediate' type but not a constant.
if (!isImm() || evaluateConstantImm(getImm(), Imm, VK))
return false;
return RISCVAsmParser::classifySymbolRef(getImm(), VK) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isCallSymbol() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
// Must be of 'immediate' type but not a constant.
if (!isImm() || evaluateConstantImm(getImm(), Imm, VK))
return false;
return RISCVAsmParser::classifySymbolRef(getImm(), VK) &&
(VK == RISCVMCExpr::VK_RISCV_CALL ||
VK == RISCVMCExpr::VK_RISCV_CALL_PLT);
}
bool isPseudoJumpSymbol() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
// Must be of 'immediate' type but not a constant.
if (!isImm() || evaluateConstantImm(getImm(), Imm, VK))
return false;
return RISCVAsmParser::classifySymbolRef(getImm(), VK) &&
VK == RISCVMCExpr::VK_RISCV_CALL;
}
bool isTPRelAddSymbol() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
// Must be of 'immediate' type but not a constant.
if (!isImm() || evaluateConstantImm(getImm(), Imm, VK))
return false;
return RISCVAsmParser::classifySymbolRef(getImm(), VK) &&
VK == RISCVMCExpr::VK_RISCV_TPREL_ADD;
}
bool isTLSDESCCallSymbol() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
// Must be of 'immediate' type but not a constant.
if (!isImm() || evaluateConstantImm(getImm(), Imm, VK))
return false;
return RISCVAsmParser::classifySymbolRef(getImm(), VK) &&
VK == RISCVMCExpr::VK_RISCV_TLSDESC_CALL;
}
bool isCSRSystemRegister() const { return isSystemRegister(); }
bool isVTypeImm(unsigned N) const {
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
if (!isImm())
return false;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
return IsConstantImm && isUIntN(N, Imm) && VK == RISCVMCExpr::VK_RISCV_None;
}
// If the last operand of the vsetvli/vsetvli instruction is a constant
// expression, KindTy is Immediate.
bool isVTypeI10() const {
if (Kind == KindTy::Immediate)
return isVTypeImm(10);
return Kind == KindTy::VType;
}
bool isVTypeI11() const {
if (Kind == KindTy::Immediate)
return isVTypeImm(11);
return Kind == KindTy::VType;
}
/// Return true if the operand is a valid for the fence instruction e.g.
/// ('iorw').
bool isFenceArg() const { return Kind == KindTy::Fence; }
/// Return true if the operand is a valid floating point rounding mode.
bool isFRMArg() const { return Kind == KindTy::FRM; }
bool isFRMArgLegacy() const { return Kind == KindTy::FRM; }
bool isRTZArg() const { return isFRMArg() && FRM.FRM == RISCVFPRndMode::RTZ; }
/// Return true if the operand is a valid fli.s floating-point immediate.
bool isLoadFPImm() const {
if (isImm())
return isUImm5();
if (Kind != KindTy::FPImmediate)
return false;
int Idx = RISCVLoadFPImm::getLoadFPImm(
APFloat(APFloat::IEEEdouble(), APInt(64, getFPConst())));
// Don't allow decimal version of the minimum value. It is a different value
// for each supported data type.
return Idx >= 0 && Idx != 1;
}
bool isImmXLenLI() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
if (!isImm())
return false;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
if (VK == RISCVMCExpr::VK_RISCV_LO ||
VK == RISCVMCExpr::VK_RISCV_PCREL_LO ||
VK == RISCVMCExpr::VK_RISCV_TLSDESC_LOAD_LO ||
VK == RISCVMCExpr::VK_RISCV_TLSDESC_ADD_LO)
return true;
// Given only Imm, ensuring that the actually specified constant is either
// a signed or unsigned 64-bit number is unfortunately impossible.
if (IsConstantImm) {
return VK == RISCVMCExpr::VK_RISCV_None &&
(isRV64Imm() || (isInt<32>(Imm) || isUInt<32>(Imm)));
}
return RISCVAsmParser::isSymbolDiff(getImm());
}
bool isImmXLenLI_Restricted() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
if (!isImm())
return false;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
// 'la imm' supports constant immediates only.
return IsConstantImm && (VK == RISCVMCExpr::VK_RISCV_None) &&
(isRV64Imm() || (isInt<32>(Imm) || isUInt<32>(Imm)));
}
bool isUImmLog2XLen() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
if (!isImm())
return false;
if (!evaluateConstantImm(getImm(), Imm, VK) ||
VK != RISCVMCExpr::VK_RISCV_None)
return false;
return (isRV64Imm() && isUInt<6>(Imm)) || isUInt<5>(Imm);
}
bool isUImmLog2XLenNonZero() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
if (!isImm())
return false;
if (!evaluateConstantImm(getImm(), Imm, VK) ||
VK != RISCVMCExpr::VK_RISCV_None)
return false;
if (Imm == 0)
return false;
return (isRV64Imm() && isUInt<6>(Imm)) || isUInt<5>(Imm);
}
bool isUImmLog2XLenHalf() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
if (!isImm())
return false;
if (!evaluateConstantImm(getImm(), Imm, VK) ||
VK != RISCVMCExpr::VK_RISCV_None)
return false;
return (isRV64Imm() && isUInt<5>(Imm)) || isUInt<4>(Imm);
}
template <unsigned N> bool IsUImm() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
if (!isImm())
return false;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
return IsConstantImm && isUInt<N>(Imm) && VK == RISCVMCExpr::VK_RISCV_None;
}
bool isUImm1() const { return IsUImm<1>(); }
bool isUImm2() const { return IsUImm<2>(); }
bool isUImm3() const { return IsUImm<3>(); }
bool isUImm4() const { return IsUImm<4>(); }
bool isUImm5() const { return IsUImm<5>(); }
bool isUImm6() const { return IsUImm<6>(); }
bool isUImm7() const { return IsUImm<7>(); }
bool isUImm8() const { return IsUImm<8>(); }
bool isUImm20() const { return IsUImm<20>(); }
bool isUImm8GE32() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
if (!isImm())
return false;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
return IsConstantImm && isUInt<8>(Imm) && Imm >= 32 &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isRnumArg() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
if (!isImm())
return false;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
return IsConstantImm && Imm >= INT64_C(0) && Imm <= INT64_C(10) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isRnumArg_0_7() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
if (!isImm())
return false;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
return IsConstantImm && Imm >= INT64_C(0) && Imm <= INT64_C(7) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isRnumArg_1_10() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
if (!isImm())
return false;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
return IsConstantImm && Imm >= INT64_C(1) && Imm <= INT64_C(10) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isRnumArg_2_14() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
if (!isImm())
return false;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
return IsConstantImm && Imm >= INT64_C(2) && Imm <= INT64_C(14) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isSImm5() const {
if (!isImm())
return false;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
int64_t Imm;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
return IsConstantImm && isInt<5>(fixImmediateForRV32(Imm, isRV64Imm())) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isSImm6() const {
if (!isImm())
return false;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
int64_t Imm;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
return IsConstantImm && isInt<6>(fixImmediateForRV32(Imm, isRV64Imm())) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isSImm6NonZero() const {
if (!isImm())
return false;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
int64_t Imm;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
return IsConstantImm && Imm != 0 &&
isInt<6>(fixImmediateForRV32(Imm, isRV64Imm())) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isCLUIImm() const {
if (!isImm())
return false;
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
return IsConstantImm && (Imm != 0) &&
(isUInt<5>(Imm) || (Imm >= 0xfffe0 && Imm <= 0xfffff)) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isUImm2Lsb0() const {
if (!isImm())
return false;
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
return IsConstantImm && isShiftedUInt<1, 1>(Imm) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isUImm7Lsb00() const {
if (!isImm())
return false;
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
return IsConstantImm && isShiftedUInt<5, 2>(Imm) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isUImm8Lsb00() const {
if (!isImm())
return false;
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
return IsConstantImm && isShiftedUInt<6, 2>(Imm) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isUImm8Lsb000() const {
if (!isImm())
return false;
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
return IsConstantImm && isShiftedUInt<5, 3>(Imm) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isSImm9Lsb0() const { return isBareSimmNLsb0<9>(); }
bool isUImm9Lsb000() const {
if (!isImm())
return false;
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
return IsConstantImm && isShiftedUInt<6, 3>(Imm) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isUImm10Lsb00NonZero() const {
if (!isImm())
return false;
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
return IsConstantImm && isShiftedUInt<8, 2>(Imm) && (Imm != 0) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
// If this a RV32 and the immediate is a uimm32, sign extend it to 32 bits.
// This allows writing 'addi a0, a0, 0xffffffff'.
static int64_t fixImmediateForRV32(int64_t Imm, bool IsRV64Imm) {
if (IsRV64Imm || !isUInt<32>(Imm))
return Imm;
return SignExtend64<32>(Imm);
}
bool isSImm12() const {
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
int64_t Imm;
bool IsValid;
if (!isImm())
return false;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
if (!IsConstantImm)
IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK);
else
IsValid = isInt<12>(fixImmediateForRV32(Imm, isRV64Imm()));
return IsValid && ((IsConstantImm && VK == RISCVMCExpr::VK_RISCV_None) ||
VK == RISCVMCExpr::VK_RISCV_LO ||
VK == RISCVMCExpr::VK_RISCV_PCREL_LO ||
VK == RISCVMCExpr::VK_RISCV_TPREL_LO ||
VK == RISCVMCExpr::VK_RISCV_TLSDESC_LOAD_LO ||
VK == RISCVMCExpr::VK_RISCV_TLSDESC_ADD_LO);
}
bool isSImm12Lsb0() const { return isBareSimmNLsb0<12>(); }
bool isSImm12Lsb00000() const {
if (!isImm())
return false;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
int64_t Imm;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
return IsConstantImm && isShiftedInt<7, 5>(Imm) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isSImm13Lsb0() const { return isBareSimmNLsb0<13>(); }
bool isSImm10Lsb0000NonZero() const {
if (!isImm())
return false;
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
return IsConstantImm && (Imm != 0) && isShiftedInt<6, 4>(Imm) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isUImm20LUI() const {
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
int64_t Imm;
bool IsValid;
if (!isImm())
return false;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
if (!IsConstantImm) {
IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK);
return IsValid && (VK == RISCVMCExpr::VK_RISCV_HI ||
VK == RISCVMCExpr::VK_RISCV_TPREL_HI);
} else {
return isUInt<20>(Imm) && (VK == RISCVMCExpr::VK_RISCV_None ||
VK == RISCVMCExpr::VK_RISCV_HI ||
VK == RISCVMCExpr::VK_RISCV_TPREL_HI);
}
}
bool isUImm20AUIPC() const {
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
int64_t Imm;
bool IsValid;
if (!isImm())
return false;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
if (!IsConstantImm) {
IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK);
return IsValid && (VK == RISCVMCExpr::VK_RISCV_PCREL_HI ||
VK == RISCVMCExpr::VK_RISCV_GOT_HI ||
VK == RISCVMCExpr::VK_RISCV_TLS_GOT_HI ||
VK == RISCVMCExpr::VK_RISCV_TLS_GD_HI ||
VK == RISCVMCExpr::VK_RISCV_TLSDESC_HI);
}
return isUInt<20>(Imm) && (VK == RISCVMCExpr::VK_RISCV_None ||
VK == RISCVMCExpr::VK_RISCV_PCREL_HI ||
VK == RISCVMCExpr::VK_RISCV_GOT_HI ||
VK == RISCVMCExpr::VK_RISCV_TLS_GOT_HI ||
VK == RISCVMCExpr::VK_RISCV_TLS_GD_HI ||
VK == RISCVMCExpr::VK_RISCV_TLSDESC_HI);
}
bool isSImm21Lsb0JAL() const { return isBareSimmNLsb0<21>(); }
bool isImmZero() const {
if (!isImm())
return false;
int64_t Imm;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
return IsConstantImm && (Imm == 0) && VK == RISCVMCExpr::VK_RISCV_None;
}
bool isSImm5Plus1() const {
if (!isImm())
return false;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
int64_t Imm;
bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
return IsConstantImm &&
isInt<5>(fixImmediateForRV32(Imm, isRV64Imm()) - 1) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
/// getStartLoc - Gets location of the first token of this operand
SMLoc getStartLoc() const override { return StartLoc; }
/// getEndLoc - Gets location of the last token of this operand
SMLoc getEndLoc() const override { return EndLoc; }
/// True if this operand is for an RV64 instruction
bool isRV64Imm() const {
assert(Kind == KindTy::Immediate && "Invalid type access!");
return Imm.IsRV64;
}
MCRegister getReg() const override {
assert(Kind == KindTy::Register && "Invalid type access!");
return Reg.RegNum;
}
StringRef getSysReg() const {
assert(Kind == KindTy::SystemRegister && "Invalid type access!");
return StringRef(SysReg.Data, SysReg.Length);
}
const MCExpr *getImm() const {
assert(Kind == KindTy::Immediate && "Invalid type access!");
return Imm.Val;
}
uint64_t getFPConst() const {
assert(Kind == KindTy::FPImmediate && "Invalid type access!");
return FPImm.Val;
}
StringRef getToken() const {
assert(Kind == KindTy::Token && "Invalid type access!");
return Tok;
}
unsigned getVType() const {
assert(Kind == KindTy::VType && "Invalid type access!");
return VType.Val;
}
RISCVFPRndMode::RoundingMode getFRM() const {
assert(Kind == KindTy::FRM && "Invalid type access!");
return FRM.FRM;
}
unsigned getFence() const {
assert(Kind == KindTy::Fence && "Invalid type access!");
return Fence.Val;
}
void print(raw_ostream &OS) const override {
auto RegName = [](MCRegister Reg) {
if (Reg)
return RISCVInstPrinter::getRegisterName(Reg);
else
return "noreg";
};
switch (Kind) {
case KindTy::Immediate:
OS << *getImm();
break;
case KindTy::FPImmediate:
break;
case KindTy::Register:
OS << "<register " << RegName(getReg()) << ">";
break;
case KindTy::Token:
OS << "'" << getToken() << "'";
break;
case KindTy::SystemRegister:
OS << "<sysreg: " << getSysReg() << '>';
break;
case KindTy::VType:
OS << "<vtype: ";
RISCVVType::printVType(getVType(), OS);
OS << '>';
break;
case KindTy::FRM:
OS << "<frm: ";
roundingModeToString(getFRM());
OS << '>';
break;
case KindTy::Fence:
OS << "<fence: ";
OS << getFence();
OS << '>';
break;
case KindTy::Rlist:
OS << "<rlist: ";
RISCVZC::printRlist(Rlist.Val, OS);
OS << '>';
break;
case KindTy::Spimm:
OS << "<Spimm: ";
OS << Spimm.Val;
OS << '>';
break;
case KindTy::RegReg:
OS << "<RegReg: Reg1 " << RegName(RegReg.Reg1);
OS << " Reg2 " << RegName(RegReg.Reg2);
break;
}
}
static std::unique_ptr<RISCVOperand> createToken(StringRef Str, SMLoc S) {
auto Op = std::make_unique<RISCVOperand>(KindTy::Token);
Op->Tok = Str;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static std::unique_ptr<RISCVOperand>
createReg(unsigned RegNo, SMLoc S, SMLoc E, bool IsGPRAsFPR = false) {
auto Op = std::make_unique<RISCVOperand>(KindTy::Register);
Op->Reg.RegNum = RegNo;
Op->Reg.IsGPRAsFPR = IsGPRAsFPR;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static std::unique_ptr<RISCVOperand> createImm(const MCExpr *Val, SMLoc S,
SMLoc E, bool IsRV64) {
auto Op = std::make_unique<RISCVOperand>(KindTy::Immediate);
Op->Imm.Val = Val;
Op->Imm.IsRV64 = IsRV64;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static std::unique_ptr<RISCVOperand> createFPImm(uint64_t Val, SMLoc S) {
auto Op = std::make_unique<RISCVOperand>(KindTy::FPImmediate);
Op->FPImm.Val = Val;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static std::unique_ptr<RISCVOperand> createSysReg(StringRef Str, SMLoc S,
unsigned Encoding) {
auto Op = std::make_unique<RISCVOperand>(KindTy::SystemRegister);
Op->SysReg.Data = Str.data();
Op->SysReg.Length = Str.size();
Op->SysReg.Encoding = Encoding;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static std::unique_ptr<RISCVOperand>
createFRMArg(RISCVFPRndMode::RoundingMode FRM, SMLoc S) {
auto Op = std::make_unique<RISCVOperand>(KindTy::FRM);
Op->FRM.FRM = FRM;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static std::unique_ptr<RISCVOperand> createFenceArg(unsigned Val, SMLoc S) {
auto Op = std::make_unique<RISCVOperand>(KindTy::Fence);
Op->Fence.Val = Val;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static std::unique_ptr<RISCVOperand> createVType(unsigned VTypeI, SMLoc S) {
auto Op = std::make_unique<RISCVOperand>(KindTy::VType);
Op->VType.Val = VTypeI;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static std::unique_ptr<RISCVOperand> createRlist(unsigned RlistEncode,
SMLoc S) {
auto Op = std::make_unique<RISCVOperand>(KindTy::Rlist);
Op->Rlist.Val = RlistEncode;
Op->StartLoc = S;
return Op;
}
static std::unique_ptr<RISCVOperand> createRegReg(unsigned Reg1No,
unsigned Reg2No, SMLoc S) {
auto Op = std::make_unique<RISCVOperand>(KindTy::RegReg);
Op->RegReg.Reg1 = Reg1No;
Op->RegReg.Reg2 = Reg2No;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static std::unique_ptr<RISCVOperand> createSpimm(unsigned Spimm, SMLoc S) {
auto Op = std::make_unique<RISCVOperand>(KindTy::Spimm);
Op->Spimm.Val = Spimm;
Op->StartLoc = S;
return Op;
}
static void addExpr(MCInst &Inst, const MCExpr *Expr, bool IsRV64Imm) {
assert(Expr && "Expr shouldn't be null!");
int64_t Imm = 0;
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
bool IsConstant = evaluateConstantImm(Expr, Imm, VK);
if (IsConstant)
Inst.addOperand(
MCOperand::createImm(fixImmediateForRV32(Imm, IsRV64Imm)));
else
Inst.addOperand(MCOperand::createExpr(Expr));
}
// Used by the TableGen Code
void addRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getReg()));
}
void addImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm(), isRV64Imm());
}
void addFPImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
if (isImm()) {
addExpr(Inst, getImm(), isRV64Imm());
return;
}
int Imm = RISCVLoadFPImm::getLoadFPImm(
APFloat(APFloat::IEEEdouble(), APInt(64, getFPConst())));
Inst.addOperand(MCOperand::createImm(Imm));
}
void addFenceArgOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(Fence.Val));
}
void addCSRSystemRegisterOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(SysReg.Encoding));
}
// Support non-canonical syntax:
// "vsetivli rd, uimm, 0xabc" or "vsetvli rd, rs1, 0xabc"
// "vsetivli rd, uimm, (0xc << N)" or "vsetvli rd, rs1, (0xc << N)"
void addVTypeIOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
int64_t Imm = 0;
if (Kind == KindTy::Immediate) {
RISCVMCExpr::VariantKind VK = RISCVMCExpr::VK_RISCV_None;
[[maybe_unused]] bool IsConstantImm =
evaluateConstantImm(getImm(), Imm, VK);
assert(IsConstantImm && "Invalid VTypeI Operand!");
} else {
Imm = getVType();
}
Inst.addOperand(MCOperand::createImm(Imm));
}
void addRlistOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(Rlist.Val));
}
void addRegRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(RegReg.Reg1));
Inst.addOperand(MCOperand::createReg(RegReg.Reg2));
}
void addSpimmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(Spimm.Val));
}
void addFRMArgOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(getFRM()));
}
};
} // end anonymous namespace.
#define GET_REGISTER_MATCHER
#define GET_SUBTARGET_FEATURE_NAME
#define GET_MATCHER_IMPLEMENTATION
#define GET_MNEMONIC_SPELL_CHECKER
#include "RISCVGenAsmMatcher.inc"
static MCRegister convertFPR64ToFPR16(MCRegister Reg) {
assert(Reg >= RISCV::F0_D && Reg <= RISCV::F31_D && "Invalid register");
return Reg - RISCV::F0_D + RISCV::F0_H;
}
static MCRegister convertFPR64ToFPR32(MCRegister Reg) {
assert(Reg >= RISCV::F0_D && Reg <= RISCV::F31_D && "Invalid register");
return Reg - RISCV::F0_D + RISCV::F0_F;
}
static MCRegister convertVRToVRMx(const MCRegisterInfo &RI, MCRegister Reg,
unsigned Kind) {
unsigned RegClassID;
if (Kind == MCK_VRM2)
RegClassID = RISCV::VRM2RegClassID;
else if (Kind == MCK_VRM4)
RegClassID = RISCV::VRM4RegClassID;
else if (Kind == MCK_VRM8)
RegClassID = RISCV::VRM8RegClassID;
else
return 0;
return RI.getMatchingSuperReg(Reg, RISCV::sub_vrm1_0,
&RISCVMCRegisterClasses[RegClassID]);
}
unsigned RISCVAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
unsigned Kind) {
RISCVOperand &Op = static_cast<RISCVOperand &>(AsmOp);
if (!Op.isReg())
return Match_InvalidOperand;
MCRegister Reg = Op.getReg();
bool IsRegFPR64 =
RISCVMCRegisterClasses[RISCV::FPR64RegClassID].contains(Reg);
bool IsRegFPR64C =
RISCVMCRegisterClasses[RISCV::FPR64CRegClassID].contains(Reg);
bool IsRegVR = RISCVMCRegisterClasses[RISCV::VRRegClassID].contains(Reg);
// As the parser couldn't differentiate an FPR32 from an FPR64, coerce the
// register from FPR64 to FPR32 or FPR64C to FPR32C if necessary.
if ((IsRegFPR64 && Kind == MCK_FPR32) ||
(IsRegFPR64C && Kind == MCK_FPR32C)) {
Op.Reg.RegNum = convertFPR64ToFPR32(Reg);
return Match_Success;
}
// As the parser couldn't differentiate an FPR16 from an FPR64, coerce the
// register from FPR64 to FPR16 if necessary.
if (IsRegFPR64 && Kind == MCK_FPR16) {
Op.Reg.RegNum = convertFPR64ToFPR16(Reg);
return Match_Success;
}
// As the parser couldn't differentiate an VRM2/VRM4/VRM8 from an VR, coerce
// the register from VR to VRM2/VRM4/VRM8 if necessary.
if (IsRegVR && (Kind == MCK_VRM2 || Kind == MCK_VRM4 || Kind == MCK_VRM8)) {
Op.Reg.RegNum = convertVRToVRMx(*getContext().getRegisterInfo(), Reg, Kind);
if (Op.Reg.RegNum == 0)
return Match_InvalidOperand;
return Match_Success;
}
return Match_InvalidOperand;
}
unsigned RISCVAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
for (unsigned I = 0; I < MCID.NumOperands; ++I) {
if (MCID.operands()[I].RegClass == RISCV::GPRPairRegClassID) {
const auto &Op = Inst.getOperand(I);
assert(Op.isReg());
MCRegister Reg = Op.getReg();
if (RISCVMCRegisterClasses[RISCV::GPRPairRegClassID].contains(Reg))
continue;
// FIXME: We should form a paired register during parsing/matching.
if (((Reg.id() - RISCV::X0) & 1) != 0)
return Match_RequiresEvenGPRs;
}
}
return Match_Success;
}
bool RISCVAsmParser::generateImmOutOfRangeError(
SMLoc ErrorLoc, int64_t Lower, int64_t Upper,
const Twine &Msg = "immediate must be an integer in the range") {
return Error(ErrorLoc, Msg + " [" + Twine(Lower) + ", " + Twine(Upper) + "]");
}
bool RISCVAsmParser::generateImmOutOfRangeError(
OperandVector &Operands, uint64_t ErrorInfo, int64_t Lower, int64_t Upper,
const Twine &Msg = "immediate must be an integer in the range") {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return generateImmOutOfRangeError(ErrorLoc, Lower, Upper, Msg);
}
bool RISCVAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands,
MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) {
MCInst Inst;
FeatureBitset MissingFeatures;
auto Result = MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures,
MatchingInlineAsm);
switch (Result) {
default:
break;
case Match_Success:
if (validateInstruction(Inst, Operands))
return true;
return processInstruction(Inst, IDLoc, Operands, Out);
case Match_MissingFeature: {
assert(MissingFeatures.any() && "Unknown missing features!");
bool FirstFeature = true;
std::string Msg = "instruction requires the following:";
for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i) {
if (MissingFeatures[i]) {
Msg += FirstFeature ? " " : ", ";
Msg += getSubtargetFeatureName(i);
FirstFeature = false;
}
}
return Error(IDLoc, Msg);
}
case Match_MnemonicFail: {
FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
std::string Suggestion = RISCVMnemonicSpellCheck(
((RISCVOperand &)*Operands[0]).getToken(), FBS, 0);
return Error(IDLoc, "unrecognized instruction mnemonic" + Suggestion);
}
case Match_InvalidOperand: {
SMLoc ErrorLoc = IDLoc;
if (ErrorInfo != ~0ULL) {
if (ErrorInfo >= Operands.size())
return Error(ErrorLoc, "too few operands for instruction");
ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
if (ErrorLoc == SMLoc())
ErrorLoc = IDLoc;
}
return Error(ErrorLoc, "invalid operand for instruction");
}
}
// Handle the case when the error message is of specific type
// other than the generic Match_InvalidOperand, and the
// corresponding operand is missing.
if (Result > FIRST_TARGET_MATCH_RESULT_TY) {
SMLoc ErrorLoc = IDLoc;
if (ErrorInfo != ~0ULL && ErrorInfo >= Operands.size())
return Error(ErrorLoc, "too few operands for instruction");
}
switch (Result) {
default:
break;
case Match_RequiresEvenGPRs:
return Error(IDLoc,
"double precision floating point operands must use even "
"numbered X register");
case Match_InvalidImmXLenLI:
if (isRV64()) {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, "operand must be a constant 64-bit integer");
}
return generateImmOutOfRangeError(Operands, ErrorInfo,
std::numeric_limits<int32_t>::min(),
std::numeric_limits<uint32_t>::max());
case Match_InvalidImmXLenLI_Restricted:
if (isRV64()) {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, "operand either must be a constant 64-bit integer "
"or a bare symbol name");
}
return generateImmOutOfRangeError(
Operands, ErrorInfo, std::numeric_limits<int32_t>::min(),
std::numeric_limits<uint32_t>::max(),
"operand either must be a bare symbol name or an immediate integer in "
"the range");
case Match_InvalidImmZero: {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, "immediate must be zero");
}
case Match_InvalidUImmLog2XLen:
if (isRV64())
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 6) - 1);
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 5) - 1);
case Match_InvalidUImmLog2XLenNonZero:
if (isRV64())
return generateImmOutOfRangeError(Operands, ErrorInfo, 1, (1 << 6) - 1);
return generateImmOutOfRangeError(Operands, ErrorInfo, 1, (1 << 5) - 1);
case Match_InvalidUImmLog2XLenHalf:
if (isRV64())
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 5) - 1);
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 4) - 1);
case Match_InvalidUImm1:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 1) - 1);
case Match_InvalidUImm2:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 2) - 1);
case Match_InvalidUImm2Lsb0:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, 2,
"immediate must be one of");
case Match_InvalidUImm3:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 3) - 1);
case Match_InvalidUImm4:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 4) - 1);
case Match_InvalidUImm5:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 5) - 1);
case Match_InvalidUImm6:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 6) - 1);
case Match_InvalidUImm7:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 7) - 1);
case Match_InvalidUImm8:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 8) - 1);
case Match_InvalidUImm8GE32:
return generateImmOutOfRangeError(Operands, ErrorInfo, 32, (1 << 8) - 1);
case Match_InvalidSImm5:
return generateImmOutOfRangeError(Operands, ErrorInfo, -(1 << 4),
(1 << 4) - 1);
case Match_InvalidSImm6:
return generateImmOutOfRangeError(Operands, ErrorInfo, -(1 << 5),
(1 << 5) - 1);
case Match_InvalidSImm6NonZero:
return generateImmOutOfRangeError(
Operands, ErrorInfo, -(1 << 5), (1 << 5) - 1,
"immediate must be non-zero in the range");
case Match_InvalidCLUIImm:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 1, (1 << 5) - 1,
"immediate must be in [0xfffe0, 0xfffff] or");
case Match_InvalidUImm7Lsb00:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 0, (1 << 7) - 4,
"immediate must be a multiple of 4 bytes in the range");
case Match_InvalidUImm8Lsb00:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 0, (1 << 8) - 4,
"immediate must be a multiple of 4 bytes in the range");
case Match_InvalidUImm8Lsb000:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 0, (1 << 8) - 8,
"immediate must be a multiple of 8 bytes in the range");
case Match_InvalidSImm9Lsb0:
return generateImmOutOfRangeError(
Operands, ErrorInfo, -(1 << 8), (1 << 8) - 2,
"immediate must be a multiple of 2 bytes in the range");
case Match_InvalidUImm9Lsb000:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 0, (1 << 9) - 8,
"immediate must be a multiple of 8 bytes in the range");
case Match_InvalidUImm10Lsb00NonZero:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 4, (1 << 10) - 4,
"immediate must be a multiple of 4 bytes in the range");
case Match_InvalidSImm10Lsb0000NonZero:
return generateImmOutOfRangeError(
Operands, ErrorInfo, -(1 << 9), (1 << 9) - 16,
"immediate must be a multiple of 16 bytes and non-zero in the range");
case Match_InvalidSImm12:
return generateImmOutOfRangeError(
Operands, ErrorInfo, -(1 << 11), (1 << 11) - 1,
"operand must be a symbol with %lo/%pcrel_lo/%tprel_lo modifier or an "
"integer in the range");
case Match_InvalidSImm12Lsb0:
return generateImmOutOfRangeError(
Operands, ErrorInfo, -(1 << 11), (1 << 11) - 2,
"immediate must be a multiple of 2 bytes in the range");
case Match_InvalidSImm12Lsb00000:
return generateImmOutOfRangeError(
Operands, ErrorInfo, -(1 << 11), (1 << 11) - 32,
"immediate must be a multiple of 32 bytes in the range");
case Match_InvalidSImm13Lsb0:
return generateImmOutOfRangeError(
Operands, ErrorInfo, -(1 << 12), (1 << 12) - 2,
"immediate must be a multiple of 2 bytes in the range");
case Match_InvalidUImm20LUI:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 20) - 1,
"operand must be a symbol with "
"%hi/%tprel_hi modifier or an integer in "
"the range");
case Match_InvalidUImm20:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 20) - 1);
case Match_InvalidUImm20AUIPC:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 0, (1 << 20) - 1,
"operand must be a symbol with a "
"%pcrel_hi/%got_pcrel_hi/%tls_ie_pcrel_hi/%tls_gd_pcrel_hi modifier or "
"an integer in the range");
case Match_InvalidSImm21Lsb0JAL:
return generateImmOutOfRangeError(
Operands, ErrorInfo, -(1 << 20), (1 << 20) - 2,
"immediate must be a multiple of 2 bytes in the range");
case Match_InvalidCSRSystemRegister: {
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 12) - 1,
"operand must be a valid system register "
"name or an integer in the range");
}
case Match_InvalidLoadFPImm: {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, "operand must be a valid floating-point constant");
}
case Match_InvalidBareSymbol: {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, "operand must be a bare symbol name");
}
case Match_InvalidPseudoJumpSymbol: {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, "operand must be a valid jump target");
}
case Match_InvalidCallSymbol: {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, "operand must be a bare symbol name");
}
case Match_InvalidTPRelAddSymbol: {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, "operand must be a symbol with %tprel_add modifier");
}
case Match_InvalidTLSDESCCallSymbol: {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc,
"operand must be a symbol with %tlsdesc_call modifier");
}
case Match_InvalidRTZArg: {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, "operand must be 'rtz' floating-point rounding mode");
}
case Match_InvalidVTypeI: {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return generateVTypeError(ErrorLoc);
}
case Match_InvalidVMaskRegister: {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, "operand must be v0.t");
}
case Match_InvalidSImm5Plus1: {
return generateImmOutOfRangeError(Operands, ErrorInfo, -(1 << 4) + 1,
(1 << 4),
"immediate must be in the range");
}
case Match_InvalidRlist: {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(
ErrorLoc,
"operand must be {ra [, s0[-sN]]} or {x1 [, x8[-x9][, x18[-xN]]]}");
}
case Match_InvalidStackAdj: {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(
ErrorLoc,
"stack adjustment is invalid for this instruction and register list; "
"refer to Zc spec for a detailed range of stack adjustment");
}
case Match_InvalidRnumArg: {
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, 10);
}
case Match_InvalidRegReg: {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, "operands must be register and register");
}
}
llvm_unreachable("Unknown match type detected!");
}
// Attempts to match Name as a register (either using the default name or
// alternative ABI names), setting RegNo to the matching register. Upon
// failure, returns a non-valid MCRegister. If IsRVE, then registers x16-x31
// will be rejected.
MCRegister RISCVAsmParser::matchRegisterNameHelper(StringRef Name) const {
MCRegister Reg = MatchRegisterName(Name);
// The 16-/32- and 64-bit FPRs have the same asm name. Check that the initial
// match always matches the 64-bit variant, and not the 16/32-bit one.
assert(!(Reg >= RISCV::F0_H && Reg <= RISCV::F31_H));
assert(!(Reg >= RISCV::F0_F && Reg <= RISCV::F31_F));
// The default FPR register class is based on the tablegen enum ordering.
static_assert(RISCV::F0_D < RISCV::F0_H, "FPR matching must be updated");
static_assert(RISCV::F0_D < RISCV::F0_F, "FPR matching must be updated");
if (!Reg)
Reg = MatchRegisterAltName(Name);
if (isRVE() && Reg >= RISCV::X16 && Reg <= RISCV::X31)
Reg = RISCV::NoRegister;
return Reg;
}
bool RISCVAsmParser::parseRegister(MCRegister &Reg, SMLoc &StartLoc,
SMLoc &EndLoc) {
if (!tryParseRegister(Reg, StartLoc, EndLoc).isSuccess())
return Error(StartLoc, "invalid register name");
return false;
}
ParseStatus RISCVAsmParser::tryParseRegister(MCRegister &Reg, SMLoc &StartLoc,
SMLoc &EndLoc) {
const AsmToken &Tok = getParser().getTok();
StartLoc = Tok.getLoc();
EndLoc = Tok.getEndLoc();
StringRef Name = getLexer().getTok().getIdentifier();
Reg = matchRegisterNameHelper(Name);
if (!Reg)
return ParseStatus::NoMatch;
getParser().Lex(); // Eat identifier token.
return ParseStatus::Success;
}
ParseStatus RISCVAsmParser::parseRegister(OperandVector &Operands,
bool AllowParens) {
SMLoc FirstS = getLoc();
bool HadParens = false;
AsmToken LParen;
// If this is an LParen and a parenthesised register name is allowed, parse it
// atomically.
if (AllowParens && getLexer().is(AsmToken::LParen)) {
AsmToken Buf[2];
size_t ReadCount = getLexer().peekTokens(Buf);
if (ReadCount == 2 && Buf[1].getKind() == AsmToken::RParen) {
HadParens = true;
LParen = getParser().getTok();
getParser().Lex(); // Eat '('
}
}
switch (getLexer().getKind()) {
default:
if (HadParens)
getLexer().UnLex(LParen);
return ParseStatus::NoMatch;
case AsmToken::Identifier:
StringRef Name = getLexer().getTok().getIdentifier();
MCRegister RegNo = matchRegisterNameHelper(Name);
if (!RegNo) {
if (HadParens)
getLexer().UnLex(LParen);
return ParseStatus::NoMatch;
}
if (HadParens)
Operands.push_back(RISCVOperand::createToken("(", FirstS));
SMLoc S = getLoc();
SMLoc E = SMLoc::getFromPointer(S.getPointer() + Name.size());
getLexer().Lex();
Operands.push_back(RISCVOperand::createReg(RegNo, S, E));
}
if (HadParens) {
getParser().Lex(); // Eat ')'
Operands.push_back(RISCVOperand::createToken(")", getLoc()));
}
return ParseStatus::Success;
}
ParseStatus RISCVAsmParser::parseInsnDirectiveOpcode(OperandVector &Operands) {
SMLoc S = getLoc();
SMLoc E;
const MCExpr *Res;
switch (getLexer().getKind()) {
default:
return ParseStatus::NoMatch;
case AsmToken::LParen:
case AsmToken::Minus:
case AsmToken::Plus:
case AsmToken::Exclaim:
case AsmToken::Tilde:
case AsmToken::Integer:
case AsmToken::String: {
if (getParser().parseExpression(Res, E))
return ParseStatus::Failure;
auto *CE = dyn_cast<MCConstantExpr>(Res);
if (CE) {
int64_t Imm = CE->getValue();
if (isUInt<7>(Imm)) {
Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
return ParseStatus::Success;
}
}
break;
}
case AsmToken::Identifier: {
StringRef Identifier;
if (getParser().parseIdentifier(Identifier))
return ParseStatus::Failure;
auto Opcode = RISCVInsnOpcode::lookupRISCVOpcodeByName(Identifier);
if (Opcode) {
assert(isUInt<7>(Opcode->Value) && (Opcode->Value & 0x3) == 3 &&
"Unexpected opcode");
Res = MCConstantExpr::create(Opcode->Value, getContext());
E = SMLoc::getFromPointer(S.getPointer() + Identifier.size());
Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
return ParseStatus::Success;
}
break;
}
case AsmToken::Percent:
break;
}
return generateImmOutOfRangeError(
S, 0, 127,
"opcode must be a valid opcode name or an immediate in the range");
}
ParseStatus RISCVAsmParser::parseInsnCDirectiveOpcode(OperandVector &Operands) {
SMLoc S = getLoc();
SMLoc E;
const MCExpr *Res;
switch (getLexer().getKind()) {
default:
return ParseStatus::NoMatch;
case AsmToken::LParen:
case AsmToken::Minus:
case AsmToken::Plus:
case AsmToken::Exclaim:
case AsmToken::Tilde:
case AsmToken::Integer:
case AsmToken::String: {
if (getParser().parseExpression(Res, E))
return ParseStatus::Failure;
auto *CE = dyn_cast<MCConstantExpr>(Res);
if (CE) {
int64_t Imm = CE->getValue();
if (Imm >= 0 && Imm <= 2) {
Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
return ParseStatus::Success;
}
}
break;
}
case AsmToken::Identifier: {
StringRef Identifier;
if (getParser().parseIdentifier(Identifier))
return ParseStatus::Failure;
unsigned Opcode;
if (Identifier == "C0")
Opcode = 0;
else if (Identifier == "C1")
Opcode = 1;
else if (Identifier == "C2")
Opcode = 2;
else
break;
Res = MCConstantExpr::create(Opcode, getContext());
E = SMLoc::getFromPointer(S.getPointer() + Identifier.size());
Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
return ParseStatus::Success;
}
case AsmToken::Percent: {
// Discard operand with modifier.
break;
}
}
return generateImmOutOfRangeError(
S, 0, 2,
"opcode must be a valid opcode name or an immediate in the range");
}
ParseStatus RISCVAsmParser::parseCSRSystemRegister(OperandVector &Operands) {
SMLoc S = getLoc();
const MCExpr *Res;
switch (getLexer().getKind()) {
default:
return ParseStatus::NoMatch;
case AsmToken::LParen:
case AsmToken::Minus:
case AsmToken::Plus:
case AsmToken::Exclaim:
case AsmToken::Tilde:
case AsmToken::Integer:
case AsmToken::String: {
if (getParser().parseExpression(Res))
return ParseStatus::Failure;
auto *CE = dyn_cast<MCConstantExpr>(Res);
if (CE) {
int64_t Imm = CE->getValue();
if (isUInt<12>(Imm)) {
auto SysReg = RISCVSysReg::lookupSysRegByEncoding(Imm);
// Accept an immediate representing a named or un-named Sys Reg
// if the range is valid, regardless of the required features.
Operands.push_back(
RISCVOperand::createSysReg(SysReg ? SysReg->Name : "", S, Imm));
return ParseStatus::Success;
}
}
return generateImmOutOfRangeError(S, 0, (1 << 12) - 1);
}
case AsmToken::Identifier: {
StringRef Identifier;
if (getParser().parseIdentifier(Identifier))
return ParseStatus::Failure;
auto SysReg = RISCVSysReg::lookupSysRegByName(Identifier);
if (!SysReg)
SysReg = RISCVSysReg::lookupSysRegByAltName(Identifier);
if (!SysReg)
if ((SysReg = RISCVSysReg::lookupSysRegByDeprecatedName(Identifier)))
Warning(S, "'" + Identifier + "' is a deprecated alias for '" +
SysReg->Name + "'");
// Accept a named Sys Reg if the required features are present.
if (SysReg) {
if (!SysReg->haveRequiredFeatures(getSTI().getFeatureBits()))
return Error(S, "system register use requires an option to be enabled");
Operands.push_back(
RISCVOperand::createSysReg(Identifier, S, SysReg->Encoding));
return ParseStatus::Success;
}
return generateImmOutOfRangeError(S, 0, (1 << 12) - 1,
"operand must be a valid system register "
"name or an integer in the range");
}
case AsmToken::Percent: {
// Discard operand with modifier.
return generateImmOutOfRangeError(S, 0, (1 << 12) - 1);
}
}
return ParseStatus::NoMatch;
}
ParseStatus RISCVAsmParser::parseFPImm(OperandVector &Operands) {
SMLoc S = getLoc();
// Parse special floats (inf/nan/min) representation.
if (getTok().is(AsmToken::Identifier)) {
StringRef Identifier = getTok().getIdentifier();
if (Identifier.compare_insensitive("inf") == 0) {
Operands.push_back(
RISCVOperand::createImm(MCConstantExpr::create(30, getContext()), S,
getTok().getEndLoc(), isRV64()));
} else if (Identifier.compare_insensitive("nan") == 0) {
Operands.push_back(
RISCVOperand::createImm(MCConstantExpr::create(31, getContext()), S,
getTok().getEndLoc(), isRV64()));
} else if (Identifier.compare_insensitive("min") == 0) {
Operands.push_back(
RISCVOperand::createImm(MCConstantExpr::create(1, getContext()), S,
getTok().getEndLoc(), isRV64()));
} else {
return TokError("invalid floating point literal");
}
Lex(); // Eat the token.
return ParseStatus::Success;
}
// Handle negation, as that still comes through as a separate token.
bool IsNegative = parseOptionalToken(AsmToken::Minus);
const AsmToken &Tok = getTok();
if (!Tok.is(AsmToken::Real))
return TokError("invalid floating point immediate");
// Parse FP representation.
APFloat RealVal(APFloat::IEEEdouble());
auto StatusOrErr =
RealVal.convertFromString(Tok.getString(), APFloat::rmTowardZero);
if (errorToBool(StatusOrErr.takeError()))
return TokError("invalid floating point representation");
if (IsNegative)
RealVal.changeSign();
Operands.push_back(RISCVOperand::createFPImm(
RealVal.bitcastToAPInt().getZExtValue(), S));
Lex(); // Eat the token.
return ParseStatus::Success;
}
ParseStatus RISCVAsmParser::parseImmediate(OperandVector &Operands) {
SMLoc S = getLoc();
SMLoc E;
const MCExpr *Res;
switch (getLexer().getKind()) {
default:
return ParseStatus::NoMatch;
case AsmToken::LParen:
case AsmToken::Dot:
case AsmToken::Minus:
case AsmToken::Plus:
case AsmToken::Exclaim:
case AsmToken::Tilde:
case AsmToken::Integer:
case AsmToken::String:
case AsmToken::Identifier:
if (getParser().parseExpression(Res, E))
return ParseStatus::Failure;
break;
case AsmToken::Percent:
return parseOperandWithModifier(Operands);
}
Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
return ParseStatus::Success;
}
ParseStatus RISCVAsmParser::parseOperandWithModifier(OperandVector &Operands) {
SMLoc S = getLoc();
SMLoc E;
if (parseToken(AsmToken::Percent, "expected '%' for operand modifier"))
return ParseStatus::Failure;
if (getLexer().getKind() != AsmToken::Identifier)
return Error(getLoc(), "expected valid identifier for operand modifier");
StringRef Identifier = getParser().getTok().getIdentifier();
RISCVMCExpr::VariantKind VK = RISCVMCExpr::getVariantKindForName(Identifier);
if (VK == RISCVMCExpr::VK_RISCV_Invalid)
return Error(getLoc(), "unrecognized operand modifier");
getParser().Lex(); // Eat the identifier
if (parseToken(AsmToken::LParen, "expected '('"))
return ParseStatus::Failure;
const MCExpr *SubExpr;
if (getParser().parseParenExpression(SubExpr, E))
return ParseStatus::Failure;
const MCExpr *ModExpr = RISCVMCExpr::create(SubExpr, VK, getContext());
Operands.push_back(RISCVOperand::createImm(ModExpr, S, E, isRV64()));
return ParseStatus::Success;
}
ParseStatus RISCVAsmParser::parseBareSymbol(OperandVector &Operands) {
SMLoc S = getLoc();
const MCExpr *Res;
if (getLexer().getKind() != AsmToken::Identifier)
return ParseStatus::NoMatch;
StringRef Identifier;
AsmToken Tok = getLexer().getTok();
if (getParser().parseIdentifier(Identifier))
return ParseStatus::Failure;
SMLoc E = SMLoc::getFromPointer(S.getPointer() + Identifier.size());
if (Identifier.consume_back("@plt"))
return Error(getLoc(), "'@plt' operand not valid for instruction");
MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier);
if (Sym->isVariable()) {
const MCExpr *V = Sym->getVariableValue(/*SetUsed=*/false);
if (!isa<MCSymbolRefExpr>(V)) {
getLexer().UnLex(Tok); // Put back if it's not a bare symbol.
return ParseStatus::NoMatch;
}
Res = V;
} else
Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext());
MCBinaryExpr::Opcode Opcode;
switch (getLexer().getKind()) {
default:
Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
return ParseStatus::Success;
case AsmToken::Plus:
Opcode = MCBinaryExpr::Add;
getLexer().Lex();
break;
case AsmToken::Minus:
Opcode = MCBinaryExpr::Sub;
getLexer().Lex();
break;
}
const MCExpr *Expr;
if (getParser().parseExpression(Expr, E))
return ParseStatus::Failure;
Res = MCBinaryExpr::create(Opcode, Res, Expr, getContext());
Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
return ParseStatus::Success;
}
ParseStatus RISCVAsmParser::parseCallSymbol(OperandVector &Operands) {
SMLoc S = getLoc();
const MCExpr *Res;
if (getLexer().getKind() != AsmToken::Identifier)
return ParseStatus::NoMatch;
// Avoid parsing the register in `call rd, foo` as a call symbol.
if (getLexer().peekTok().getKind() != AsmToken::EndOfStatement)
return ParseStatus::NoMatch;
StringRef Identifier;
if (getParser().parseIdentifier(Identifier))
return ParseStatus::Failure;
SMLoc E = SMLoc::getFromPointer(S.getPointer() + Identifier.size());
RISCVMCExpr::VariantKind Kind = RISCVMCExpr::VK_RISCV_CALL_PLT;
(void)Identifier.consume_back("@plt");
MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier);
Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext());
Res = RISCVMCExpr::create(Res, Kind, getContext());
Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
return ParseStatus::Success;
}
ParseStatus RISCVAsmParser::parsePseudoJumpSymbol(OperandVector &Operands) {
SMLoc S = getLoc();
SMLoc E;
const MCExpr *Res;
if (getParser().parseExpression(Res, E))
return ParseStatus::Failure;
if (Res->getKind() != MCExpr::ExprKind::SymbolRef ||
cast<MCSymbolRefExpr>(Res)->getKind() ==
MCSymbolRefExpr::VariantKind::VK_PLT)
return Error(S, "operand must be a valid jump target");
Res = RISCVMCExpr::create(Res, RISCVMCExpr::VK_RISCV_CALL, getContext());
Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
return ParseStatus::Success;
}
ParseStatus RISCVAsmParser::parseJALOffset(OperandVector &Operands) {
// Parsing jal operands is fiddly due to the `jal foo` and `jal ra, foo`
// both being acceptable forms. When parsing `jal ra, foo` this function
// will be called for the `ra` register operand in an attempt to match the
// single-operand alias. parseJALOffset must fail for this case. It would
// seem logical to try parse the operand using parseImmediate and return
// NoMatch if the next token is a comma (meaning we must be parsing a jal in
// the second form rather than the first). We can't do this as there's no
// way of rewinding the lexer state. Instead, return NoMatch if this operand
// is an identifier and is followed by a comma.
if (getLexer().is(AsmToken::Identifier) &&
getLexer().peekTok().is(AsmToken::Comma))
return ParseStatus::NoMatch;
return parseImmediate(Operands);
}
bool RISCVAsmParser::parseVTypeToken(StringRef Identifier, VTypeState &State,
unsigned &Sew, unsigned &Lmul,
bool &Fractional, bool &TailAgnostic,
bool &MaskAgnostic) {
switch (State) {
case VTypeState_SEW:
if (!Identifier.consume_front("e"))
break;
if (Identifier.getAsInteger(10, Sew))
break;
if (!RISCVVType::isValidSEW(Sew))
break;
State = VTypeState_LMUL;
return false;
case VTypeState_LMUL: {
if (!Identifier.consume_front("m"))
break;
Fractional = Identifier.consume_front("f");
if (Identifier.getAsInteger(10, Lmul))
break;
if (!RISCVVType::isValidLMUL(Lmul, Fractional))
break;
State = VTypeState_TailPolicy;
return false;
}
case VTypeState_TailPolicy:
if (Identifier == "ta")
TailAgnostic = true;
else if (Identifier == "tu")
TailAgnostic = false;
else
break;
State = VTypeState_MaskPolicy;
return false;
case VTypeState_MaskPolicy:
if (Identifier == "ma")
MaskAgnostic = true;
else if (Identifier == "mu")
MaskAgnostic = false;
else
break;
State = VTypeState_Done;
return false;
case VTypeState_Done:
// Extra token?
break;
}
return true;
}
ParseStatus RISCVAsmParser::parseVTypeI(OperandVector &Operands) {
SMLoc S = getLoc();
unsigned Sew = 0;
unsigned Lmul = 0;
bool Fractional = false;
bool TailAgnostic = false;
bool MaskAgnostic = false;
VTypeState State = VTypeState_SEW;
if (getLexer().isNot(AsmToken::Identifier))
return ParseStatus::NoMatch;
StringRef Identifier = getTok().getIdentifier();
if (parseVTypeToken(Identifier, State, Sew, Lmul, Fractional, TailAgnostic,
MaskAgnostic))
return ParseStatus::NoMatch;
getLexer().Lex();
while (parseOptionalToken(AsmToken::Comma)) {
if (getLexer().isNot(AsmToken::Identifier))
break;
Identifier = getTok().getIdentifier();
if (parseVTypeToken(Identifier, State, Sew, Lmul, Fractional, TailAgnostic,
MaskAgnostic))
break;
getLexer().Lex();
}
if (getLexer().is(AsmToken::EndOfStatement) && State == VTypeState_Done) {
RISCVII::VLMUL VLMUL = RISCVVType::encodeLMUL(Lmul, Fractional);
unsigned VTypeI =
RISCVVType::encodeVTYPE(VLMUL, Sew, TailAgnostic, MaskAgnostic);
Operands.push_back(RISCVOperand::createVType(VTypeI, S));
return ParseStatus::Success;
}
return generateVTypeError(S);
}
bool RISCVAsmParser::generateVTypeError(SMLoc ErrorLoc) {
return Error(
ErrorLoc,
"operand must be "
"e[8|16|32|64|128|256|512|1024],m[1|2|4|8|f2|f4|f8],[ta|tu],[ma|mu]");
}
ParseStatus RISCVAsmParser::parseMaskReg(OperandVector &Operands) {
if (getLexer().isNot(AsmToken::Identifier))
return ParseStatus::NoMatch;
StringRef Name = getLexer().getTok().getIdentifier();
if (!Name.consume_back(".t"))
return Error(getLoc(), "expected '.t' suffix");
MCRegister RegNo = matchRegisterNameHelper(Name);
if (!RegNo)
return ParseStatus::NoMatch;
if (RegNo != RISCV::V0)
return ParseStatus::NoMatch;
SMLoc S = getLoc();
SMLoc E = SMLoc::getFromPointer(S.getPointer() + Name.size());
getLexer().Lex();
Operands.push_back(RISCVOperand::createReg(RegNo, S, E));
return ParseStatus::Success;
}
ParseStatus RISCVAsmParser::parseGPRAsFPR(OperandVector &Operands) {
if (getLexer().isNot(AsmToken::Identifier))
return ParseStatus::NoMatch;
StringRef Name = getLexer().getTok().getIdentifier();
MCRegister RegNo = matchRegisterNameHelper(Name);
if (!RegNo)
return ParseStatus::NoMatch;
SMLoc S = getLoc();
SMLoc E = SMLoc::getFromPointer(S.getPointer() + Name.size());
getLexer().Lex();
Operands.push_back(RISCVOperand::createReg(
RegNo, S, E, !getSTI().hasFeature(RISCV::FeatureStdExtF)));
return ParseStatus::Success;
}
template <bool IsRV64>
ParseStatus RISCVAsmParser::parseGPRPair(OperandVector &Operands) {
return parseGPRPair(Operands, IsRV64);
}
ParseStatus RISCVAsmParser::parseGPRPair(OperandVector &Operands,
bool IsRV64Inst) {
// If this is not an RV64 GPRPair instruction, don't parse as a GPRPair on
// RV64 as it will prevent matching the RV64 version of the same instruction
// that doesn't use a GPRPair.
// If this is an RV64 GPRPair instruction, there is no RV32 version so we can
// still parse as a pair.
if (!IsRV64Inst && isRV64())
return ParseStatus::NoMatch;
if (getLexer().isNot(AsmToken::Identifier))
return ParseStatus::NoMatch;
StringRef Name = getLexer().getTok().getIdentifier();
MCRegister RegNo = matchRegisterNameHelper(Name);
if (!RegNo)
return ParseStatus::NoMatch;
if (!RISCVMCRegisterClasses[RISCV::GPRRegClassID].contains(RegNo))
return ParseStatus::NoMatch;
if ((RegNo - RISCV::X0) & 1)
return TokError("register must be even");
SMLoc S = getLoc();
SMLoc E = SMLoc::getFromPointer(S.getPointer() + Name.size());
getLexer().Lex();
const MCRegisterInfo *RI = getContext().getRegisterInfo();
unsigned Pair = RI->getMatchingSuperReg(
RegNo, RISCV::sub_gpr_even,
&RISCVMCRegisterClasses[RISCV::GPRPairRegClassID]);
Operands.push_back(RISCVOperand::createReg(Pair, S, E));
return ParseStatus::Success;
}
ParseStatus RISCVAsmParser::parseFRMArg(OperandVector &Operands) {
if (getLexer().isNot(AsmToken::Identifier))
return TokError(
"operand must be a valid floating point rounding mode mnemonic");
StringRef Str = getLexer().getTok().getIdentifier();
RISCVFPRndMode::RoundingMode FRM = RISCVFPRndMode::stringToRoundingMode(Str);
if (FRM == RISCVFPRndMode::Invalid)
return TokError(
"operand must be a valid floating point rounding mode mnemonic");
Operands.push_back(RISCVOperand::createFRMArg(FRM, getLoc()));
Lex(); // Eat identifier token.
return ParseStatus::Success;
}
ParseStatus RISCVAsmParser::parseFenceArg(OperandVector &Operands) {
const AsmToken &Tok = getLexer().getTok();
if (Tok.is(AsmToken::Integer)) {
if (Tok.getIntVal() != 0)
goto ParseFail;
Operands.push_back(RISCVOperand::createFenceArg(0, getLoc()));
Lex();
return ParseStatus::Success;
}
if (Tok.is(AsmToken::Identifier)) {
StringRef Str = Tok.getIdentifier();
// Letters must be unique, taken from 'iorw', and in ascending order. This
// holds as long as each individual character is one of 'iorw' and is
// greater than the previous character.
unsigned Imm = 0;
bool Valid = true;
char Prev = '\0';
for (char c : Str) {
switch (c) {
default:
Valid = false;
break;
case 'i':
Imm |= RISCVFenceField::I;
break;
case 'o':
Imm |= RISCVFenceField::O;
break;
case 'r':
Imm |= RISCVFenceField::R;
break;
case 'w':
Imm |= RISCVFenceField::W;
break;
}
if (c <= Prev) {
Valid = false;
break;
}
Prev = c;
}
if (!Valid)
goto ParseFail;
Operands.push_back(RISCVOperand::createFenceArg(Imm, getLoc()));
Lex();
return ParseStatus::Success;
}
ParseFail:
return TokError("operand must be formed of letters selected in-order from "
"'iorw' or be 0");
}
ParseStatus RISCVAsmParser::parseMemOpBaseReg(OperandVector &Operands) {
if (parseToken(AsmToken::LParen, "expected '('"))
return ParseStatus::Failure;
Operands.push_back(RISCVOperand::createToken("(", getLoc()));
if (!parseRegister(Operands).isSuccess())
return Error(getLoc(), "expected register");
if (parseToken(AsmToken::RParen, "expected ')'"))
return ParseStatus::Failure;
Operands.push_back(RISCVOperand::createToken(")", getLoc()));
return ParseStatus::Success;
}
ParseStatus RISCVAsmParser::parseZeroOffsetMemOp(OperandVector &Operands) {
// Atomic operations such as lr.w, sc.w, and amo*.w accept a "memory operand"
// as one of their register operands, such as `(a0)`. This just denotes that
// the register (in this case `a0`) contains a memory address.
//
// Normally, we would be able to parse these by putting the parens into the
// instruction string. However, GNU as also accepts a zero-offset memory
// operand (such as `0(a0)`), and ignores the 0. Normally this would be parsed
// with parseImmediate followed by parseMemOpBaseReg, but these instructions
// do not accept an immediate operand, and we do not want to add a "dummy"
// operand that is silently dropped.
//
// Instead, we use this custom parser. This will: allow (and discard) an
// offset if it is zero; require (and discard) parentheses; and add only the
// parsed register operand to `Operands`.
//
// These operands are printed with RISCVInstPrinter::printZeroOffsetMemOp,
// which will only print the register surrounded by parentheses (which GNU as
// also uses as its canonical representation for these operands).
std::unique_ptr<RISCVOperand> OptionalImmOp;
if (getLexer().isNot(AsmToken::LParen)) {
// Parse an Integer token. We do not accept arbritrary constant expressions
// in the offset field (because they may include parens, which complicates
// parsing a lot).
int64_t ImmVal;
SMLoc ImmStart = getLoc();
if (getParser().parseIntToken(ImmVal,
"expected '(' or optional integer offset"))
return ParseStatus::Failure;
// Create a RISCVOperand for checking later (so the error messages are
// nicer), but we don't add it to Operands.
SMLoc ImmEnd = getLoc();
OptionalImmOp =
RISCVOperand::createImm(MCConstantExpr::create(ImmVal, getContext()),
ImmStart, ImmEnd, isRV64());
}
if (parseToken(AsmToken::LParen,
OptionalImmOp ? "expected '(' after optional integer offset"
: "expected '(' or optional integer offset"))
return ParseStatus::Failure;
if (!parseRegister(Operands).isSuccess())
return Error(getLoc(), "expected register");
if (parseToken(AsmToken::RParen, "expected ')'"))
return ParseStatus::Failure;
// Deferred Handling of non-zero offsets. This makes the error messages nicer.
if (OptionalImmOp && !OptionalImmOp->isImmZero())
return Error(
OptionalImmOp->getStartLoc(), "optional integer offset must be 0",
SMRange(OptionalImmOp->getStartLoc(), OptionalImmOp->getEndLoc()));
return ParseStatus::Success;
}
ParseStatus RISCVAsmParser::parseRegReg(OperandVector &Operands) {
// RR : a2(a1)
if (getLexer().getKind() != AsmToken::Identifier)
return ParseStatus::NoMatch;
StringRef RegName = getLexer().getTok().getIdentifier();
MCRegister Reg = matchRegisterNameHelper(RegName);
if (!Reg)
return Error(getLoc(), "invalid register");
getLexer().Lex();
if (parseToken(AsmToken::LParen, "expected '(' or invalid operand"))
return ParseStatus::Failure;
if (getLexer().getKind() != AsmToken::Identifier)
return Error(getLoc(), "expected register");
StringRef Reg2Name = getLexer().getTok().getIdentifier();
MCRegister Reg2 = matchRegisterNameHelper(Reg2Name);
if (!Reg2)
return Error(getLoc(), "invalid register");
getLexer().Lex();
if (parseToken(AsmToken::RParen, "expected ')'"))
return ParseStatus::Failure;
Operands.push_back(RISCVOperand::createRegReg(Reg, Reg2, getLoc()));
return ParseStatus::Success;
}
ParseStatus RISCVAsmParser::parseReglist(OperandVector &Operands) {
// Rlist: {ra [, s0[-sN]]}
// XRlist: {x1 [, x8[-x9][, x18[-xN]]]}
SMLoc S = getLoc();
if (parseToken(AsmToken::LCurly, "register list must start with '{'"))
return ParseStatus::Failure;
bool IsEABI = isRVE();
if (getLexer().isNot(AsmToken::Identifier))
return Error(getLoc(), "register list must start from 'ra' or 'x1'");
StringRef RegName = getLexer().getTok().getIdentifier();
MCRegister RegStart = matchRegisterNameHelper(RegName);
MCRegister RegEnd;
if (RegStart != RISCV::X1)
return Error(getLoc(), "register list must start from 'ra' or 'x1'");
getLexer().Lex();
// parse case like ,s0
if (parseOptionalToken(AsmToken::Comma)) {
if (getLexer().isNot(AsmToken::Identifier))
return Error(getLoc(), "invalid register");
StringRef RegName = getLexer().getTok().getIdentifier();
RegStart = matchRegisterNameHelper(RegName);
if (!RegStart)
return Error(getLoc(), "invalid register");
if (RegStart != RISCV::X8)
return Error(getLoc(),
"continuous register list must start from 's0' or 'x8'");
getLexer().Lex(); // eat reg
}
// parse case like -s1
if (parseOptionalToken(AsmToken::Minus)) {
StringRef EndName = getLexer().getTok().getIdentifier();
// FIXME: the register mapping and checks of EABI is wrong
RegEnd = matchRegisterNameHelper(EndName);
if (!RegEnd)
return Error(getLoc(), "invalid register");
if (IsEABI && RegEnd != RISCV::X9)
return Error(getLoc(), "contiguous register list of EABI can only be "
"'s0-s1' or 'x8-x9' pair");
getLexer().Lex();
}
if (!IsEABI) {
// parse extra part like ', x18[-x20]' for XRegList
if (parseOptionalToken(AsmToken::Comma)) {
if (RegEnd != RISCV::X9)
return Error(
getLoc(),
"first contiguous registers pair of register list must be 'x8-x9'");
// parse ', x18' for extra part
if (getLexer().isNot(AsmToken::Identifier))
return Error(getLoc(), "invalid register");
StringRef EndName = getLexer().getTok().getIdentifier();
if (MatchRegisterName(EndName) != RISCV::X18)
return Error(getLoc(),
"second contiguous registers pair of register list "
"must start from 'x18'");
getLexer().Lex();
// parse '-x20' for extra part
if (parseOptionalToken(AsmToken::Minus)) {
if (getLexer().isNot(AsmToken::Identifier))
return Error(getLoc(), "invalid register");
EndName = getLexer().getTok().getIdentifier();
if (MatchRegisterName(EndName) == RISCV::NoRegister)
return Error(getLoc(), "invalid register");
getLexer().Lex();
}
RegEnd = MatchRegisterName(EndName);
}
}
if (RegEnd == RISCV::X26)
return Error(getLoc(), "invalid register list, {ra, s0-s10} or {x1, x8-x9, "
"x18-x26} is not supported");
if (parseToken(AsmToken::RCurly, "register list must end with '}'"))
return ParseStatus::Failure;
if (RegEnd == RISCV::NoRegister)
RegEnd = RegStart;
auto Encode = RISCVZC::encodeRlist(RegEnd, IsEABI);
if (Encode == RISCVZC::INVALID_RLIST)
return Error(S, "invalid register list");
Operands.push_back(RISCVOperand::createRlist(Encode, S));
return ParseStatus::Success;
}
ParseStatus RISCVAsmParser::parseZcmpStackAdj(OperandVector &Operands,
bool ExpectNegative) {
bool Negative = parseOptionalToken(AsmToken::Minus);
SMLoc S = getLoc();
int64_t StackAdjustment = getLexer().getTok().getIntVal();
unsigned Spimm = 0;
unsigned RlistVal = static_cast<RISCVOperand *>(Operands[1].get())->Rlist.Val;
bool IsEABI = isRVE();
if (Negative != ExpectNegative ||
!RISCVZC::getSpimm(RlistVal, Spimm, StackAdjustment, isRV64(), IsEABI))
return ParseStatus::NoMatch;
Operands.push_back(RISCVOperand::createSpimm(Spimm << 4, S));
getLexer().Lex();
return ParseStatus::Success;
}
/// Looks at a token type and creates the relevant operand from this
/// information, adding to Operands. If operand was parsed, returns false, else
/// true.
bool RISCVAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) {
// Check if the current operand has a custom associated parser, if so, try to
// custom parse the operand, or fallback to the general approach.
ParseStatus Result =
MatchOperandParserImpl(Operands, Mnemonic, /*ParseForAllFeatures=*/true);
if (Result.isSuccess())
return false;
if (Result.isFailure())
return true;
// Attempt to parse token as a register.
if (parseRegister(Operands, true).isSuccess())
return false;
// Attempt to parse token as an immediate
if (parseImmediate(Operands).isSuccess()) {
// Parse memory base register if present
if (getLexer().is(AsmToken::LParen))
return !parseMemOpBaseReg(Operands).isSuccess();
return false;
}
// Finally we have exhausted all options and must declare defeat.
Error(getLoc(), "unknown operand");
return true;
}
bool RISCVAsmParser::ParseInstruction(ParseInstructionInfo &Info,
StringRef Name, SMLoc NameLoc,
OperandVector &Operands) {
// Ensure that if the instruction occurs when relaxation is enabled,
// relocations are forced for the file. Ideally this would be done when there
// is enough information to reliably determine if the instruction itself may
// cause relaxations. Unfortunately instruction processing stage occurs in the
// same pass as relocation emission, so it's too late to set a 'sticky bit'
// for the entire file.
if (getSTI().hasFeature(RISCV::FeatureRelax)) {
auto *Assembler = getTargetStreamer().getStreamer().getAssemblerPtr();
if (Assembler != nullptr) {
RISCVAsmBackend &MAB =
static_cast<RISCVAsmBackend &>(Assembler->getBackend());
MAB.setForceRelocs();
}
}
// First operand is token for instruction
Operands.push_back(RISCVOperand::createToken(Name, NameLoc));
// If there are no more operands, then finish
if (getLexer().is(AsmToken::EndOfStatement)) {
getParser().Lex(); // Consume the EndOfStatement.
return false;
}
// Parse first operand
if (parseOperand(Operands, Name))
return true;
// Parse until end of statement, consuming commas between operands
while (parseOptionalToken(AsmToken::Comma)) {
// Parse next operand
if (parseOperand(Operands, Name))
return true;
}
if (getParser().parseEOL("unexpected token")) {
getParser().eatToEndOfStatement();
return true;
}
return false;
}
bool RISCVAsmParser::classifySymbolRef(const MCExpr *Expr,
RISCVMCExpr::VariantKind &Kind) {
Kind = RISCVMCExpr::VK_RISCV_None;
if (const RISCVMCExpr *RE = dyn_cast<RISCVMCExpr>(Expr)) {
Kind = RE->getKind();
Expr = RE->getSubExpr();
}
MCValue Res;
MCFixup Fixup;
if (Expr->evaluateAsRelocatable(Res, nullptr, &Fixup))
return Res.getRefKind() == RISCVMCExpr::VK_RISCV_None;
return false;
}
bool RISCVAsmParser::isSymbolDiff(const MCExpr *Expr) {
MCValue Res;
MCFixup Fixup;
if (Expr->evaluateAsRelocatable(Res, nullptr, &Fixup)) {
return Res.getRefKind() == RISCVMCExpr::VK_RISCV_None && Res.getSymA() &&
Res.getSymB();
}
return false;
}
ParseStatus RISCVAsmParser::parseDirective(AsmToken DirectiveID) {
StringRef IDVal = DirectiveID.getString();
if (IDVal == ".option")
return parseDirectiveOption();
if (IDVal == ".attribute")
return parseDirectiveAttribute();
if (IDVal == ".insn")
return parseDirectiveInsn(DirectiveID.getLoc());
if (IDVal == ".variant_cc")
return parseDirectiveVariantCC();
return ParseStatus::NoMatch;
}
bool RISCVAsmParser::resetToArch(StringRef Arch, SMLoc Loc, std::string &Result,
bool FromOptionDirective) {
for (auto &Feature : RISCVFeatureKV)
if (llvm::RISCVISAInfo::isSupportedExtensionFeature(Feature.Key))
clearFeatureBits(Feature.Value, Feature.Key);
auto ParseResult = llvm::RISCVISAInfo::parseArchString(
Arch, /*EnableExperimentalExtension=*/true,
/*ExperimentalExtensionVersionCheck=*/true);
if (!ParseResult) {
std::string Buffer;
raw_string_ostream OutputErrMsg(Buffer);
handleAllErrors(ParseResult.takeError(), [&](llvm::StringError &ErrMsg) {
OutputErrMsg << "invalid arch name '" << Arch << "', "
<< ErrMsg.getMessage();
});
return Error(Loc, OutputErrMsg.str());
}
auto &ISAInfo = *ParseResult;
for (auto &Feature : RISCVFeatureKV)
if (ISAInfo->hasExtension(Feature.Key))
setFeatureBits(Feature.Value, Feature.Key);
if (FromOptionDirective) {
if (ISAInfo->getXLen() == 32 && isRV64())
return Error(Loc, "bad arch string switching from rv64 to rv32");
else if (ISAInfo->getXLen() == 64 && !isRV64())
return Error(Loc, "bad arch string switching from rv32 to rv64");
}
if (ISAInfo->getXLen() == 32)
clearFeatureBits(RISCV::Feature64Bit, "64bit");
else if (ISAInfo->getXLen() == 64)
setFeatureBits(RISCV::Feature64Bit, "64bit");
else
return Error(Loc, "bad arch string " + Arch);
Result = ISAInfo->toString();
return false;
}
bool RISCVAsmParser::parseDirectiveOption() {
MCAsmParser &Parser = getParser();
// Get the option token.
AsmToken Tok = Parser.getTok();
// At the moment only identifiers are supported.
if (parseToken(AsmToken::Identifier, "expected identifier"))
return true;
StringRef Option = Tok.getIdentifier();
if (Option == "push") {
if (Parser.parseEOL())
return true;
getTargetStreamer().emitDirectiveOptionPush();
pushFeatureBits();
return false;
}
if (Option == "pop") {
SMLoc StartLoc = Parser.getTok().getLoc();
if (Parser.parseEOL())
return true;
getTargetStreamer().emitDirectiveOptionPop();
if (popFeatureBits())
return Error(StartLoc, ".option pop with no .option push");
return false;
}
if (Option == "arch") {
SmallVector<RISCVOptionArchArg> Args;
do {
if (Parser.parseComma())
return true;
RISCVOptionArchArgType Type;
if (parseOptionalToken(AsmToken::Plus))
Type = RISCVOptionArchArgType::Plus;
else if (parseOptionalToken(AsmToken::Minus))
Type = RISCVOptionArchArgType::Minus;
else if (!Args.empty())
return Error(Parser.getTok().getLoc(),
"unexpected token, expected + or -");
else
Type = RISCVOptionArchArgType::Full;
if (Parser.getTok().isNot(AsmToken::Identifier))
return Error(Parser.getTok().getLoc(),
"unexpected token, expected identifier");
StringRef Arch = Parser.getTok().getString();
SMLoc Loc = Parser.getTok().getLoc();
Parser.Lex();
if (Type == RISCVOptionArchArgType::Full) {
std::string Result;
if (resetToArch(Arch, Loc, Result, true))
return true;
Args.emplace_back(Type, Result);
break;
}
auto Ext = llvm::lower_bound(RISCVFeatureKV, Arch);
if (Ext == std::end(RISCVFeatureKV) || StringRef(Ext->Key) != Arch ||
!RISCVISAInfo::isSupportedExtension(Arch)) {
if (isDigit(Arch.back()))
return Error(
Loc,
"Extension version number parsing not currently implemented");
return Error(Loc, "unknown extension feature");
}
Args.emplace_back(Type, Ext->Key);
if (Type == RISCVOptionArchArgType::Plus) {
FeatureBitset OldFeatureBits = STI->getFeatureBits();
setFeatureBits(Ext->Value, Ext->Key);
auto ParseResult = RISCVFeatures::parseFeatureBits(isRV64(), STI->getFeatureBits());
if (!ParseResult) {
copySTI().setFeatureBits(OldFeatureBits);
setAvailableFeatures(ComputeAvailableFeatures(OldFeatureBits));
std::string Buffer;
raw_string_ostream OutputErrMsg(Buffer);
handleAllErrors(ParseResult.takeError(), [&](llvm::StringError &ErrMsg) {
OutputErrMsg << ErrMsg.getMessage();
});
return Error(Loc, OutputErrMsg.str());
}
} else {
assert(Type == RISCVOptionArchArgType::Minus);
// It is invalid to disable an extension that there are other enabled
// extensions depend on it.
// TODO: Make use of RISCVISAInfo to handle this
for (auto &Feature : RISCVFeatureKV) {
if (getSTI().hasFeature(Feature.Value) &&
Feature.Implies.test(Ext->Value))
return Error(Loc,
Twine("Can't disable ") + Ext->Key + " extension, " +
Feature.Key + " extension requires " + Ext->Key +
" extension be enabled");
}
clearFeatureBits(Ext->Value, Ext->Key);
}
} while (Parser.getTok().isNot(AsmToken::EndOfStatement));
if (Parser.parseEOL())
return true;
getTargetStreamer().emitDirectiveOptionArch(Args);
return false;
}
if (Option == "rvc") {
if (Parser.parseEOL())
return true;
getTargetStreamer().emitDirectiveOptionRVC();
setFeatureBits(RISCV::FeatureStdExtC, "c");
return false;
}
if (Option == "norvc") {
if (Parser.parseEOL())
return true;
getTargetStreamer().emitDirectiveOptionNoRVC();
clearFeatureBits(RISCV::FeatureStdExtC, "c");
clearFeatureBits(RISCV::FeatureStdExtZca, "zca");
return false;
}
if (Option == "pic") {
if (Parser.parseEOL())
return true;
getTargetStreamer().emitDirectiveOptionPIC();
ParserOptions.IsPicEnabled = true;
return false;
}
if (Option == "nopic") {
if (Parser.parseEOL())
return true;
getTargetStreamer().emitDirectiveOptionNoPIC();
ParserOptions.IsPicEnabled = false;
return false;
}
if (Option == "relax") {
if (Parser.parseEOL())
return true;
getTargetStreamer().emitDirectiveOptionRelax();
setFeatureBits(RISCV::FeatureRelax, "relax");
return false;
}
if (Option == "norelax") {
if (Parser.parseEOL())
return true;
getTargetStreamer().emitDirectiveOptionNoRelax();
clearFeatureBits(RISCV::FeatureRelax, "relax");
return false;
}
// Unknown option.
Warning(Parser.getTok().getLoc(), "unknown option, expected 'push', 'pop', "
"'rvc', 'norvc', 'arch', 'relax' or "
"'norelax'");
Parser.eatToEndOfStatement();
return false;
}
/// parseDirectiveAttribute
/// ::= .attribute expression ',' ( expression | "string" )
/// ::= .attribute identifier ',' ( expression | "string" )
bool RISCVAsmParser::parseDirectiveAttribute() {
MCAsmParser &Parser = getParser();
int64_t Tag;
SMLoc TagLoc;
TagLoc = Parser.getTok().getLoc();
if (Parser.getTok().is(AsmToken::Identifier)) {
StringRef Name = Parser.getTok().getIdentifier();
std::optional<unsigned> Ret =
ELFAttrs::attrTypeFromString(Name, RISCVAttrs::getRISCVAttributeTags());
if (!Ret)
return Error(TagLoc, "attribute name not recognised: " + Name);
Tag = *Ret;
Parser.Lex();
} else {
const MCExpr *AttrExpr;
TagLoc = Parser.getTok().getLoc();
if (Parser.parseExpression(AttrExpr))
return true;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr);
if (check(!CE, TagLoc, "expected numeric constant"))
return true;
Tag = CE->getValue();
}
if (Parser.parseComma())
return true;
StringRef StringValue;
int64_t IntegerValue = 0;
bool IsIntegerValue = true;
// RISC-V attributes have a string value if the tag number is odd
// and an integer value if the tag number is even.
if (Tag % 2)
IsIntegerValue = false;
SMLoc ValueExprLoc = Parser.getTok().getLoc();
if (IsIntegerValue) {
const MCExpr *ValueExpr;
if (Parser.parseExpression(ValueExpr))
return true;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr);
if (!CE)
return Error(ValueExprLoc, "expected numeric constant");
IntegerValue = CE->getValue();
} else {
if (Parser.getTok().isNot(AsmToken::String))
return Error(Parser.getTok().getLoc(), "expected string constant");
StringValue = Parser.getTok().getStringContents();
Parser.Lex();
}
if (Parser.parseEOL())
return true;
if (IsIntegerValue)
getTargetStreamer().emitAttribute(Tag, IntegerValue);
else if (Tag != RISCVAttrs::ARCH)
getTargetStreamer().emitTextAttribute(Tag, StringValue);
else {
std::string Result;
if (resetToArch(StringValue, ValueExprLoc, Result, false))
return true;
// Then emit the arch string.
getTargetStreamer().emitTextAttribute(Tag, Result);
}
return false;
}
bool isValidInsnFormat(StringRef Format, bool AllowC) {
return StringSwitch<bool>(Format)
.Cases("r", "r4", "i", "b", "sb", "u", "j", "uj", "s", true)
.Cases("cr", "ci", "ciw", "css", "cl", "cs", "ca", "cb", "cj", AllowC)
.Default(false);
}
/// parseDirectiveInsn
/// ::= .insn [ format encoding, (operands (, operands)*) ]
bool RISCVAsmParser::parseDirectiveInsn(SMLoc L) {
MCAsmParser &Parser = getParser();
// Expect instruction format as identifier.
StringRef Format;
SMLoc ErrorLoc = Parser.getTok().getLoc();
if (Parser.parseIdentifier(Format))
return Error(ErrorLoc, "expected instruction format");
bool AllowC = getSTI().hasFeature(RISCV::FeatureStdExtC) ||
getSTI().hasFeature(RISCV::FeatureStdExtZca);
if (!isValidInsnFormat(Format, AllowC))
return Error(ErrorLoc, "invalid instruction format");
std::string FormatName = (".insn_" + Format).str();
ParseInstructionInfo Info;
SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> Operands;
if (ParseInstruction(Info, FormatName, L, Operands))
return true;
unsigned Opcode;
uint64_t ErrorInfo;
return MatchAndEmitInstruction(L, Opcode, Operands, Parser.getStreamer(),
ErrorInfo,
/*MatchingInlineAsm=*/false);
}
/// parseDirectiveVariantCC
/// ::= .variant_cc symbol
bool RISCVAsmParser::parseDirectiveVariantCC() {
StringRef Name;
if (getParser().parseIdentifier(Name))
return TokError("expected symbol name");
if (parseEOL())
return true;
getTargetStreamer().emitDirectiveVariantCC(
*getContext().getOrCreateSymbol(Name));
return false;
}
void RISCVAsmParser::emitToStreamer(MCStreamer &S, const MCInst &Inst) {
MCInst CInst;
bool Res = RISCVRVC::compress(CInst, Inst, getSTI());
if (Res)
++RISCVNumInstrsCompressed;
S.emitInstruction((Res ? CInst : Inst), getSTI());
}
void RISCVAsmParser::emitLoadImm(MCRegister DestReg, int64_t Value,
MCStreamer &Out) {
SmallVector<MCInst, 8> Seq;
RISCVMatInt::generateMCInstSeq(Value, getSTI(), DestReg, Seq);
for (MCInst &Inst : Seq) {
emitToStreamer(Out, Inst);
}
}
void RISCVAsmParser::emitAuipcInstPair(MCOperand DestReg, MCOperand TmpReg,
const MCExpr *Symbol,
RISCVMCExpr::VariantKind VKHi,
unsigned SecondOpcode, SMLoc IDLoc,
MCStreamer &Out) {
// A pair of instructions for PC-relative addressing; expands to
// TmpLabel: AUIPC TmpReg, VKHi(symbol)
// OP DestReg, TmpReg, %pcrel_lo(TmpLabel)
MCContext &Ctx = getContext();
MCSymbol *TmpLabel = Ctx.createNamedTempSymbol("pcrel_hi");
Out.emitLabel(TmpLabel);
const RISCVMCExpr *SymbolHi = RISCVMCExpr::create(Symbol, VKHi, Ctx);
emitToStreamer(
Out, MCInstBuilder(RISCV::AUIPC).addOperand(TmpReg).addExpr(SymbolHi));
const MCExpr *RefToLinkTmpLabel =
RISCVMCExpr::create(MCSymbolRefExpr::create(TmpLabel, Ctx),
RISCVMCExpr::VK_RISCV_PCREL_LO, Ctx);
emitToStreamer(Out, MCInstBuilder(SecondOpcode)
.addOperand(DestReg)
.addOperand(TmpReg)
.addExpr(RefToLinkTmpLabel));
}
void RISCVAsmParser::emitLoadLocalAddress(MCInst &Inst, SMLoc IDLoc,
MCStreamer &Out) {
// The load local address pseudo-instruction "lla" is used in PC-relative
// addressing of local symbols:
// lla rdest, symbol
// expands to
// TmpLabel: AUIPC rdest, %pcrel_hi(symbol)
// ADDI rdest, rdest, %pcrel_lo(TmpLabel)
MCOperand DestReg = Inst.getOperand(0);
const MCExpr *Symbol = Inst.getOperand(1).getExpr();
emitAuipcInstPair(DestReg, DestReg, Symbol, RISCVMCExpr::VK_RISCV_PCREL_HI,
RISCV::ADDI, IDLoc, Out);
}
void RISCVAsmParser::emitLoadGlobalAddress(MCInst &Inst, SMLoc IDLoc,
MCStreamer &Out) {
// The load global address pseudo-instruction "lga" is used in GOT-indirect
// addressing of global symbols:
// lga rdest, symbol
// expands to
// TmpLabel: AUIPC rdest, %got_pcrel_hi(symbol)
// Lx rdest, %pcrel_lo(TmpLabel)(rdest)
MCOperand DestReg = Inst.getOperand(0);
const MCExpr *Symbol = Inst.getOperand(1).getExpr();
unsigned SecondOpcode = isRV64() ? RISCV::LD : RISCV::LW;
emitAuipcInstPair(DestReg, DestReg, Symbol, RISCVMCExpr::VK_RISCV_GOT_HI,
SecondOpcode, IDLoc, Out);
}
void RISCVAsmParser::emitLoadAddress(MCInst &Inst, SMLoc IDLoc,
MCStreamer &Out) {
// The load address pseudo-instruction "la" is used in PC-relative and
// GOT-indirect addressing of global symbols:
// la rdest, symbol
// is an alias for either (for non-PIC)
// lla rdest, symbol
// or (for PIC)
// lga rdest, symbol
if (ParserOptions.IsPicEnabled)
emitLoadGlobalAddress(Inst, IDLoc, Out);
else
emitLoadLocalAddress(Inst, IDLoc, Out);
}
void RISCVAsmParser::emitLoadTLSIEAddress(MCInst &Inst, SMLoc IDLoc,
MCStreamer &Out) {
// The load TLS IE address pseudo-instruction "la.tls.ie" is used in
// initial-exec TLS model addressing of global symbols:
// la.tls.ie rdest, symbol
// expands to
// TmpLabel: AUIPC rdest, %tls_ie_pcrel_hi(symbol)
// Lx rdest, %pcrel_lo(TmpLabel)(rdest)
MCOperand DestReg = Inst.getOperand(0);
const MCExpr *Symbol = Inst.getOperand(1).getExpr();
unsigned SecondOpcode = isRV64() ? RISCV::LD : RISCV::LW;
emitAuipcInstPair(DestReg, DestReg, Symbol, RISCVMCExpr::VK_RISCV_TLS_GOT_HI,
SecondOpcode, IDLoc, Out);
}
void RISCVAsmParser::emitLoadTLSGDAddress(MCInst &Inst, SMLoc IDLoc,
MCStreamer &Out) {
// The load TLS GD address pseudo-instruction "la.tls.gd" is used in
// global-dynamic TLS model addressing of global symbols:
// la.tls.gd rdest, symbol
// expands to
// TmpLabel: AUIPC rdest, %tls_gd_pcrel_hi(symbol)
// ADDI rdest, rdest, %pcrel_lo(TmpLabel)
MCOperand DestReg = Inst.getOperand(0);
const MCExpr *Symbol = Inst.getOperand(1).getExpr();
emitAuipcInstPair(DestReg, DestReg, Symbol, RISCVMCExpr::VK_RISCV_TLS_GD_HI,
RISCV::ADDI, IDLoc, Out);
}
void RISCVAsmParser::emitLoadStoreSymbol(MCInst &Inst, unsigned Opcode,
SMLoc IDLoc, MCStreamer &Out,
bool HasTmpReg) {
// The load/store pseudo-instruction does a pc-relative load with
// a symbol.
//
// The expansion looks like this
//
// TmpLabel: AUIPC tmp, %pcrel_hi(symbol)
// [S|L]X rd, %pcrel_lo(TmpLabel)(tmp)
unsigned DestRegOpIdx = HasTmpReg ? 1 : 0;
MCOperand DestReg = Inst.getOperand(DestRegOpIdx);
unsigned SymbolOpIdx = HasTmpReg ? 2 : 1;
MCOperand TmpReg = Inst.getOperand(0);
const MCExpr *Symbol = Inst.getOperand(SymbolOpIdx).getExpr();
emitAuipcInstPair(DestReg, TmpReg, Symbol, RISCVMCExpr::VK_RISCV_PCREL_HI,
Opcode, IDLoc, Out);
}
void RISCVAsmParser::emitPseudoExtend(MCInst &Inst, bool SignExtend,
int64_t Width, SMLoc IDLoc,
MCStreamer &Out) {
// The sign/zero extend pseudo-instruction does two shifts, with the shift
// amounts dependent on the XLEN.
//
// The expansion looks like this
//
// SLLI rd, rs, XLEN - Width
// SR[A|R]I rd, rd, XLEN - Width
MCOperand DestReg = Inst.getOperand(0);
MCOperand SourceReg = Inst.getOperand(1);
unsigned SecondOpcode = SignExtend ? RISCV::SRAI : RISCV::SRLI;
int64_t ShAmt = (isRV64() ? 64 : 32) - Width;
assert(ShAmt > 0 && "Shift amount must be non-zero.");
emitToStreamer(Out, MCInstBuilder(RISCV::SLLI)
.addOperand(DestReg)
.addOperand(SourceReg)
.addImm(ShAmt));
emitToStreamer(Out, MCInstBuilder(SecondOpcode)
.addOperand(DestReg)
.addOperand(DestReg)
.addImm(ShAmt));
}
void RISCVAsmParser::emitVMSGE(MCInst &Inst, unsigned Opcode, SMLoc IDLoc,
MCStreamer &Out) {
if (Inst.getNumOperands() == 3) {
// unmasked va >= x
//
// pseudoinstruction: vmsge{u}.vx vd, va, x
// expansion: vmslt{u}.vx vd, va, x; vmnand.mm vd, vd, vd
emitToStreamer(Out, MCInstBuilder(Opcode)
.addOperand(Inst.getOperand(0))
.addOperand(Inst.getOperand(1))
.addOperand(Inst.getOperand(2))
.addReg(RISCV::NoRegister)
.setLoc(IDLoc));
emitToStreamer(Out, MCInstBuilder(RISCV::VMNAND_MM)
.addOperand(Inst.getOperand(0))
.addOperand(Inst.getOperand(0))
.addOperand(Inst.getOperand(0))
.setLoc(IDLoc));
} else if (Inst.getNumOperands() == 4) {
// masked va >= x, vd != v0
//
// pseudoinstruction: vmsge{u}.vx vd, va, x, v0.t
// expansion: vmslt{u}.vx vd, va, x, v0.t; vmxor.mm vd, vd, v0
assert(Inst.getOperand(0).getReg() != RISCV::V0 &&
"The destination register should not be V0.");
emitToStreamer(Out, MCInstBuilder(Opcode)
.addOperand(Inst.getOperand(0))
.addOperand(Inst.getOperand(1))
.addOperand(Inst.getOperand(2))
.addOperand(Inst.getOperand(3))
.setLoc(IDLoc));
emitToStreamer(Out, MCInstBuilder(RISCV::VMXOR_MM)
.addOperand(Inst.getOperand(0))
.addOperand(Inst.getOperand(0))
.addReg(RISCV::V0)
.setLoc(IDLoc));
} else if (Inst.getNumOperands() == 5 &&
Inst.getOperand(0).getReg() == RISCV::V0) {
// masked va >= x, vd == v0
//
// pseudoinstruction: vmsge{u}.vx vd, va, x, v0.t, vt
// expansion: vmslt{u}.vx vt, va, x; vmandn.mm vd, vd, vt
assert(Inst.getOperand(0).getReg() == RISCV::V0 &&
"The destination register should be V0.");
assert(Inst.getOperand(1).getReg() != RISCV::V0 &&
"The temporary vector register should not be V0.");
emitToStreamer(Out, MCInstBuilder(Opcode)
.addOperand(Inst.getOperand(1))
.addOperand(Inst.getOperand(2))
.addOperand(Inst.getOperand(3))
.addReg(RISCV::NoRegister)
.setLoc(IDLoc));
emitToStreamer(Out, MCInstBuilder(RISCV::VMANDN_MM)
.addOperand(Inst.getOperand(0))
.addOperand(Inst.getOperand(0))
.addOperand(Inst.getOperand(1))
.setLoc(IDLoc));
} else if (Inst.getNumOperands() == 5) {
// masked va >= x, any vd
//
// pseudoinstruction: vmsge{u}.vx vd, va, x, v0.t, vt
// expansion: vmslt{u}.vx vt, va, x; vmandn.mm vt, v0, vt;
// vmandn.mm vd, vd, v0; vmor.mm vd, vt, vd
assert(Inst.getOperand(1).getReg() != RISCV::V0 &&
"The temporary vector register should not be V0.");
emitToStreamer(Out, MCInstBuilder(Opcode)
.addOperand(Inst.getOperand(1))
.addOperand(Inst.getOperand(2))
.addOperand(Inst.getOperand(3))
.addReg(RISCV::NoRegister)
.setLoc(IDLoc));
emitToStreamer(Out, MCInstBuilder(RISCV::VMANDN_MM)
.addOperand(Inst.getOperand(1))
.addReg(RISCV::V0)
.addOperand(Inst.getOperand(1))
.setLoc(IDLoc));
emitToStreamer(Out, MCInstBuilder(RISCV::VMANDN_MM)
.addOperand(Inst.getOperand(0))
.addOperand(Inst.getOperand(0))
.addReg(RISCV::V0)
.setLoc(IDLoc));
emitToStreamer(Out, MCInstBuilder(RISCV::VMOR_MM)
.addOperand(Inst.getOperand(0))
.addOperand(Inst.getOperand(1))
.addOperand(Inst.getOperand(0))
.setLoc(IDLoc));
}
}
bool RISCVAsmParser::checkPseudoAddTPRel(MCInst &Inst,
OperandVector &Operands) {
assert(Inst.getOpcode() == RISCV::PseudoAddTPRel && "Invalid instruction");
assert(Inst.getOperand(2).isReg() && "Unexpected second operand kind");
if (Inst.getOperand(2).getReg() != RISCV::X4) {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[3]).getStartLoc();
return Error(ErrorLoc, "the second input operand must be tp/x4 when using "
"%tprel_add modifier");
}
return false;
}
bool RISCVAsmParser::checkPseudoTLSDESCCall(MCInst &Inst,
OperandVector &Operands) {
assert(Inst.getOpcode() == RISCV::PseudoTLSDESCCall && "Invalid instruction");
assert(Inst.getOperand(0).isReg() && "Unexpected operand kind");
if (Inst.getOperand(0).getReg() != RISCV::X5) {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[3]).getStartLoc();
return Error(ErrorLoc, "the output operand must be t0/x5 when using "
"%tlsdesc_call modifier");
}
return false;
}
std::unique_ptr<RISCVOperand> RISCVAsmParser::defaultMaskRegOp() const {
return RISCVOperand::createReg(RISCV::NoRegister, llvm::SMLoc(),
llvm::SMLoc());
}
std::unique_ptr<RISCVOperand> RISCVAsmParser::defaultFRMArgOp() const {
return RISCVOperand::createFRMArg(RISCVFPRndMode::RoundingMode::DYN,
llvm::SMLoc());
}
std::unique_ptr<RISCVOperand> RISCVAsmParser::defaultFRMArgLegacyOp() const {
return RISCVOperand::createFRMArg(RISCVFPRndMode::RoundingMode::RNE,
llvm::SMLoc());
}
bool RISCVAsmParser::validateInstruction(MCInst &Inst,
OperandVector &Operands) {
unsigned Opcode = Inst.getOpcode();
if (Opcode == RISCV::PseudoVMSGEU_VX_M_T ||
Opcode == RISCV::PseudoVMSGE_VX_M_T) {
unsigned DestReg = Inst.getOperand(0).getReg();
unsigned TempReg = Inst.getOperand(1).getReg();
if (DestReg == TempReg) {
SMLoc Loc = Operands.back()->getStartLoc();
return Error(Loc, "The temporary vector register cannot be the same as "
"the destination register.");
}
}
if (Opcode == RISCV::TH_LDD || Opcode == RISCV::TH_LWUD ||
Opcode == RISCV::TH_LWD) {
unsigned Rd1 = Inst.getOperand(0).getReg();
unsigned Rd2 = Inst.getOperand(1).getReg();
unsigned Rs1 = Inst.getOperand(2).getReg();
// The encoding with rd1 == rd2 == rs1 is reserved for XTHead load pair.
if (Rs1 == Rd1 && Rs1 == Rd2) {
SMLoc Loc = Operands[1]->getStartLoc();
return Error(Loc, "The source register and destination registers "
"cannot be equal.");
}
}
if (Opcode == RISCV::CM_MVSA01) {
unsigned Rd1 = Inst.getOperand(0).getReg();
unsigned Rd2 = Inst.getOperand(1).getReg();
if (Rd1 == Rd2) {
SMLoc Loc = Operands[1]->getStartLoc();
return Error(Loc, "'rs1' and 'rs2' must be different.");
}
}
bool IsTHeadMemPair32 = (Opcode == RISCV::TH_LWD ||
Opcode == RISCV::TH_LWUD || Opcode == RISCV::TH_SWD);
bool IsTHeadMemPair64 = (Opcode == RISCV::TH_LDD || Opcode == RISCV::TH_SDD);
// The last operand of XTHeadMemPair instructions must be constant 3 or 4
// depending on the data width.
if (IsTHeadMemPair32 && Inst.getOperand(4).getImm() != 3) {
SMLoc Loc = Operands.back()->getStartLoc();
return Error(Loc, "Operand must be constant 3.");
} else if (IsTHeadMemPair64 && Inst.getOperand(4).getImm() != 4) {
SMLoc Loc = Operands.back()->getStartLoc();
return Error(Loc, "Operand must be constant 4.");
}
const MCInstrDesc &MCID = MII.get(Opcode);
if (!(MCID.TSFlags & RISCVII::ConstraintMask))
return false;
if (Opcode == RISCV::VC_V_XVW || Opcode == RISCV::VC_V_IVW ||
Opcode == RISCV::VC_V_FVW || Opcode == RISCV::VC_V_VVW) {
// Operands Opcode, Dst, uimm, Dst, Rs2, Rs1 for VC_V_XVW.
unsigned VCIXDst = Inst.getOperand(0).getReg();
SMLoc VCIXDstLoc = Operands[2]->getStartLoc();
if (MCID.TSFlags & RISCVII::VS1Constraint) {
unsigned VCIXRs1 = Inst.getOperand(Inst.getNumOperands() - 1).getReg();
if (VCIXDst == VCIXRs1)
return Error(VCIXDstLoc, "The destination vector register group cannot"
" overlap the source vector register group.");
}
if (MCID.TSFlags & RISCVII::VS2Constraint) {
unsigned VCIXRs2 = Inst.getOperand(Inst.getNumOperands() - 2).getReg();
if (VCIXDst == VCIXRs2)
return Error(VCIXDstLoc, "The destination vector register group cannot"
" overlap the source vector register group.");
}
return false;
}
unsigned DestReg = Inst.getOperand(0).getReg();
unsigned Offset = 0;
int TiedOp = MCID.getOperandConstraint(1, MCOI::TIED_TO);
if (TiedOp == 0)
Offset = 1;
// Operands[1] will be the first operand, DestReg.
SMLoc Loc = Operands[1]->getStartLoc();
if (MCID.TSFlags & RISCVII::VS2Constraint) {
unsigned CheckReg = Inst.getOperand(Offset + 1).getReg();
if (DestReg == CheckReg)
return Error(Loc, "The destination vector register group cannot overlap"
" the source vector register group.");
}
if ((MCID.TSFlags & RISCVII::VS1Constraint) && Inst.getOperand(Offset + 2).isReg()) {
unsigned CheckReg = Inst.getOperand(Offset + 2).getReg();
if (DestReg == CheckReg)
return Error(Loc, "The destination vector register group cannot overlap"
" the source vector register group.");
}
if ((MCID.TSFlags & RISCVII::VMConstraint) && (DestReg == RISCV::V0)) {
// vadc, vsbc are special cases. These instructions have no mask register.
// The destination register could not be V0.
if (Opcode == RISCV::VADC_VVM || Opcode == RISCV::VADC_VXM ||
Opcode == RISCV::VADC_VIM || Opcode == RISCV::VSBC_VVM ||
Opcode == RISCV::VSBC_VXM || Opcode == RISCV::VFMERGE_VFM ||
Opcode == RISCV::VMERGE_VIM || Opcode == RISCV::VMERGE_VVM ||
Opcode == RISCV::VMERGE_VXM)
return Error(Loc, "The destination vector register group cannot be V0.");
// Regardless masked or unmasked version, the number of operands is the
// same. For example, "viota.m v0, v2" is "viota.m v0, v2, NoRegister"
// actually. We need to check the last operand to ensure whether it is
// masked or not.
unsigned CheckReg = Inst.getOperand(Inst.getNumOperands() - 1).getReg();
assert((CheckReg == RISCV::V0 || CheckReg == RISCV::NoRegister) &&
"Unexpected register for mask operand");
if (DestReg == CheckReg)
return Error(Loc, "The destination vector register group cannot overlap"
" the mask register.");
}
return false;
}
bool RISCVAsmParser::processInstruction(MCInst &Inst, SMLoc IDLoc,
OperandVector &Operands,
MCStreamer &Out) {
Inst.setLoc(IDLoc);
switch (Inst.getOpcode()) {
default:
break;
case RISCV::PseudoLLAImm:
case RISCV::PseudoLAImm:
case RISCV::PseudoLI: {
MCRegister Reg = Inst.getOperand(0).getReg();
const MCOperand &Op1 = Inst.getOperand(1);
if (Op1.isExpr()) {
// We must have li reg, %lo(sym) or li reg, %pcrel_lo(sym) or similar.
// Just convert to an addi. This allows compatibility with gas.
emitToStreamer(Out, MCInstBuilder(RISCV::ADDI)
.addReg(Reg)
.addReg(RISCV::X0)
.addExpr(Op1.getExpr()));
return false;
}
int64_t Imm = Inst.getOperand(1).getImm();
// On RV32 the immediate here can either be a signed or an unsigned
// 32-bit number. Sign extension has to be performed to ensure that Imm
// represents the expected signed 64-bit number.
if (!isRV64())
Imm = SignExtend64<32>(Imm);
emitLoadImm(Reg, Imm, Out);
return false;
}
case RISCV::PseudoLLA:
emitLoadLocalAddress(Inst, IDLoc, Out);
return false;
case RISCV::PseudoLGA:
emitLoadGlobalAddress(Inst, IDLoc, Out);
return false;
case RISCV::PseudoLA:
emitLoadAddress(Inst, IDLoc, Out);
return false;
case RISCV::PseudoLA_TLS_IE:
emitLoadTLSIEAddress(Inst, IDLoc, Out);
return false;
case RISCV::PseudoLA_TLS_GD:
emitLoadTLSGDAddress(Inst, IDLoc, Out);
return false;
case RISCV::PseudoLB:
emitLoadStoreSymbol(Inst, RISCV::LB, IDLoc, Out, /*HasTmpReg=*/false);
return false;
case RISCV::PseudoLBU:
emitLoadStoreSymbol(Inst, RISCV::LBU, IDLoc, Out, /*HasTmpReg=*/false);
return false;
case RISCV::PseudoLH:
emitLoadStoreSymbol(Inst, RISCV::LH, IDLoc, Out, /*HasTmpReg=*/false);
return false;
case RISCV::PseudoLHU:
emitLoadStoreSymbol(Inst, RISCV::LHU, IDLoc, Out, /*HasTmpReg=*/false);
return false;
case RISCV::PseudoLW:
emitLoadStoreSymbol(Inst, RISCV::LW, IDLoc, Out, /*HasTmpReg=*/false);
return false;
case RISCV::PseudoLWU:
emitLoadStoreSymbol(Inst, RISCV::LWU, IDLoc, Out, /*HasTmpReg=*/false);
return false;
case RISCV::PseudoLD:
emitLoadStoreSymbol(Inst, RISCV::LD, IDLoc, Out, /*HasTmpReg=*/false);
return false;
case RISCV::PseudoFLH:
emitLoadStoreSymbol(Inst, RISCV::FLH, IDLoc, Out, /*HasTmpReg=*/true);
return false;
case RISCV::PseudoFLW:
emitLoadStoreSymbol(Inst, RISCV::FLW, IDLoc, Out, /*HasTmpReg=*/true);
return false;
case RISCV::PseudoFLD:
emitLoadStoreSymbol(Inst, RISCV::FLD, IDLoc, Out, /*HasTmpReg=*/true);
return false;
case RISCV::PseudoSB:
emitLoadStoreSymbol(Inst, RISCV::SB, IDLoc, Out, /*HasTmpReg=*/true);
return false;
case RISCV::PseudoSH:
emitLoadStoreSymbol(Inst, RISCV::SH, IDLoc, Out, /*HasTmpReg=*/true);
return false;
case RISCV::PseudoSW:
emitLoadStoreSymbol(Inst, RISCV::SW, IDLoc, Out, /*HasTmpReg=*/true);
return false;
case RISCV::PseudoSD:
emitLoadStoreSymbol(Inst, RISCV::SD, IDLoc, Out, /*HasTmpReg=*/true);
return false;
case RISCV::PseudoFSH:
emitLoadStoreSymbol(Inst, RISCV::FSH, IDLoc, Out, /*HasTmpReg=*/true);
return false;
case RISCV::PseudoFSW:
emitLoadStoreSymbol(Inst, RISCV::FSW, IDLoc, Out, /*HasTmpReg=*/true);
return false;
case RISCV::PseudoFSD:
emitLoadStoreSymbol(Inst, RISCV::FSD, IDLoc, Out, /*HasTmpReg=*/true);
return false;
case RISCV::PseudoAddTPRel:
if (checkPseudoAddTPRel(Inst, Operands))
return true;
break;
case RISCV::PseudoTLSDESCCall:
if (checkPseudoTLSDESCCall(Inst, Operands))
return true;
break;
case RISCV::PseudoSEXT_B:
emitPseudoExtend(Inst, /*SignExtend=*/true, /*Width=*/8, IDLoc, Out);
return false;
case RISCV::PseudoSEXT_H:
emitPseudoExtend(Inst, /*SignExtend=*/true, /*Width=*/16, IDLoc, Out);
return false;
case RISCV::PseudoZEXT_H:
emitPseudoExtend(Inst, /*SignExtend=*/false, /*Width=*/16, IDLoc, Out);
return false;
case RISCV::PseudoZEXT_W:
emitPseudoExtend(Inst, /*SignExtend=*/false, /*Width=*/32, IDLoc, Out);
return false;
case RISCV::PseudoVMSGEU_VX:
case RISCV::PseudoVMSGEU_VX_M:
case RISCV::PseudoVMSGEU_VX_M_T:
emitVMSGE(Inst, RISCV::VMSLTU_VX, IDLoc, Out);
return false;
case RISCV::PseudoVMSGE_VX:
case RISCV::PseudoVMSGE_VX_M:
case RISCV::PseudoVMSGE_VX_M_T:
emitVMSGE(Inst, RISCV::VMSLT_VX, IDLoc, Out);
return false;
case RISCV::PseudoVMSGE_VI:
case RISCV::PseudoVMSLT_VI: {
// These instructions are signed and so is immediate so we can subtract one
// and change the opcode.
int64_t Imm = Inst.getOperand(2).getImm();
unsigned Opc = Inst.getOpcode() == RISCV::PseudoVMSGE_VI ? RISCV::VMSGT_VI
: RISCV::VMSLE_VI;
emitToStreamer(Out, MCInstBuilder(Opc)
.addOperand(Inst.getOperand(0))
.addOperand(Inst.getOperand(1))
.addImm(Imm - 1)
.addOperand(Inst.getOperand(3))
.setLoc(IDLoc));
return false;
}
case RISCV::PseudoVMSGEU_VI:
case RISCV::PseudoVMSLTU_VI: {
int64_t Imm = Inst.getOperand(2).getImm();
// Unsigned comparisons are tricky because the immediate is signed. If the
// immediate is 0 we can't just subtract one. vmsltu.vi v0, v1, 0 is always
// false, but vmsle.vi v0, v1, -1 is always true. Instead we use
// vmsne v0, v1, v1 which is always false.
if (Imm == 0) {
unsigned Opc = Inst.getOpcode() == RISCV::PseudoVMSGEU_VI
? RISCV::VMSEQ_VV
: RISCV::VMSNE_VV;
emitToStreamer(Out, MCInstBuilder(Opc)
.addOperand(Inst.getOperand(0))
.addOperand(Inst.getOperand(1))
.addOperand(Inst.getOperand(1))
.addOperand(Inst.getOperand(3))
.setLoc(IDLoc));
} else {
// Other immediate values can subtract one like signed.
unsigned Opc = Inst.getOpcode() == RISCV::PseudoVMSGEU_VI
? RISCV::VMSGTU_VI
: RISCV::VMSLEU_VI;
emitToStreamer(Out, MCInstBuilder(Opc)
.addOperand(Inst.getOperand(0))
.addOperand(Inst.getOperand(1))
.addImm(Imm - 1)
.addOperand(Inst.getOperand(3))
.setLoc(IDLoc));
}
return false;
}
}
emitToStreamer(Out, Inst);
return false;
}
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeRISCVAsmParser() {
RegisterMCAsmParser<RISCVAsmParser> X(getTheRISCV32Target());
RegisterMCAsmParser<RISCVAsmParser> Y(getTheRISCV64Target());
}