Files
clang-p2996/llvm/test/Transforms/AggressiveInstCombine/trunc_multi_uses.ll
Bjorn Pettersson 3f8027fb67 [test] Update some test cases to use -passes when specifying the pipeline
This updates transform test cases for
  ADCE
  AddDiscriminators
  AggressiveInstCombine
  AlignmentFromAssumptions
  ArgumentPromotion
  BDCE
  CalledValuePropagation
  DCE
  Reg2Mem
  WholeProgramDevirt
to use the -passes syntax when specifying the pipeline.

Given that LLVM_ENABLE_NEW_PASS_MANAGER isn't set to off (which is
a deprecated feature) the updated test cases already used the new
pass manager, but they were using the legacy syntax when specifying
the passes to run. This patch can be seen as a step toward deprecating
that interface.

This patch also removes some redundant RUN lines. Here I am
referring to test cases that had multiple RUN lines verifying both
the legacy "-passname" syntax and the new "-passes=passname" syntax.
Since we switched the default pass manager to "new PM" both RUN lines
have verified the new PM version of the pass (more or less wasting
time running the same test twice), unless LLVM_ENABLE_NEW_PASS_MANAGER
is set to "off". It is assumed that it is enough to run these tests
with the new pass manager now.

Differential Revision: https://reviews.llvm.org/D108472
2021-09-29 21:51:08 +02:00

270 lines
10 KiB
LLVM

; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt < %s -passes=aggressive-instcombine -S | FileCheck %s
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64"
; Aggressive Instcombine should be able to reduce width of these expressions.
declare i32 @use32(i32)
declare i32 @use64(i64)
declare <2 x i32> @use32_vec(<2 x i32>)
declare <2 x i32> @use64_vec(<2 x i64>)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; These tests check cases where expression dag post-dominated by TruncInst
;; contains instruction, which has more than one usage.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
define void @multi_uses_add(i32 %X) {
; CHECK-LABEL: @multi_uses_add(
; CHECK-NEXT: [[A1:%.*]] = zext i32 [[X:%.*]] to i64
; CHECK-NEXT: [[B1:%.*]] = add i32 [[X]], 15
; CHECK-NEXT: [[C1:%.*]] = mul i32 [[B1]], [[B1]]
; CHECK-NEXT: [[TMP1:%.*]] = call i32 @use32(i32 [[C1]])
; CHECK-NEXT: [[TMP2:%.*]] = call i32 @use64(i64 [[A1]])
; CHECK-NEXT: ret void
;
%A1 = zext i32 %X to i64
%B1 = add i64 %A1, 15
%C1 = mul i64 %B1, %B1
%T1 = trunc i64 %C1 to i32
call i32 @use32(i32 %T1)
; make sure zext have another use that is not post-dominated by the TruncInst.
call i32 @use64(i64 %A1)
ret void
}
define void @multi_uses_or(i32 %X) {
; CHECK-LABEL: @multi_uses_or(
; CHECK-NEXT: [[A1:%.*]] = zext i32 [[X:%.*]] to i64
; CHECK-NEXT: [[B1:%.*]] = or i32 [[X]], 15
; CHECK-NEXT: [[C1:%.*]] = mul i32 [[B1]], [[B1]]
; CHECK-NEXT: [[TMP1:%.*]] = call i32 @use32(i32 [[C1]])
; CHECK-NEXT: [[TMP2:%.*]] = call i32 @use64(i64 [[A1]])
; CHECK-NEXT: ret void
;
%A1 = zext i32 %X to i64
%B1 = or i64 %A1, 15
%C1 = mul i64 %B1, %B1
%T1 = trunc i64 %C1 to i32
call i32 @use32(i32 %T1)
; make sure zext have another use that is not post-dominated by the TruncInst.
call i32 @use64(i64 %A1)
ret void
}
define void @multi_uses_xor(i32 %X) {
; CHECK-LABEL: @multi_uses_xor(
; CHECK-NEXT: [[A1:%.*]] = zext i32 [[X:%.*]] to i64
; CHECK-NEXT: [[B1:%.*]] = xor i32 [[X]], 15
; CHECK-NEXT: [[C1:%.*]] = mul i32 [[B1]], [[B1]]
; CHECK-NEXT: [[TMP1:%.*]] = call i32 @use32(i32 [[C1]])
; CHECK-NEXT: [[TMP2:%.*]] = call i32 @use64(i64 [[A1]])
; CHECK-NEXT: ret void
;
%A1 = zext i32 %X to i64
%B1 = xor i64 %A1, 15
%C1 = mul i64 %B1, %B1
%T1 = trunc i64 %C1 to i32
call i32 @use32(i32 %T1)
; make sure zext have another use that is not post-dominated by the TruncInst.
call i32 @use64(i64 %A1)
ret void
}
define void @multi_uses_and(i32 %X) {
; CHECK-LABEL: @multi_uses_and(
; CHECK-NEXT: [[A1:%.*]] = zext i32 [[X:%.*]] to i64
; CHECK-NEXT: [[B1:%.*]] = and i32 [[X]], 15
; CHECK-NEXT: [[C1:%.*]] = mul i32 [[B1]], [[B1]]
; CHECK-NEXT: [[TMP1:%.*]] = call i32 @use32(i32 [[C1]])
; CHECK-NEXT: [[TMP2:%.*]] = call i32 @use64(i64 [[A1]])
; CHECK-NEXT: ret void
;
%A1 = zext i32 %X to i64
%B1 = and i64 %A1, 15
%C1 = mul i64 %B1, %B1
%T1 = trunc i64 %C1 to i32
call i32 @use32(i32 %T1)
; make sure zext have another use that is not post-dominated by the TruncInst.
call i32 @use64(i64 %A1)
ret void
}
define void @multi_uses_sub(i32 %X, i32 %Y) {
; CHECK-LABEL: @multi_uses_sub(
; CHECK-NEXT: [[A1:%.*]] = zext i32 [[X:%.*]] to i64
; CHECK-NEXT: [[A2:%.*]] = zext i32 [[Y:%.*]] to i64
; CHECK-NEXT: [[B1:%.*]] = sub i32 [[X]], [[Y]]
; CHECK-NEXT: [[C1:%.*]] = mul i32 [[B1]], [[B1]]
; CHECK-NEXT: [[TMP1:%.*]] = call i32 @use32(i32 [[C1]])
; CHECK-NEXT: [[TMP2:%.*]] = call i32 @use64(i64 [[A1]])
; CHECK-NEXT: [[TMP3:%.*]] = call i32 @use64(i64 [[A2]])
; CHECK-NEXT: ret void
;
%A1 = zext i32 %X to i64
%A2 = zext i32 %Y to i64
%B1 = sub i64 %A1, %A2
%C1 = mul i64 %B1, %B1
%T1 = trunc i64 %C1 to i32
call i32 @use32(i32 %T1)
; make sure zext have another use that is not post-dominated by the TruncInst.
call i32 @use64(i64 %A1)
call i32 @use64(i64 %A2)
ret void
}
define void @multi_use_vec_add(<2 x i32> %X) {
; CHECK-LABEL: @multi_use_vec_add(
; CHECK-NEXT: [[A1:%.*]] = zext <2 x i32> [[X:%.*]] to <2 x i64>
; CHECK-NEXT: [[B1:%.*]] = add <2 x i32> [[X]], <i32 15, i32 15>
; CHECK-NEXT: [[C1:%.*]] = mul <2 x i32> [[B1]], [[B1]]
; CHECK-NEXT: [[TMP1:%.*]] = call <2 x i32> @use32_vec(<2 x i32> [[C1]])
; CHECK-NEXT: [[TMP2:%.*]] = call <2 x i32> @use64_vec(<2 x i64> [[A1]])
; CHECK-NEXT: ret void
;
%A1 = zext <2 x i32> %X to <2 x i64>
%B1 = add <2 x i64> %A1, <i64 15, i64 15>
%C1 = mul <2 x i64> %B1, %B1
%T1 = trunc <2 x i64> %C1 to <2 x i32>
call <2 x i32> @use32_vec(<2 x i32> %T1)
; make sure zext have another use that is not post-dominated by the TruncInst.
call <2 x i32> @use64_vec(<2 x i64> %A1)
ret void
}
define void @multi_use_vec_or(<2 x i32> %X) {
; CHECK-LABEL: @multi_use_vec_or(
; CHECK-NEXT: [[A1:%.*]] = zext <2 x i32> [[X:%.*]] to <2 x i64>
; CHECK-NEXT: [[B1:%.*]] = or <2 x i32> [[X]], <i32 15, i32 15>
; CHECK-NEXT: [[C1:%.*]] = mul <2 x i32> [[B1]], [[B1]]
; CHECK-NEXT: [[TMP1:%.*]] = call <2 x i32> @use32_vec(<2 x i32> [[C1]])
; CHECK-NEXT: [[TMP2:%.*]] = call <2 x i32> @use64_vec(<2 x i64> [[A1]])
; CHECK-NEXT: ret void
;
%A1 = zext <2 x i32> %X to <2 x i64>
%B1 = or <2 x i64> %A1, <i64 15, i64 15>
%C1 = mul <2 x i64> %B1, %B1
%T1 = trunc <2 x i64> %C1 to <2 x i32>
call <2 x i32> @use32_vec(<2 x i32> %T1)
; make sure zext have another use that is not post-dominated by the TruncInst.
call <2 x i32> @use64_vec(<2 x i64> %A1)
ret void
}
define void @multi_use_vec_xor(<2 x i32> %X) {
; CHECK-LABEL: @multi_use_vec_xor(
; CHECK-NEXT: [[A1:%.*]] = zext <2 x i32> [[X:%.*]] to <2 x i64>
; CHECK-NEXT: [[B1:%.*]] = xor <2 x i32> [[X]], <i32 15, i32 15>
; CHECK-NEXT: [[C1:%.*]] = mul <2 x i32> [[B1]], [[B1]]
; CHECK-NEXT: [[TMP1:%.*]] = call <2 x i32> @use32_vec(<2 x i32> [[C1]])
; CHECK-NEXT: [[TMP2:%.*]] = call <2 x i32> @use64_vec(<2 x i64> [[A1]])
; CHECK-NEXT: ret void
;
%A1 = zext <2 x i32> %X to <2 x i64>
%B1 = xor <2 x i64> %A1, <i64 15, i64 15>
%C1 = mul <2 x i64> %B1, %B1
%T1 = trunc <2 x i64> %C1 to <2 x i32>
call <2 x i32> @use32_vec(<2 x i32> %T1)
; make sure zext have another use that is not post-dominated by the TruncInst.
call <2 x i32> @use64_vec(<2 x i64> %A1)
ret void
}
define void @multi_use_vec_and(<2 x i32> %X) {
; CHECK-LABEL: @multi_use_vec_and(
; CHECK-NEXT: [[A1:%.*]] = zext <2 x i32> [[X:%.*]] to <2 x i64>
; CHECK-NEXT: [[B1:%.*]] = and <2 x i32> [[X]], <i32 15, i32 15>
; CHECK-NEXT: [[C1:%.*]] = mul <2 x i32> [[B1]], [[B1]]
; CHECK-NEXT: [[TMP1:%.*]] = call <2 x i32> @use32_vec(<2 x i32> [[C1]])
; CHECK-NEXT: [[TMP2:%.*]] = call <2 x i32> @use64_vec(<2 x i64> [[A1]])
; CHECK-NEXT: ret void
;
%A1 = zext <2 x i32> %X to <2 x i64>
%B1 = and <2 x i64> %A1, <i64 15, i64 15>
%C1 = mul <2 x i64> %B1, %B1
%T1 = trunc <2 x i64> %C1 to <2 x i32>
call <2 x i32> @use32_vec(<2 x i32> %T1)
; make sure zext have another use that is not post-dominated by the TruncInst.
call <2 x i32> @use64_vec(<2 x i64> %A1)
ret void
}
define void @multi_use_vec_sub(<2 x i32> %X, <2 x i32> %Y) {
; CHECK-LABEL: @multi_use_vec_sub(
; CHECK-NEXT: [[A1:%.*]] = zext <2 x i32> [[X:%.*]] to <2 x i64>
; CHECK-NEXT: [[A2:%.*]] = zext <2 x i32> [[Y:%.*]] to <2 x i64>
; CHECK-NEXT: [[B1:%.*]] = sub <2 x i32> [[X]], [[Y]]
; CHECK-NEXT: [[C1:%.*]] = mul <2 x i32> [[B1]], [[B1]]
; CHECK-NEXT: [[TMP1:%.*]] = call <2 x i32> @use32_vec(<2 x i32> [[C1]])
; CHECK-NEXT: [[TMP2:%.*]] = call <2 x i32> @use64_vec(<2 x i64> [[A1]])
; CHECK-NEXT: [[TMP3:%.*]] = call <2 x i32> @use64_vec(<2 x i64> [[A2]])
; CHECK-NEXT: ret void
;
%A1 = zext <2 x i32> %X to <2 x i64>
%A2 = zext <2 x i32> %Y to <2 x i64>
%B1 = sub <2 x i64> %A1, %A2
%C1 = mul <2 x i64> %B1, %B1
%T1 = trunc <2 x i64> %C1 to <2 x i32>
call <2 x i32> @use32_vec(<2 x i32> %T1)
; make sure zext have another use that is not post-dominated by the TruncInst.
call <2 x i32> @use64_vec(<2 x i64> %A1)
call <2 x i32> @use64_vec(<2 x i64> %A2)
ret void
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; These tests check cases where expression dag post-dominated by TruncInst
;; contains TruncInst leaf or ZEXT/SEXT leafs which turn into TruncInst leaves.
;; Check that both expressions are reduced and no TruncInst remains or (was
;; generated).
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Notice that there are two expression patterns below:
; 1. %T2->%C2->(%B2->(%T1, 15), %B2->(%T1, 15))
; 2. %T1`->%C1->(%B1->(%A1, 15), %B1->(%A1, 15))
; (where %T1` is the reduced node of %T1 into trunc instruction)
define void @trunc_as_a_leaf(i32 %X) {
; CHECK-LABEL: @trunc_as_a_leaf(
; CHECK-NEXT: [[B1:%.*]] = add i32 [[X:%.*]], 15
; CHECK-NEXT: [[C1:%.*]] = mul i32 [[B1]], [[B1]]
; CHECK-NEXT: [[B2:%.*]] = add i32 [[C1]], 15
; CHECK-NEXT: [[C2:%.*]] = mul i32 [[B2]], [[B2]]
; CHECK-NEXT: [[TMP1:%.*]] = call i32 @use32(i32 [[C2]])
; CHECK-NEXT: ret void
;
%A1 = zext i32 %X to i64
%B1 = add i64 %A1, 15
%C1 = mul i64 %B1, %B1
%T1 = trunc i64 %C1 to i48 ; leaf trunc
%B2 = add i48 %T1, 15
%C2 = mul i48 %B2, %B2
%T2 = trunc i48 %C2 to i32
call i32 @use32(i32 %T2)
ret void
}
; Notice that there are two expression patterns below:
; 1. %T2->%C2->(%B2->(%T1, 15), %B2->(%T1, 15))
; 2. %T1`->%C1->(%B1->(%A1, 15), %B1->(%A1, 15))
; (where %T1` is the reduced node of %T1 into trunc instruction)
define void @zext_as_a_leaf(i16 %X) {
; CHECK-LABEL: @zext_as_a_leaf(
; CHECK-NEXT: [[A1:%.*]] = zext i16 [[X:%.*]] to i32
; CHECK-NEXT: [[B1:%.*]] = add i32 [[A1]], 15
; CHECK-NEXT: [[C1:%.*]] = mul i32 [[B1]], [[B1]]
; CHECK-NEXT: [[B2:%.*]] = add i32 [[C1]], 15
; CHECK-NEXT: [[C2:%.*]] = mul i32 [[B2]], [[B2]]
; CHECK-NEXT: [[TMP1:%.*]] = call i32 @use32(i32 [[C2]])
; CHECK-NEXT: ret void
;
%A1 = zext i16 %X to i48
%B1 = add i48 %A1, 15
%C1 = mul i48 %B1, %B1
%T1 = zext i48 %C1 to i64 ; leaf zext, which will turn into trunc
%B2 = add i64 %T1, 15
%C2 = mul i64 %B2, %B2
%T2 = trunc i64 %C2 to i32
call i32 @use32(i32 %T2)
ret void
}