Files
clang-p2996/llvm/test/Transforms/GuardWidening/basic.ll
Serguei Katkov 0b5bb6923f [GuardWidening] Freeze the introduced use. Re-land.
Non-determenism is fixed.

Guard widening optimization is able to move the condition from one
guard to the previous one. As a result if the condition is poison
and orginal second guard is never executed but the first one does,
we introduce undefined behavior which was not observed in original
program.

To resolve the issue we must freeze the condition we are moving.
However optimization itself does not know how to work with freeze.
Additionally optimization is written in incremental way.
For example we have three guards
G1(base + 8 < L)
G2(base + 16 < L)
G3(base + 24 < L)

On the first step GW will combine G1 and G2 as
G1(base + 8 < L && freeze(base + 16 < L))
G2(true)
G3(base + 24 < L)

while combining G1 and G3 base appears to be different.

To keep optimization enabled after freezing the moving condition, the
freeze instruction is pushed as much as possible and later all uses
of freezed values are replaced with frozen version.

This is similar what instruction combining does but more aggressevely.
2023-03-30 10:59:01 +07:00

530 lines
17 KiB
LLVM

; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt -S -passes=guard-widening < %s | FileCheck %s
; RUN: opt -S -passes=guard-widening < %s | FileCheck %s
declare void @llvm.experimental.guard(i1,...)
; Basic test case: we wide the first check to check both the
; conditions.
define void @f_0(i1 %cond_0, i1 %cond_1) {
; CHECK-LABEL: @f_0(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[COND_1_GW_FR:%.*]] = freeze i1 [[COND_1:%.*]]
; CHECK-NEXT: [[WIDE_CHK:%.*]] = and i1 [[COND_0:%.*]], [[COND_1_GW_FR]]
; CHECK-NEXT: call void (i1, ...) @llvm.experimental.guard(i1 [[WIDE_CHK]]) [ "deopt"() ]
; CHECK-NEXT: ret void
;
entry:
call void(i1, ...) @llvm.experimental.guard(i1 %cond_0) [ "deopt"() ]
call void(i1, ...) @llvm.experimental.guard(i1 %cond_1) [ "deopt"() ]
ret void
}
; Same as @f_0, but with using a more general notion of postdominance.
define void @f_1(i1 %cond_0, i1 %cond_1) {
; CHECK-LABEL: @f_1(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[COND_1_GW_FR:%.*]] = freeze i1 [[COND_1:%.*]]
; CHECK-NEXT: [[WIDE_CHK:%.*]] = and i1 [[COND_0:%.*]], [[COND_1_GW_FR]]
; CHECK-NEXT: call void (i1, ...) @llvm.experimental.guard(i1 [[WIDE_CHK]]) [ "deopt"() ]
; CHECK-NEXT: br i1 undef, label [[LEFT:%.*]], label [[RIGHT:%.*]]
; CHECK: left:
; CHECK-NEXT: br label [[MERGE:%.*]]
; CHECK: right:
; CHECK-NEXT: br label [[MERGE]]
; CHECK: merge:
; CHECK-NEXT: ret void
;
entry:
call void(i1, ...) @llvm.experimental.guard(i1 %cond_0) [ "deopt"() ]
br i1 undef, label %left, label %right
left:
br label %merge
right:
br label %merge
merge:
call void(i1, ...) @llvm.experimental.guard(i1 %cond_1) [ "deopt"() ]
ret void
}
; Like @f_1, but we have some code we need to hoist before we can
; widen a dominanting check.
define void @f_2(i32 %a, i32 %b) {
; CHECK-LABEL: @f_2(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[B_GW_FR:%.*]] = freeze i32 [[B:%.*]]
; CHECK-NEXT: [[COND_0:%.*]] = icmp ult i32 [[A:%.*]], 10
; CHECK-NEXT: [[COND_1:%.*]] = icmp ult i32 [[B_GW_FR]], 10
; CHECK-NEXT: [[WIDE_CHK:%.*]] = and i1 [[COND_0]], [[COND_1]]
; CHECK-NEXT: call void (i1, ...) @llvm.experimental.guard(i1 [[WIDE_CHK]]) [ "deopt"() ]
; CHECK-NEXT: br i1 undef, label [[LEFT:%.*]], label [[RIGHT:%.*]]
; CHECK: left:
; CHECK-NEXT: br label [[MERGE:%.*]]
; CHECK: right:
; CHECK-NEXT: br label [[MERGE]]
; CHECK: merge:
; CHECK-NEXT: ret void
;
entry:
%cond_0 = icmp ult i32 %a, 10
call void(i1, ...) @llvm.experimental.guard(i1 %cond_0) [ "deopt"() ]
br i1 undef, label %left, label %right
left:
br label %merge
right:
br label %merge
merge:
%cond_1 = icmp ult i32 %b, 10
call void(i1, ...) @llvm.experimental.guard(i1 %cond_1) [ "deopt"() ]
ret void
}
; Negative test: don't hoist stuff out of control flow
; indiscriminately, since that can make us do more work than needed.
define void @f_3(i32 %a, i32 %b) {
; CHECK-LABEL: @f_3(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[COND_0:%.*]] = icmp ult i32 [[A:%.*]], 10
; CHECK-NEXT: call void (i1, ...) @llvm.experimental.guard(i1 [[COND_0]]) [ "deopt"() ]
; CHECK-NEXT: br i1 undef, label [[LEFT:%.*]], label [[RIGHT:%.*]]
; CHECK: left:
; CHECK-NEXT: [[COND_1:%.*]] = icmp ult i32 [[B:%.*]], 10
; CHECK-NEXT: call void (i1, ...) @llvm.experimental.guard(i1 [[COND_1]]) [ "deopt"() ]
; CHECK-NEXT: ret void
; CHECK: right:
; CHECK-NEXT: ret void
;
entry:
%cond_0 = icmp ult i32 %a, 10
call void(i1, ...) @llvm.experimental.guard(i1 %cond_0) [ "deopt"() ]
br i1 undef, label %left, label %right
left:
%cond_1 = icmp ult i32 %b, 10
call void(i1, ...) @llvm.experimental.guard(i1 %cond_1) [ "deopt"() ]
ret void
right:
ret void
}
; But hoisting out of control flow is fine if it makes a loop computed
; condition loop invariant. This behavior may require some tuning in
; the future.
define void @f_4(i32 %a, i32 %b) {
; CHECK-LABEL: @f_4(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[B_GW_FR:%.*]] = freeze i32 [[B:%.*]]
; CHECK-NEXT: [[COND_0:%.*]] = icmp ult i32 [[A:%.*]], 10
; CHECK-NEXT: [[COND_1:%.*]] = icmp ult i32 [[B_GW_FR]], 10
; CHECK-NEXT: [[WIDE_CHK:%.*]] = and i1 [[COND_0]], [[COND_1]]
; CHECK-NEXT: call void (i1, ...) @llvm.experimental.guard(i1 [[WIDE_CHK]]) [ "deopt"() ]
; CHECK-NEXT: br i1 undef, label [[LOOP:%.*]], label [[LEAVE:%.*]]
; CHECK: loop:
; CHECK-NEXT: br i1 undef, label [[LOOP]], label [[LEAVE]]
; CHECK: leave:
; CHECK-NEXT: ret void
;
entry:
%cond_0 = icmp ult i32 %a, 10
call void(i1, ...) @llvm.experimental.guard(i1 %cond_0) [ "deopt"() ]
br i1 undef, label %loop, label %leave
loop:
%cond_1 = icmp ult i32 %b, 10
call void(i1, ...) @llvm.experimental.guard(i1 %cond_1) [ "deopt"() ]
br i1 undef, label %loop, label %leave
leave:
ret void
}
; Hoisting out of control flow is also fine if we can widen the
; dominating check without doing any extra work.
define void @f_5(i32 %a) {
; CHECK-LABEL: @f_5(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[COND_0:%.*]] = icmp ugt i32 [[A:%.*]], 7
; CHECK-NEXT: [[WIDE_CHK:%.*]] = icmp uge i32 [[A]], 11
; CHECK-NEXT: call void (i1, ...) @llvm.experimental.guard(i1 [[WIDE_CHK]]) [ "deopt"() ]
; CHECK-NEXT: br i1 undef, label [[LEFT:%.*]], label [[RIGHT:%.*]]
; CHECK: left:
; CHECK-NEXT: [[COND_1:%.*]] = icmp ugt i32 [[A]], 10
; CHECK-NEXT: ret void
; CHECK: right:
; CHECK-NEXT: ret void
;
entry:
%cond_0 = icmp ugt i32 %a, 7
call void(i1, ...) @llvm.experimental.guard(i1 %cond_0) [ "deopt"() ]
br i1 undef, label %left, label %right
left:
%cond_1 = icmp ugt i32 %a, 10
call void(i1, ...) @llvm.experimental.guard(i1 %cond_1) [ "deopt"() ]
ret void
right:
ret void
}
; Negative test: the load from %a can be safely speculated to before
; the first guard, but there is no guarantee that it will produce the
; same value.
define void @f_6(ptr dereferenceable(32) %a, ptr %b, i1 %unknown) {
; CHECK-LABEL: @f_6(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[COND_0:%.*]] = load i1, ptr [[A:%.*]], align 1
; CHECK-NEXT: call void (i1, ...) @llvm.experimental.guard(i1 [[COND_0]]) [ "deopt"() ]
; CHECK-NEXT: store i1 [[UNKNOWN:%.*]], ptr [[B:%.*]], align 1
; CHECK-NEXT: [[COND_1:%.*]] = load i1, ptr [[A]], align 1
; CHECK-NEXT: call void (i1, ...) @llvm.experimental.guard(i1 [[COND_1]]) [ "deopt"() ]
; CHECK-NEXT: ret void
;
entry:
%cond_0 = load i1, ptr %a
call void(i1, ...) @llvm.experimental.guard(i1 %cond_0) [ "deopt"() ]
store i1 %unknown, ptr %b
%cond_1 = load i1, ptr %a
call void(i1, ...) @llvm.experimental.guard(i1 %cond_1) [ "deopt"() ]
ret void
}
; All else equal, we try to widen the earliest guard we can. This
; heuristic can use some tuning.
define void @f_7(i32 %a, ptr %cond_buf) {
; CHECK-LABEL: @f_7(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[A_GW_FR:%.*]] = freeze i32 [[A:%.*]]
; CHECK-NEXT: [[COND_1:%.*]] = load volatile i1, ptr [[COND_BUF:%.*]], align 1
; CHECK-NEXT: [[COND_3:%.*]] = icmp ult i32 [[A_GW_FR]], 7
; CHECK-NEXT: [[WIDE_CHK:%.*]] = and i1 [[COND_1]], [[COND_3]]
; CHECK-NEXT: call void (i1, ...) @llvm.experimental.guard(i1 [[WIDE_CHK]]) [ "deopt"() ]
; CHECK-NEXT: [[COND_2:%.*]] = load volatile i1, ptr [[COND_BUF]], align 1
; CHECK-NEXT: call void (i1, ...) @llvm.experimental.guard(i1 [[COND_2]]) [ "deopt"() ]
; CHECK-NEXT: br i1 undef, label [[LEFT:%.*]], label [[RIGHT:%.*]]
; CHECK: left:
; CHECK-NEXT: br label [[LEFT]]
; CHECK: right:
; CHECK-NEXT: ret void
;
entry:
%cond_1 = load volatile i1, ptr %cond_buf
call void(i1, ...) @llvm.experimental.guard(i1 %cond_1) [ "deopt"() ]
%cond_2 = load volatile i1, ptr %cond_buf
call void(i1, ...) @llvm.experimental.guard(i1 %cond_2) [ "deopt"() ]
br i1 undef, label %left, label %right
left:
%cond_3 = icmp ult i32 %a, 7
call void(i1, ...) @llvm.experimental.guard(i1 %cond_3) [ "deopt"() ]
br label %left
right:
ret void
}
; In this case the earliest dominating guard is in a loop, and we
; don't want to put extra work in there. This heuristic can use some
; tuning.
define void @f_8(i32 %a, i1 %cond_1, i1 %cond_2) {
; CHECK-LABEL: @f_8(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[A_GW_FR:%.*]] = freeze i32 [[A:%.*]]
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: call void (i1, ...) @llvm.experimental.guard(i1 [[COND_1:%.*]]) [ "deopt"() ]
; CHECK-NEXT: br i1 undef, label [[LOOP]], label [[LEAVE:%.*]]
; CHECK: leave:
; CHECK-NEXT: [[COND_3:%.*]] = icmp ult i32 [[A_GW_FR]], 7
; CHECK-NEXT: [[WIDE_CHK:%.*]] = and i1 [[COND_2:%.*]], [[COND_3]]
; CHECK-NEXT: call void (i1, ...) @llvm.experimental.guard(i1 [[WIDE_CHK]]) [ "deopt"() ]
; CHECK-NEXT: br i1 undef, label [[LOOP2:%.*]], label [[LEAVE2:%.*]]
; CHECK: loop2:
; CHECK-NEXT: br label [[LOOP2]]
; CHECK: leave2:
; CHECK-NEXT: ret void
;
entry:
br label %loop
loop:
call void(i1, ...) @llvm.experimental.guard(i1 %cond_1) [ "deopt"() ]
br i1 undef, label %loop, label %leave
leave:
call void(i1, ...) @llvm.experimental.guard(i1 %cond_2) [ "deopt"() ]
br i1 undef, label %loop2, label %leave2
loop2:
%cond_3 = icmp ult i32 %a, 7
call void(i1, ...) @llvm.experimental.guard(i1 %cond_3) [ "deopt"() ]
br label %loop2
leave2:
ret void
}
; In cases like these where there isn't any "obviously profitable"
; widening sites, we refuse to do anything.
define void @f_9(i32 %a, i1 %cond_0, i1 %cond_1) {
; CHECK-LABEL: @f_9(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[FIRST_LOOP:%.*]]
; CHECK: first_loop:
; CHECK-NEXT: call void (i1, ...) @llvm.experimental.guard(i1 [[COND_0:%.*]]) [ "deopt"() ]
; CHECK-NEXT: br i1 undef, label [[FIRST_LOOP]], label [[SECOND_LOOP:%.*]]
; CHECK: second_loop:
; CHECK-NEXT: call void (i1, ...) @llvm.experimental.guard(i1 [[COND_1:%.*]]) [ "deopt"() ]
; CHECK-NEXT: br label [[SECOND_LOOP]]
;
entry:
br label %first_loop
first_loop:
call void(i1, ...) @llvm.experimental.guard(i1 %cond_0) [ "deopt"() ]
br i1 undef, label %first_loop, label %second_loop
second_loop:
call void(i1, ...) @llvm.experimental.guard(i1 %cond_1) [ "deopt"() ]
br label %second_loop
}
; Same situation as in @f_9: no "obviously profitable" widening sites,
; so we refuse to do anything.
define void @f_10(i32 %a, i1 %cond_0, i1 %cond_1) {
; CHECK-LABEL: @f_10(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: call void (i1, ...) @llvm.experimental.guard(i1 [[COND_0:%.*]]) [ "deopt"() ]
; CHECK-NEXT: br i1 undef, label [[LOOP]], label [[NO_LOOP:%.*]]
; CHECK: no_loop:
; CHECK-NEXT: call void (i1, ...) @llvm.experimental.guard(i1 [[COND_1:%.*]]) [ "deopt"() ]
; CHECK-NEXT: ret void
;
entry:
br label %loop
loop:
call void(i1, ...) @llvm.experimental.guard(i1 %cond_0) [ "deopt"() ]
br i1 undef, label %loop, label %no_loop
no_loop:
call void(i1, ...) @llvm.experimental.guard(i1 %cond_1) [ "deopt"() ]
ret void
}
; With guards in loops, we're okay hoisting out the guard into the
; containing loop.
define void @f_11(i32 %a, i1 %cond_0, i1 %cond_1) {
; CHECK-LABEL: @f_11(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[COND_1_GW_FR:%.*]] = freeze i1 [[COND_1:%.*]]
; CHECK-NEXT: br label [[INNER:%.*]]
; CHECK: inner:
; CHECK-NEXT: [[WIDE_CHK:%.*]] = and i1 [[COND_0:%.*]], [[COND_1_GW_FR]]
; CHECK-NEXT: call void (i1, ...) @llvm.experimental.guard(i1 [[WIDE_CHK]]) [ "deopt"() ]
; CHECK-NEXT: br i1 undef, label [[INNER]], label [[OUTER:%.*]]
; CHECK: outer:
; CHECK-NEXT: br label [[INNER]]
;
entry:
br label %inner
inner:
call void(i1, ...) @llvm.experimental.guard(i1 %cond_0) [ "deopt"() ]
br i1 undef, label %inner, label %outer
outer:
call void(i1, ...) @llvm.experimental.guard(i1 %cond_1) [ "deopt"() ]
br label %inner
}
; Checks that we are adequately guarded against exponential-time
; behavior when hoisting code.
define void @f_12(i32 %a0) {
; CHECK-LABEL: @f_12(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[A0_GW_FR:%.*]] = freeze i32 [[A0:%.*]]
; CHECK-NEXT: [[A1:%.*]] = mul i32 [[A0_GW_FR]], [[A0_GW_FR]]
; CHECK-NEXT: [[A2:%.*]] = mul i32 [[A1]], [[A1]]
; CHECK-NEXT: [[A3:%.*]] = mul i32 [[A2]], [[A2]]
; CHECK-NEXT: [[A4:%.*]] = mul i32 [[A3]], [[A3]]
; CHECK-NEXT: [[A5:%.*]] = mul i32 [[A4]], [[A4]]
; CHECK-NEXT: [[A6:%.*]] = mul i32 [[A5]], [[A5]]
; CHECK-NEXT: [[A7:%.*]] = mul i32 [[A6]], [[A6]]
; CHECK-NEXT: [[A8:%.*]] = mul i32 [[A7]], [[A7]]
; CHECK-NEXT: [[A9:%.*]] = mul i32 [[A8]], [[A8]]
; CHECK-NEXT: [[A10:%.*]] = mul i32 [[A9]], [[A9]]
; CHECK-NEXT: [[A11:%.*]] = mul i32 [[A10]], [[A10]]
; CHECK-NEXT: [[A12:%.*]] = mul i32 [[A11]], [[A11]]
; CHECK-NEXT: [[A13:%.*]] = mul i32 [[A12]], [[A12]]
; CHECK-NEXT: [[A14:%.*]] = mul i32 [[A13]], [[A13]]
; CHECK-NEXT: [[A15:%.*]] = mul i32 [[A14]], [[A14]]
; CHECK-NEXT: [[A16:%.*]] = mul i32 [[A15]], [[A15]]
; CHECK-NEXT: [[A17:%.*]] = mul i32 [[A16]], [[A16]]
; CHECK-NEXT: [[A18:%.*]] = mul i32 [[A17]], [[A17]]
; CHECK-NEXT: [[A19:%.*]] = mul i32 [[A18]], [[A18]]
; CHECK-NEXT: [[A20:%.*]] = mul i32 [[A19]], [[A19]]
; CHECK-NEXT: [[A21:%.*]] = mul i32 [[A20]], [[A20]]
; CHECK-NEXT: [[A22:%.*]] = mul i32 [[A21]], [[A21]]
; CHECK-NEXT: [[A23:%.*]] = mul i32 [[A22]], [[A22]]
; CHECK-NEXT: [[A24:%.*]] = mul i32 [[A23]], [[A23]]
; CHECK-NEXT: [[A25:%.*]] = mul i32 [[A24]], [[A24]]
; CHECK-NEXT: [[A26:%.*]] = mul i32 [[A25]], [[A25]]
; CHECK-NEXT: [[A27:%.*]] = mul i32 [[A26]], [[A26]]
; CHECK-NEXT: [[A28:%.*]] = mul i32 [[A27]], [[A27]]
; CHECK-NEXT: [[A29:%.*]] = mul i32 [[A28]], [[A28]]
; CHECK-NEXT: [[A30:%.*]] = mul i32 [[A29]], [[A29]]
; CHECK-NEXT: [[COND:%.*]] = trunc i32 [[A30]] to i1
; CHECK-NEXT: [[WIDE_CHK:%.*]] = and i1 true, [[COND]]
; CHECK-NEXT: call void (i1, ...) @llvm.experimental.guard(i1 [[WIDE_CHK]]) [ "deopt"() ]
; CHECK-NEXT: ret void
;
; Eliding the earlier 29 multiplications for brevity
entry:
call void(i1, ...) @llvm.experimental.guard(i1 true) [ "deopt"() ]
%a1 = mul i32 %a0, %a0
%a2 = mul i32 %a1, %a1
%a3 = mul i32 %a2, %a2
%a4 = mul i32 %a3, %a3
%a5 = mul i32 %a4, %a4
%a6 = mul i32 %a5, %a5
%a7 = mul i32 %a6, %a6
%a8 = mul i32 %a7, %a7
%a9 = mul i32 %a8, %a8
%a10 = mul i32 %a9, %a9
%a11 = mul i32 %a10, %a10
%a12 = mul i32 %a11, %a11
%a13 = mul i32 %a12, %a12
%a14 = mul i32 %a13, %a13
%a15 = mul i32 %a14, %a14
%a16 = mul i32 %a15, %a15
%a17 = mul i32 %a16, %a16
%a18 = mul i32 %a17, %a17
%a19 = mul i32 %a18, %a18
%a20 = mul i32 %a19, %a19
%a21 = mul i32 %a20, %a20
%a22 = mul i32 %a21, %a21
%a23 = mul i32 %a22, %a22
%a24 = mul i32 %a23, %a23
%a25 = mul i32 %a24, %a24
%a26 = mul i32 %a25, %a25
%a27 = mul i32 %a26, %a26
%a28 = mul i32 %a27, %a27
%a29 = mul i32 %a28, %a28
%a30 = mul i32 %a29, %a29
%cond = trunc i32 %a30 to i1
call void(i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ]
ret void
}
define void @f_13(i32 %a) {
; CHECK-LABEL: @f_13(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[COND_0:%.*]] = icmp ult i32 [[A:%.*]], 14
; CHECK-NEXT: [[WIDE_CHK:%.*]] = icmp ult i32 [[A]], 10
; CHECK-NEXT: call void (i1, ...) @llvm.experimental.guard(i1 [[WIDE_CHK]]) [ "deopt"() ]
; CHECK-NEXT: br i1 undef, label [[LEFT:%.*]], label [[RIGHT:%.*]]
; CHECK: left:
; CHECK-NEXT: [[COND_1:%.*]] = icmp slt i32 [[A]], 10
; CHECK-NEXT: ret void
; CHECK: right:
; CHECK-NEXT: ret void
;
entry:
%cond_0 = icmp ult i32 %a, 14
call void(i1, ...) @llvm.experimental.guard(i1 %cond_0) [ "deopt"() ]
br i1 undef, label %left, label %right
left:
%cond_1 = icmp slt i32 %a, 10
call void(i1, ...) @llvm.experimental.guard(i1 %cond_1) [ "deopt"() ]
ret void
right:
ret void
}
define void @f_14(i32 %a) {
; CHECK-LABEL: @f_14(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[COND_0:%.*]] = icmp ult i32 [[A:%.*]], 14
; CHECK-NEXT: call void (i1, ...) @llvm.experimental.guard(i1 [[COND_0]]) [ "deopt"() ]
; CHECK-NEXT: br i1 undef, label [[LEFT:%.*]], label [[RIGHT:%.*]]
; CHECK: left:
; CHECK-NEXT: [[COND_1:%.*]] = icmp sgt i32 [[A]], 10
; CHECK-NEXT: call void (i1, ...) @llvm.experimental.guard(i1 [[COND_1]]) [ "deopt"() ]
; CHECK-NEXT: ret void
; CHECK: right:
; CHECK-NEXT: ret void
;
entry:
%cond_0 = icmp ult i32 %a, 14
call void(i1, ...) @llvm.experimental.guard(i1 %cond_0) [ "deopt"() ]
br i1 undef, label %left, label %right
left:
%cond_1 = icmp sgt i32 %a, 10
call void(i1, ...) @llvm.experimental.guard(i1 %cond_1) [ "deopt"() ]
ret void
right:
ret void
}
; Make sure we do not widen guard by trivial true conditions into something.
define void @f_15(i1 %cond_0, i1 %cond_1) {
; CHECK-LABEL: @f_15(
; CHECK-NEXT: entry:
; CHECK-NEXT: call void (i1, ...) @llvm.experimental.guard(i1 [[COND_0:%.*]]) [ "deopt"() ]
; CHECK-NEXT: call void (i1, ...) @llvm.experimental.guard(i1 true) [ "deopt"() ]
; CHECK-NEXT: ret void
;
entry:
call void(i1, ...) @llvm.experimental.guard(i1 %cond_0) [ "deopt"() ]
call void(i1, ...) @llvm.experimental.guard(i1 true) [ "deopt"() ]
ret void
}
; Make sure we do not widen guard by trivial false conditions into something.
define void @f_16(i1 %cond_0, i1 %cond_1) {
; CHECK-LABEL: @f_16(
; CHECK-NEXT: entry:
; CHECK-NEXT: call void (i1, ...) @llvm.experimental.guard(i1 [[COND_0:%.*]]) [ "deopt"() ]
; CHECK-NEXT: call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ]
; CHECK-NEXT: ret void
;
entry:
call void(i1, ...) @llvm.experimental.guard(i1 %cond_0) [ "deopt"() ]
call void(i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ]
ret void
}