InstCombine is supposed to be a superset of InstSimplify, but we were not attempting simplification of insertvalue instructions. As the test change illustrates, we failed to remove some aggregate construction patterns because of that.
318 lines
13 KiB
LLVM
318 lines
13 KiB
LLVM
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
|
|
; RUN: opt -S -passes=instcombine < %s | FileCheck %s
|
|
|
|
declare void @foo()
|
|
declare void @bar()
|
|
declare void @baz()
|
|
|
|
declare void @usei32(i32)
|
|
declare void @usei32i32agg({ i32, i32 })
|
|
|
|
; Most basic test - we explode the original aggregate into it's elements,
|
|
; and then merge them back together exactly the way they were.
|
|
; We should just return the source aggregate.
|
|
define { i32, i32 } @test0({ i32, i32 } %srcagg) {
|
|
; CHECK-LABEL: @test0(
|
|
; CHECK-NEXT: ret { i32, i32 } [[SRCAGG:%.*]]
|
|
;
|
|
%i0 = extractvalue { i32, i32 } %srcagg, 0
|
|
%i1 = extractvalue { i32, i32 } %srcagg, 1
|
|
%i2 = insertvalue { i32, i32 } undef, i32 %i0, 0
|
|
%i3 = insertvalue { i32, i32 } %i2, i32 %i1, 1
|
|
ret { i32, i32 } %i3
|
|
}
|
|
|
|
; Arrays are still aggregates
|
|
define [2 x i32] @test1([2 x i32] %srcagg) {
|
|
; CHECK-LABEL: @test1(
|
|
; CHECK-NEXT: ret [2 x i32] [[SRCAGG:%.*]]
|
|
;
|
|
%i0 = extractvalue [2 x i32] %srcagg, 0
|
|
%i1 = extractvalue [2 x i32] %srcagg, 1
|
|
%i2 = insertvalue [2 x i32] undef, i32 %i0, 0
|
|
%i3 = insertvalue [2 x i32] %i2, i32 %i1, 1
|
|
ret [2 x i32] %i3
|
|
}
|
|
|
|
; Right now we don't deal with case where there are more than 2 elements.
|
|
; FIXME: should we?
|
|
define [3 x i32] @test2([3 x i32] %srcagg) {
|
|
; CHECK-LABEL: @test2(
|
|
; CHECK-NEXT: [[I0:%.*]] = extractvalue [3 x i32] [[SRCAGG:%.*]], 0
|
|
; CHECK-NEXT: [[I1:%.*]] = extractvalue [3 x i32] [[SRCAGG]], 1
|
|
; CHECK-NEXT: [[I2:%.*]] = extractvalue [3 x i32] [[SRCAGG]], 2
|
|
; CHECK-NEXT: [[I3:%.*]] = insertvalue [3 x i32] undef, i32 [[I0]], 0
|
|
; CHECK-NEXT: [[I4:%.*]] = insertvalue [3 x i32] [[I3]], i32 [[I1]], 1
|
|
; CHECK-NEXT: [[I5:%.*]] = insertvalue [3 x i32] [[I4]], i32 [[I2]], 2
|
|
; CHECK-NEXT: ret [3 x i32] [[I5]]
|
|
;
|
|
%i0 = extractvalue [3 x i32] %srcagg, 0
|
|
%i1 = extractvalue [3 x i32] %srcagg, 1
|
|
%i2 = extractvalue [3 x i32] %srcagg, 2
|
|
%i3 = insertvalue [3 x i32] undef, i32 %i0, 0
|
|
%i4 = insertvalue [3 x i32] %i3, i32 %i1, 1
|
|
%i5 = insertvalue [3 x i32] %i4, i32 %i2, 2
|
|
ret [3 x i32] %i5
|
|
}
|
|
|
|
; Likewise, we only deal with a single-level aggregates.
|
|
; FIXME: should we?
|
|
define {{ i32, i32 }} @test3({{ i32, i32 }} %srcagg) {
|
|
; CHECK-LABEL: @test3(
|
|
; CHECK-NEXT: [[I0:%.*]] = extractvalue { { i32, i32 } } [[SRCAGG:%.*]], 0, 0
|
|
; CHECK-NEXT: [[I1:%.*]] = extractvalue { { i32, i32 } } [[SRCAGG]], 0, 1
|
|
; CHECK-NEXT: [[I2:%.*]] = insertvalue { { i32, i32 } } undef, i32 [[I0]], 0, 0
|
|
; CHECK-NEXT: [[I3:%.*]] = insertvalue { { i32, i32 } } [[I2]], i32 [[I1]], 0, 1
|
|
; CHECK-NEXT: ret { { i32, i32 } } [[I3]]
|
|
;
|
|
%i0 = extractvalue {{ i32, i32 }} %srcagg, 0, 0
|
|
%i1 = extractvalue {{ i32, i32 }} %srcagg, 0, 1
|
|
%i2 = insertvalue {{ i32, i32 }} undef, i32 %i0, 0, 0
|
|
%i3 = insertvalue {{ i32, i32 }} %i2, i32 %i1, 0, 1
|
|
ret {{ i32, i32 }} %i3
|
|
}
|
|
|
|
; This is fine, however, all elements are on the same level
|
|
define { i32, { i32 } } @test4({ i32, { i32 } } %srcagg) {
|
|
; CHECK-LABEL: @test4(
|
|
; CHECK-NEXT: ret { i32, { i32 } } [[SRCAGG:%.*]]
|
|
;
|
|
%i0 = extractvalue { i32, { i32 } } %srcagg, 0
|
|
%i1 = extractvalue { i32, { i32 } } %srcagg, 1
|
|
%i2 = insertvalue { i32, { i32 } } undef, i32 %i0, 0
|
|
%i3 = insertvalue { i32, { i32 } } %i2, { i32 } %i1, 1
|
|
ret { i32, { i32 } } %i3
|
|
}
|
|
|
|
; All element of the newly-created aggregate must come from the same base
|
|
; aggregate. Here the second element comes from some other origin.
|
|
define { i32, i32 } @negative_test5({ i32, i32 } %srcagg, i32 %replacement) {
|
|
; CHECK-LABEL: @negative_test5(
|
|
; CHECK-NEXT: [[I0:%.*]] = extractvalue { i32, i32 } [[SRCAGG:%.*]], 0
|
|
; CHECK-NEXT: [[I2:%.*]] = insertvalue { i32, i32 } undef, i32 [[I0]], 0
|
|
; CHECK-NEXT: [[I3:%.*]] = insertvalue { i32, i32 } [[I2]], i32 [[REPLACEMENT:%.*]], 1
|
|
; CHECK-NEXT: ret { i32, i32 } [[I3]]
|
|
;
|
|
%i0 = extractvalue { i32, i32 } %srcagg, 0
|
|
; %i1 = extractvalue { i32, i32 } %srcagg, 1
|
|
%i2 = insertvalue { i32, i32 } undef, i32 %i0, 0
|
|
%i3 = insertvalue { i32, i32 } %i2, i32 %replacement, 1
|
|
ret { i32, i32 } %i3
|
|
}
|
|
|
|
; Here we don't know the value of second element of %otheragg,
|
|
define { i32, i32 } @negative_test6({ i32, i32 } %srcagg, { i32, i32 } %otheragg) {
|
|
; CHECK-LABEL: @negative_test6(
|
|
; CHECK-NEXT: [[I0:%.*]] = extractvalue { i32, i32 } [[SRCAGG:%.*]], 0
|
|
; CHECK-NEXT: [[I2:%.*]] = insertvalue { i32, i32 } [[OTHERAGG:%.*]], i32 [[I0]], 0
|
|
; CHECK-NEXT: ret { i32, i32 } [[I2]]
|
|
;
|
|
%i0 = extractvalue { i32, i32 } %srcagg, 0
|
|
; %i1 = extractvalue { i32, i32 } %srcagg, 1
|
|
%i2 = insertvalue { i32, i32 } %otheragg, i32 %i0, 0
|
|
ret { i32, i32 } %i2
|
|
}
|
|
|
|
; All element of the newly-created aggregate must come from the same base
|
|
; aggregate. Here different elements come from different base aggregates.
|
|
define { i32, i32 } @negative_test7({ i32, i32 } %srcagg0, { i32, i32 } %srcagg1) {
|
|
; CHECK-LABEL: @negative_test7(
|
|
; CHECK-NEXT: [[I0:%.*]] = extractvalue { i32, i32 } [[SRCAGG0:%.*]], 0
|
|
; CHECK-NEXT: [[I3:%.*]] = extractvalue { i32, i32 } [[SRCAGG1:%.*]], 1
|
|
; CHECK-NEXT: [[I4:%.*]] = insertvalue { i32, i32 } undef, i32 [[I0]], 0
|
|
; CHECK-NEXT: [[I5:%.*]] = insertvalue { i32, i32 } [[I4]], i32 [[I3]], 1
|
|
; CHECK-NEXT: ret { i32, i32 } [[I5]]
|
|
;
|
|
%i0 = extractvalue { i32, i32 } %srcagg0, 0
|
|
; %i1 = extractvalue { i32, i32 } %srcagg0, 1
|
|
|
|
; %i2 = extractvalue { i32, i32 } %srcagg1, 0
|
|
%i3 = extractvalue { i32, i32 } %srcagg1, 1
|
|
|
|
%i4 = insertvalue { i32, i32 } undef, i32 %i0, 0
|
|
%i5 = insertvalue { i32, i32 } %i4, i32 %i3, 1
|
|
ret { i32, i32 } %i5
|
|
}
|
|
|
|
; Here the element order is swapped as compared to the base aggregate.
|
|
define { i32, i32 } @negative_test8({ i32, i32 } %srcagg) {
|
|
; CHECK-LABEL: @negative_test8(
|
|
; CHECK-NEXT: [[I0:%.*]] = extractvalue { i32, i32 } [[SRCAGG:%.*]], 0
|
|
; CHECK-NEXT: [[I1:%.*]] = extractvalue { i32, i32 } [[SRCAGG]], 1
|
|
; CHECK-NEXT: [[I2:%.*]] = insertvalue { i32, i32 } undef, i32 [[I0]], 1
|
|
; CHECK-NEXT: [[I3:%.*]] = insertvalue { i32, i32 } [[I2]], i32 [[I1]], 0
|
|
; CHECK-NEXT: ret { i32, i32 } [[I3]]
|
|
;
|
|
%i0 = extractvalue { i32, i32 } %srcagg, 0
|
|
%i1 = extractvalue { i32, i32 } %srcagg, 1
|
|
%i2 = insertvalue { i32, i32 } undef, i32 %i0, 1
|
|
%i3 = insertvalue { i32, i32 } %i2, i32 %i1, 0
|
|
ret { i32, i32 } %i3
|
|
}
|
|
|
|
; Here both elements of the new aggregate come from the same element of the old aggregate.
|
|
define { i32, i32 } @negative_test9({ i32, i32 } %srcagg) {
|
|
; CHECK-LABEL: @negative_test9(
|
|
; CHECK-NEXT: [[I0:%.*]] = extractvalue { i32, i32 } [[SRCAGG:%.*]], 0
|
|
; CHECK-NEXT: [[I2:%.*]] = insertvalue { i32, i32 } undef, i32 [[I0]], 0
|
|
; CHECK-NEXT: [[I3:%.*]] = insertvalue { i32, i32 } [[I2]], i32 [[I0]], 1
|
|
; CHECK-NEXT: ret { i32, i32 } [[I3]]
|
|
;
|
|
%i0 = extractvalue { i32, i32 } %srcagg, 0
|
|
; %i1 = extractvalue { i32, i32 } %srcagg, 1
|
|
%i2 = insertvalue { i32, i32 } undef, i32 %i0, 0
|
|
%i3 = insertvalue { i32, i32 } %i2, i32 %i0, 1
|
|
ret { i32, i32 } %i3
|
|
}
|
|
|
|
; Here the second element of the new aggregate is undef, , so we must keep this as-is, because in %srcagg it might be poison.
|
|
; FIXME: defer to noundef attribute on %srcagg
|
|
define { i32, i32 } @negative_test10({ i32, i32 } %srcagg) {
|
|
; CHECK-LABEL: @negative_test10(
|
|
; CHECK-NEXT: [[I0:%.*]] = extractvalue { i32, i32 } [[SRCAGG:%.*]], 0
|
|
; CHECK-NEXT: [[I2:%.*]] = insertvalue { i32, i32 } undef, i32 [[I0]], 0
|
|
; CHECK-NEXT: ret { i32, i32 } [[I2]]
|
|
;
|
|
%i0 = extractvalue { i32, i32 } %srcagg, 0
|
|
; %i1 = extractvalue { i32, i32 } %srcagg, 1
|
|
%i2 = insertvalue { i32, i32 } undef, i32 %i0, 0
|
|
ret { i32, i32 } %i2
|
|
}
|
|
|
|
; Here the second element of the new aggregate is undef, so we must keep this as-is, because in %srcagg it might be poison.
|
|
; FIXME: defer to noundef attribute on %srcagg
|
|
define { i32, i32 } @negative_test11({ i32, i32 } %srcagg) {
|
|
; CHECK-LABEL: @negative_test11(
|
|
; CHECK-NEXT: [[I0:%.*]] = extractvalue { i32, i32 } [[SRCAGG:%.*]], 0
|
|
; CHECK-NEXT: [[I2:%.*]] = insertvalue { i32, i32 } undef, i32 [[I0]], 0
|
|
; CHECK-NEXT: [[I3:%.*]] = insertvalue { i32, i32 } [[I2]], i32 undef, 1
|
|
; CHECK-NEXT: ret { i32, i32 } [[I3]]
|
|
;
|
|
%i0 = extractvalue { i32, i32 } %srcagg, 0
|
|
; %i1 = extractvalue { i32, i32 } %srcagg, 1
|
|
%i2 = insertvalue { i32, i32 } undef, i32 %i0, 0
|
|
%i3 = insertvalue { i32, i32 } %i2, i32 undef, 1
|
|
ret { i32, i32 } %i3
|
|
}
|
|
|
|
; This fold does not care whether or not intermediate instructions have extra uses.
|
|
define { i32, i32 } @test12({ i32, i32 } %srcagg) {
|
|
; CHECK-LABEL: @test12(
|
|
; CHECK-NEXT: [[I0:%.*]] = extractvalue { i32, i32 } [[SRCAGG:%.*]], 0
|
|
; CHECK-NEXT: call void @usei32(i32 [[I0]])
|
|
; CHECK-NEXT: [[I1:%.*]] = extractvalue { i32, i32 } [[SRCAGG]], 1
|
|
; CHECK-NEXT: call void @usei32(i32 [[I1]])
|
|
; CHECK-NEXT: [[I2:%.*]] = insertvalue { i32, i32 } undef, i32 [[I0]], 0
|
|
; CHECK-NEXT: call void @usei32i32agg({ i32, i32 } [[I2]])
|
|
; CHECK-NEXT: ret { i32, i32 } [[SRCAGG]]
|
|
;
|
|
%i0 = extractvalue { i32, i32 } %srcagg, 0
|
|
call void @usei32(i32 %i0)
|
|
%i1 = extractvalue { i32, i32 } %srcagg, 1
|
|
call void @usei32(i32 %i1)
|
|
%i2 = insertvalue { i32, i32 } undef, i32 %i0, 0
|
|
call void @usei32i32agg({ i32, i32 } %i2)
|
|
%i3 = insertvalue { i32, i32 } %i2, i32 %i1, 1
|
|
ret { i32, i32 } %i3
|
|
}
|
|
|
|
; Even though we originally store %i1 into first element, it is later
|
|
; overwritten with %i0, so all is fine.
|
|
define { i32, i32 } @test13({ i32, i32 } %srcagg) {
|
|
; CHECK-LABEL: @test13(
|
|
; CHECK-NEXT: ret { i32, i32 } [[SRCAGG:%.*]]
|
|
;
|
|
%i0 = extractvalue { i32, i32 } %srcagg, 0
|
|
%i1 = extractvalue { i32, i32 } %srcagg, 1
|
|
%i2 = insertvalue { i32, i32 } undef, i32 %i1, 0
|
|
%i3 = insertvalue { i32, i32 } %i2, i32 %i0, 0
|
|
%i4 = insertvalue { i32, i32 } %i3, i32 %i1, 1
|
|
ret { i32, i32 } %i4
|
|
}
|
|
|
|
; The aggregate type must match exactly between the original and recreation.
|
|
define { i32, i32 } @negative_test14({ i32, i32, i32 } %srcagg) {
|
|
; CHECK-LABEL: @negative_test14(
|
|
; CHECK-NEXT: [[I0:%.*]] = extractvalue { i32, i32, i32 } [[SRCAGG:%.*]], 0
|
|
; CHECK-NEXT: [[I1:%.*]] = extractvalue { i32, i32, i32 } [[SRCAGG]], 1
|
|
; CHECK-NEXT: [[I2:%.*]] = insertvalue { i32, i32 } undef, i32 [[I0]], 0
|
|
; CHECK-NEXT: [[I3:%.*]] = insertvalue { i32, i32 } [[I2]], i32 [[I1]], 1
|
|
; CHECK-NEXT: ret { i32, i32 } [[I3]]
|
|
;
|
|
%i0 = extractvalue { i32, i32, i32 } %srcagg, 0
|
|
%i1 = extractvalue { i32, i32, i32 } %srcagg, 1
|
|
%i2 = insertvalue { i32, i32 } undef, i32 %i0, 0
|
|
%i3 = insertvalue { i32, i32 } %i2, i32 %i1, 1
|
|
ret { i32, i32 } %i3
|
|
}
|
|
define { i32, i32 } @negative_test15({ i32, {i32} } %srcagg) {
|
|
; CHECK-LABEL: @negative_test15(
|
|
; CHECK-NEXT: [[I0:%.*]] = extractvalue { i32, { i32 } } [[SRCAGG:%.*]], 0
|
|
; CHECK-NEXT: [[I1:%.*]] = extractvalue { i32, { i32 } } [[SRCAGG]], 1, 0
|
|
; CHECK-NEXT: [[I2:%.*]] = insertvalue { i32, i32 } undef, i32 [[I0]], 0
|
|
; CHECK-NEXT: [[I3:%.*]] = insertvalue { i32, i32 } [[I2]], i32 [[I1]], 1
|
|
; CHECK-NEXT: ret { i32, i32 } [[I3]]
|
|
;
|
|
%i0 = extractvalue { i32, {i32} } %srcagg, 0
|
|
%i1 = extractvalue { i32, {i32} } %srcagg, 1, 0
|
|
%i2 = insertvalue { i32, i32 } undef, i32 %i0, 0
|
|
%i3 = insertvalue { i32, i32 } %i2, i32 %i1, 1
|
|
ret { i32, i32 } %i3
|
|
}
|
|
|
|
; Just because there are predecessors doesn't mean we should look into them.
|
|
define { i32, i32 } @test16({ i32, i32 } %srcagg) {
|
|
; CHECK-LABEL: @test16(
|
|
; CHECK-NEXT: entry:
|
|
; CHECK-NEXT: br label [[END:%.*]]
|
|
; CHECK: end:
|
|
; CHECK-NEXT: ret { i32, i32 } [[SRCAGG:%.*]]
|
|
;
|
|
entry:
|
|
br label %end
|
|
end:
|
|
%i0 = extractvalue { i32, i32 } %srcagg, 0
|
|
%i1 = extractvalue { i32, i32 } %srcagg, 1
|
|
%i2 = insertvalue { i32, i32 } undef, i32 %i0, 0
|
|
%i3 = insertvalue { i32, i32 } %i2, i32 %i1, 1
|
|
ret { i32, i32 } %i3
|
|
}
|
|
|
|
; Again, we should first try to perform local reasoning, without looking to predecessors.
|
|
define { i32, i32 } @test17({ i32, i32 } %srcagg0, { i32, i32 } %srcagg1, i1 %c) {
|
|
; CHECK-LABEL: @test17(
|
|
; CHECK-NEXT: entry:
|
|
; CHECK-NEXT: br i1 [[C:%.*]], label [[INTERMEDIATE:%.*]], label [[END:%.*]]
|
|
; CHECK: intermediate:
|
|
; CHECK-NEXT: br label [[END]]
|
|
; CHECK: end:
|
|
; CHECK-NEXT: [[SRCAGG_PHI:%.*]] = phi { i32, i32 } [ [[SRCAGG0:%.*]], [[ENTRY:%.*]] ], [ [[SRCAGG1:%.*]], [[INTERMEDIATE]] ]
|
|
; CHECK-NEXT: ret { i32, i32 } [[SRCAGG_PHI]]
|
|
;
|
|
entry:
|
|
br i1 %c, label %intermediate, label %end
|
|
intermediate:
|
|
br label %end
|
|
end:
|
|
%srcagg.phi = phi { i32, i32 } [ %srcagg0, %entry ], [ %srcagg1, %intermediate ]
|
|
%i0 = extractvalue { i32, i32 } %srcagg.phi, 0
|
|
%i1 = extractvalue { i32, i32 } %srcagg.phi, 1
|
|
%i2 = insertvalue { i32, i32 } undef, i32 %i0, 0
|
|
%i3 = insertvalue { i32, i32 } %i2, i32 %i1, 1
|
|
ret { i32, i32 } %i3
|
|
}
|
|
|
|
; Like test2 but with a poison base.
|
|
define [3 x i32] @poison_base([3 x i32] %srcagg) {
|
|
; CHECK-LABEL: @poison_base(
|
|
; CHECK-NEXT: ret [3 x i32] [[SRCAGG:%.*]]
|
|
;
|
|
%i0 = extractvalue [3 x i32] %srcagg, 0
|
|
%i1 = extractvalue [3 x i32] %srcagg, 1
|
|
%i2 = extractvalue [3 x i32] %srcagg, 2
|
|
%i3 = insertvalue [3 x i32] poison, i32 %i0, 0
|
|
%i4 = insertvalue [3 x i32] %i3, i32 %i1, 1
|
|
%i5 = insertvalue [3 x i32] %i4, i32 %i2, 2
|
|
ret [3 x i32] %i5
|
|
}
|