Files
clang-p2996/llvm/test/Transforms/LICM/sinking.ll
Nikita Popov 0659000ff7 [LICM] Don't duplicate instructions just because they're free
D37076 makes LICM duplicate instructions into exit blocks if the
instruction is free. For GEPs, the motivation appears to be that
this allows the GEP to be folded into addressing modes, while
non-foldable users outside the loop might prevent this. TBH I don't
think LICM is the place to do this (why doesn't CGP apply this
heuristic itself?) but at least I understand the motivation.

However, the transform is also applied to all other "free"
instructions, which are just that (removed during lowering and not
"folded" in some way). For such instructions, this transform seems
somewhere between useless, counter-productive (undoing CSE/GVN) and
actively incorrect. For example, this transform can duplicate freeze
instructions, which is illegal.

This patch limits the transform to just foldable GEPs, though we
might want to drop it from LICM entirely as a followup.

This is a small compile-time improvement, because querying TTI cost
model for every single instruction is expensive.

Differential Revision: https://reviews.llvm.org/D149136
2023-04-28 14:31:23 +02:00

1061 lines
36 KiB
LLVM

; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt < %s -passes=licm -S -verify-memoryssa | FileCheck %s
target datalayout = "n64"
declare i32 @strlen(ptr) readonly nounwind willreturn
declare void @foo()
; Sink readonly function.
define i32 @test1(ptr %P) {
; CHECK-LABEL: @test1(
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: Loop:
; CHECK-NEXT: br i1 false, label [[LOOP]], label [[OUT:%.*]]
; CHECK: Out:
; CHECK-NEXT: [[A_LE:%.*]] = call i32 @strlen(ptr [[P:%.*]]) #[[ATTR3:[0-9]+]]
; CHECK-NEXT: ret i32 [[A_LE]]
;
br label %Loop
Loop: ; preds = %Loop, %0
%A = call i32 @strlen( ptr %P ) readonly
br i1 false, label %Loop, label %Out
Out: ; preds = %Loop
ret i32 %A
}
declare double @sin(double) readnone nounwind willreturn
; Sink readnone function out of loop with unknown memory behavior.
define double @test2(double %X) {
; CHECK-LABEL: @test2(
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: Loop:
; CHECK-NEXT: call void @foo()
; CHECK-NEXT: br i1 true, label [[LOOP]], label [[OUT:%.*]]
; CHECK: Out:
; CHECK-NEXT: [[A_LE:%.*]] = call double @sin(double [[X:%.*]]) #[[ATTR4:[0-9]+]]
; CHECK-NEXT: ret double [[A_LE]]
;
br label %Loop
Loop: ; preds = %Loop, %0
call void @foo( )
%A = call double @sin( double %X ) readnone
br i1 true, label %Loop, label %Out
Out: ; preds = %Loop
ret double %A
}
; FIXME: Should be able to sink this case
define i32 @test2b(i32 %X) {
; CHECK-LABEL: @test2b(
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: Loop:
; CHECK-NEXT: call void @foo()
; CHECK-NEXT: br i1 true, label [[LOOP]], label [[OUT:%.*]]
; CHECK: Out:
; CHECK-NEXT: [[A_LE:%.*]] = sdiv i32 10, [[X:%.*]]
; CHECK-NEXT: ret i32 [[A_LE]]
;
br label %Loop
Loop: ; preds = %Loop, %0
call void @foo( )
%A = sdiv i32 10, %X
br i1 true, label %Loop, label %Out
Out: ; preds = %Loop
ret i32 %A
}
define double @test2c(ptr %P) {
; CHECK-LABEL: @test2c(
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: Loop:
; CHECK-NEXT: call void @foo()
; CHECK-NEXT: br i1 true, label [[LOOP]], label [[OUT:%.*]]
; CHECK: Out:
; CHECK-NEXT: [[A_LE:%.*]] = load double, ptr [[P:%.*]], align 8, !invariant.load !0
; CHECK-NEXT: ret double [[A_LE]]
;
br label %Loop
Loop: ; preds = %Loop, %0
call void @foo( )
%A = load double, ptr %P, !invariant.load !{}
br i1 true, label %Loop, label %Out
Out: ; preds = %Loop
ret double %A
}
; This testcase checks to make sure the sinker does not cause problems with
; critical edges.
define void @test3() {
; CHECK-LABEL: @test3(
; CHECK-NEXT: Entry:
; CHECK-NEXT: br i1 false, label [[LOOP_PREHEADER:%.*]], label [[EXIT:%.*]]
; CHECK: Loop.preheader:
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: Loop:
; CHECK-NEXT: br i1 false, label [[LOOP]], label [[EXIT_LOOPEXIT:%.*]]
; CHECK: Exit.loopexit:
; CHECK-NEXT: [[X_LE:%.*]] = add i32 0, 1
; CHECK-NEXT: br label [[EXIT]]
; CHECK: Exit:
; CHECK-NEXT: [[Y:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[X_LE]], [[EXIT_LOOPEXIT]] ]
; CHECK-NEXT: ret void
;
Entry:
br i1 false, label %Loop, label %Exit
Loop:
%X = add i32 0, 1
br i1 false, label %Loop, label %Exit
Exit:
%Y = phi i32 [ 0, %Entry ], [ %X, %Loop ]
ret void
}
; If the result of an instruction is only used outside of the loop, sink
; the instruction to the exit blocks instead of executing it on every
; iteration of the loop.
;
define i32 @test4(i32 %N) {
; CHECK-LABEL: @test4(
; CHECK-NEXT: Entry:
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: Loop:
; CHECK-NEXT: [[N_ADDR_0_PN:%.*]] = phi i32 [ [[DEC:%.*]], [[LOOP]] ], [ [[N:%.*]], [[ENTRY:%.*]] ]
; CHECK-NEXT: [[DEC]] = add i32 [[N_ADDR_0_PN]], -1
; CHECK-NEXT: [[TMP_1:%.*]] = icmp ne i32 [[N_ADDR_0_PN]], 1
; CHECK-NEXT: br i1 [[TMP_1]], label [[LOOP]], label [[OUT:%.*]]
; CHECK: Out:
; CHECK-NEXT: [[N_ADDR_0_PN_LCSSA:%.*]] = phi i32 [ [[N_ADDR_0_PN]], [[LOOP]] ]
; CHECK-NEXT: [[TMP_6_LE:%.*]] = mul i32 [[N]], [[N_ADDR_0_PN_LCSSA]]
; CHECK-NEXT: [[TMP_7_LE:%.*]] = sub i32 [[TMP_6_LE]], [[N]]
; CHECK-NEXT: ret i32 [[TMP_7_LE]]
;
Entry:
br label %Loop
Loop: ; preds = %Loop, %Entry
%N_addr.0.pn = phi i32 [ %dec, %Loop ], [ %N, %Entry ]
%tmp.6 = mul i32 %N, %N_addr.0.pn ; <i32> [#uses=1]
%tmp.7 = sub i32 %tmp.6, %N ; <i32> [#uses=1]
%dec = add i32 %N_addr.0.pn, -1 ; <i32> [#uses=1]
%tmp.1 = icmp ne i32 %N_addr.0.pn, 1 ; <i1> [#uses=1]
br i1 %tmp.1, label %Loop, label %Out
Out: ; preds = %Loop
ret i32 %tmp.7
}
; To reduce register pressure, if a load is hoistable out of the loop, and the
; result of the load is only used outside of the loop, sink the load instead of
; hoisting it!
;
@X = global i32 5 ; <ptr> [#uses=1]
define i32 @test5(i32 %N) {
; CHECK-LABEL: @test5(
; CHECK-NEXT: Entry:
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: Loop:
; CHECK-NEXT: [[N_ADDR_0_PN:%.*]] = phi i32 [ [[DEC:%.*]], [[LOOP]] ], [ [[N:%.*]], [[ENTRY:%.*]] ]
; CHECK-NEXT: [[DEC]] = add i32 [[N_ADDR_0_PN]], -1
; CHECK-NEXT: [[TMP_1:%.*]] = icmp ne i32 [[N_ADDR_0_PN]], 1
; CHECK-NEXT: br i1 [[TMP_1]], label [[LOOP]], label [[OUT:%.*]]
; CHECK: Out:
; CHECK-NEXT: [[TMP_6_LE:%.*]] = load i32, ptr @X, align 4
; CHECK-NEXT: ret i32 [[TMP_6_LE]]
;
Entry:
br label %Loop
Loop: ; preds = %Loop, %Entry
%N_addr.0.pn = phi i32 [ %dec, %Loop ], [ %N, %Entry ]
%tmp.6 = load i32, ptr @X ; <i32> [#uses=1]
%dec = add i32 %N_addr.0.pn, -1 ; <i32> [#uses=1]
%tmp.1 = icmp ne i32 %N_addr.0.pn, 1 ; <i1> [#uses=1]
br i1 %tmp.1, label %Loop, label %Out
Out: ; preds = %Loop
ret i32 %tmp.6
}
; The loop sinker was running from the bottom of the loop to the top, causing
; it to miss opportunities to sink instructions that depended on sinking other
; instructions from the loop. Instead they got hoisted, which is better than
; leaving them in the loop, but increases register pressure pointlessly.
%Ty = type { i32, i32 }
@X2 = external global %Ty
define i32 @test6() {
; CHECK-LABEL: @test6(
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: Loop:
; CHECK-NEXT: br i1 false, label [[LOOP]], label [[OUT:%.*]]
; CHECK: Out:
; CHECK-NEXT: [[SUNK2_LE:%.*]] = load i32, ptr @X2, align 4
; CHECK-NEXT: ret i32 [[SUNK2_LE]]
;
br label %Loop
Loop:
%sunk2 = load i32, ptr @X2
br i1 false, label %Loop, label %Out
Out: ; preds = %Loop
ret i32 %sunk2
}
; This testcase ensures that we can sink instructions from loops with
; multiple exits.
;
define i32 @test7(i32 %N, i1 %C) {
; CHECK-LABEL: @test7(
; CHECK-NEXT: Entry:
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: Loop:
; CHECK-NEXT: [[N_ADDR_0_PN:%.*]] = phi i32 [ [[DEC:%.*]], [[CONTLOOP:%.*]] ], [ [[N:%.*]], [[ENTRY:%.*]] ]
; CHECK-NEXT: [[DEC]] = add i32 [[N_ADDR_0_PN]], -1
; CHECK-NEXT: br i1 [[C:%.*]], label [[CONTLOOP]], label [[OUT1:%.*]]
; CHECK: ContLoop:
; CHECK-NEXT: [[TMP_1:%.*]] = icmp ne i32 [[N_ADDR_0_PN]], 1
; CHECK-NEXT: br i1 [[TMP_1]], label [[LOOP]], label [[OUT2:%.*]]
; CHECK: Out1:
; CHECK-NEXT: [[N_ADDR_0_PN_LCSSA:%.*]] = phi i32 [ [[N_ADDR_0_PN]], [[LOOP]] ]
; CHECK-NEXT: [[TMP_6_LE:%.*]] = mul i32 [[N]], [[N_ADDR_0_PN_LCSSA]]
; CHECK-NEXT: [[TMP_7_LE2:%.*]] = sub i32 [[TMP_6_LE]], [[N]]
; CHECK-NEXT: ret i32 [[TMP_7_LE2]]
; CHECK: Out2:
; CHECK-NEXT: [[N_ADDR_0_PN_LCSSA5:%.*]] = phi i32 [ [[N_ADDR_0_PN]], [[CONTLOOP]] ]
; CHECK-NEXT: [[TMP_6_LE4:%.*]] = mul i32 [[N]], [[N_ADDR_0_PN_LCSSA5]]
; CHECK-NEXT: [[TMP_7_LE:%.*]] = sub i32 [[TMP_6_LE4]], [[N]]
; CHECK-NEXT: ret i32 [[TMP_7_LE]]
;
Entry:
br label %Loop
Loop: ; preds = %ContLoop, %Entry
%N_addr.0.pn = phi i32 [ %dec, %ContLoop ], [ %N, %Entry ]
%tmp.6 = mul i32 %N, %N_addr.0.pn
%tmp.7 = sub i32 %tmp.6, %N ; <i32> [#uses=2]
%dec = add i32 %N_addr.0.pn, -1 ; <i32> [#uses=1]
br i1 %C, label %ContLoop, label %Out1
ContLoop:
%tmp.1 = icmp ne i32 %N_addr.0.pn, 1
br i1 %tmp.1, label %Loop, label %Out2
Out1: ; preds = %Loop
ret i32 %tmp.7
Out2: ; preds = %ContLoop
ret i32 %tmp.7
}
; This testcase checks to make sure we can sink values which are only live on
; some exits out of the loop, and that we can do so without breaking dominator
; info.
define i32 @test8(i1 %C1, i1 %C2, ptr %P, ptr %Q) {
; CHECK-LABEL: @test8(
; CHECK-NEXT: Entry:
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: Loop:
; CHECK-NEXT: br i1 [[C1:%.*]], label [[CONT:%.*]], label [[EXIT1:%.*]]
; CHECK: Cont:
; CHECK-NEXT: [[X:%.*]] = load i32, ptr [[P:%.*]], align 4
; CHECK-NEXT: store i32 [[X]], ptr [[Q:%.*]], align 4
; CHECK-NEXT: br i1 [[C2:%.*]], label [[LOOP]], label [[EXIT2:%.*]]
; CHECK: exit1:
; CHECK-NEXT: ret i32 0
; CHECK: exit2:
; CHECK-NEXT: [[X_LCSSA:%.*]] = phi i32 [ [[X]], [[CONT]] ]
; CHECK-NEXT: [[V_LE:%.*]] = add i32 [[X_LCSSA]], 1
; CHECK-NEXT: ret i32 [[V_LE]]
;
Entry:
br label %Loop
Loop: ; preds = %Cont, %Entry
br i1 %C1, label %Cont, label %exit1
Cont: ; preds = %Loop
%X = load i32, ptr %P ; <i32> [#uses=2]
store i32 %X, ptr %Q
%V = add i32 %X, 1 ; <i32> [#uses=1]
br i1 %C2, label %Loop, label %exit2
exit1: ; preds = %Loop
ret i32 0
exit2: ; preds = %Cont
ret i32 %V
}
define void @test9() {
; CHECK-LABEL: @test9(
; CHECK-NEXT: loopentry.2.i:
; CHECK-NEXT: br i1 false, label [[NO_EXIT_1_I_PREHEADER:%.*]], label [[LOOPENTRY_3_I_PREHEADER:%.*]]
; CHECK: no_exit.1.i.preheader:
; CHECK-NEXT: br label [[NO_EXIT_1_I:%.*]]
; CHECK: no_exit.1.i:
; CHECK-NEXT: br i1 false, label [[RETURN_I:%.*]], label [[ENDIF_8_I:%.*]]
; CHECK: endif.8.i:
; CHECK-NEXT: br i1 false, label [[NO_EXIT_1_I]], label [[LOOPENTRY_3_I_PREHEADER_LOOPEXIT:%.*]]
; CHECK: loopentry.3.i.preheader.loopexit:
; CHECK-NEXT: [[INC_1_I_LE:%.*]] = add i32 0, 1
; CHECK-NEXT: br label [[LOOPENTRY_3_I_PREHEADER]]
; CHECK: loopentry.3.i.preheader:
; CHECK-NEXT: [[ARG_NUM_0_I_PH13000:%.*]] = phi i32 [ 0, [[LOOPENTRY_2_I:%.*]] ], [ [[INC_1_I_LE]], [[LOOPENTRY_3_I_PREHEADER_LOOPEXIT]] ]
; CHECK-NEXT: ret void
; CHECK: return.i:
; CHECK-NEXT: ret void
;
loopentry.2.i:
br i1 false, label %no_exit.1.i.preheader, label %loopentry.3.i.preheader
no_exit.1.i.preheader: ; preds = %loopentry.2.i
br label %no_exit.1.i
no_exit.1.i: ; preds = %endif.8.i, %no_exit.1.i.preheader
br i1 false, label %return.i, label %endif.8.i
endif.8.i: ; preds = %no_exit.1.i
%inc.1.i = add i32 0, 1 ; <i32> [#uses=1]
br i1 false, label %no_exit.1.i, label %loopentry.3.i.preheader.loopexit
loopentry.3.i.preheader.loopexit: ; preds = %endif.8.i
br label %loopentry.3.i.preheader
loopentry.3.i.preheader: ; preds = %loopentry.3.i.preheader.loopexit, %loopentry.2.i
%arg_num.0.i.ph13000 = phi i32 [ 0, %loopentry.2.i ], [ %inc.1.i, %loopentry.3.i.preheader.loopexit ] ; <i32> [#uses=0]
ret void
return.i: ; preds = %no_exit.1.i
ret void
}
; Potentially trapping instructions may be sunk as long as they are guaranteed
; to be executed.
define i32 @test10(i32 %N) {
; CHECK-LABEL: @test10(
; CHECK-NEXT: Entry:
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: Loop:
; CHECK-NEXT: [[N_ADDR_0_PN:%.*]] = phi i32 [ [[DEC:%.*]], [[LOOP]] ], [ [[N:%.*]], [[ENTRY:%.*]] ]
; CHECK-NEXT: [[DEC]] = add i32 [[N_ADDR_0_PN]], -1
; CHECK-NEXT: [[TMP_1:%.*]] = icmp ne i32 [[N_ADDR_0_PN]], 0
; CHECK-NEXT: br i1 [[TMP_1]], label [[LOOP]], label [[OUT:%.*]]
; CHECK: Out:
; CHECK-NEXT: [[N_ADDR_0_PN_LCSSA:%.*]] = phi i32 [ [[N_ADDR_0_PN]], [[LOOP]] ]
; CHECK-NEXT: [[TMP_6_LE:%.*]] = sdiv i32 [[N]], [[N_ADDR_0_PN_LCSSA]]
; CHECK-NEXT: ret i32 [[TMP_6_LE]]
;
Entry:
br label %Loop
Loop: ; preds = %Loop, %Entry
%N_addr.0.pn = phi i32 [ %dec, %Loop ], [ %N, %Entry ] ; <i32> [#uses=3]
%tmp.6 = sdiv i32 %N, %N_addr.0.pn ; <i32> [#uses=1]
%dec = add i32 %N_addr.0.pn, -1 ; <i32> [#uses=1]
%tmp.1 = icmp ne i32 %N_addr.0.pn, 0 ; <i1> [#uses=1]
br i1 %tmp.1, label %Loop, label %Out
Out: ; preds = %Loop
ret i32 %tmp.6
}
; Should delete, not sink, dead instructions.
define void @test11() {
; CHECK-LABEL: @test11(
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: Loop:
; CHECK-NEXT: br i1 false, label [[LOOP]], label [[OUT:%.*]]
; CHECK: Out:
; CHECK-NEXT: ret void
;
br label %Loop
Loop:
%dead2 = getelementptr %Ty, ptr @X2, i64 0, i32 1
br i1 false, label %Loop, label %Out
Out:
ret void
}
@c = common global [1 x i32] zeroinitializer, align 4
; Test a *many* way nested loop with multiple exit blocks both of which exit
; multiple loop nests. This exercises LCSSA corner cases.
define i32 @PR18753(ptr %a, ptr %b, ptr %c, ptr %d) {
; CHECK-LABEL: @PR18753(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[L1_HEADER:%.*]]
; CHECK: l1.header:
; CHECK-NEXT: [[IV:%.*]] = phi i64 [ [[IV_NEXT:%.*]], [[L1_LATCH:%.*]] ], [ 0, [[ENTRY:%.*]] ]
; CHECK-NEXT: [[ARRAYIDX_I:%.*]] = getelementptr inbounds [1 x i32], ptr @c, i64 0, i64 [[IV]]
; CHECK-NEXT: br label [[L2_HEADER:%.*]]
; CHECK: l2.header:
; CHECK-NEXT: [[X0:%.*]] = load i1, ptr [[C:%.*]], align 4
; CHECK-NEXT: br i1 [[X0]], label [[L1_LATCH]], label [[L3_PREHEADER:%.*]]
; CHECK: l3.preheader:
; CHECK-NEXT: br label [[L3_HEADER:%.*]]
; CHECK: l3.header:
; CHECK-NEXT: [[X1:%.*]] = load i1, ptr [[D:%.*]], align 4
; CHECK-NEXT: br i1 [[X1]], label [[L2_LATCH:%.*]], label [[L4_PREHEADER:%.*]]
; CHECK: l4.preheader:
; CHECK-NEXT: br label [[L4_HEADER:%.*]]
; CHECK: l4.header:
; CHECK-NEXT: [[X2:%.*]] = load i1, ptr [[A:%.*]], align 1
; CHECK-NEXT: br i1 [[X2]], label [[L3_LATCH:%.*]], label [[L4_BODY:%.*]]
; CHECK: l4.body:
; CHECK-NEXT: call void @f(ptr [[ARRAYIDX_I]])
; CHECK-NEXT: [[X3:%.*]] = load i1, ptr [[B:%.*]], align 1
; CHECK-NEXT: br i1 [[X3]], label [[L4_LATCH:%.*]], label [[EXIT:%.*]]
; CHECK: l4.latch:
; CHECK-NEXT: call void @g()
; CHECK-NEXT: [[X4:%.*]] = load i1, ptr [[B]], align 4
; CHECK-NEXT: br i1 [[X4]], label [[L4_HEADER]], label [[EXIT]]
; CHECK: l3.latch:
; CHECK-NEXT: br label [[L3_HEADER]]
; CHECK: l2.latch:
; CHECK-NEXT: br label [[L2_HEADER]]
; CHECK: l1.latch:
; CHECK-NEXT: [[IV_NEXT]] = add nsw i64 [[IV]], 1
; CHECK-NEXT: br label [[L1_HEADER]]
; CHECK: exit:
; CHECK-NEXT: [[IV_LCSSA:%.*]] = phi i64 [ [[IV]], [[L4_LATCH]] ], [ [[IV]], [[L4_BODY]] ]
; CHECK-NEXT: [[L_LE:%.*]] = trunc i64 [[IV_LCSSA]] to i32
; CHECK-NEXT: ret i32 [[L_LE]]
;
entry:
br label %l1.header
l1.header:
%iv = phi i64 [ %iv.next, %l1.latch ], [ 0, %entry ]
%arrayidx.i = getelementptr inbounds [1 x i32], ptr @c, i64 0, i64 %iv
br label %l2.header
l2.header:
%x0 = load i1, ptr %c, align 4
br i1 %x0, label %l1.latch, label %l3.preheader
l3.preheader:
br label %l3.header
l3.header:
%x1 = load i1, ptr %d, align 4
br i1 %x1, label %l2.latch, label %l4.preheader
l4.preheader:
br label %l4.header
l4.header:
%x2 = load i1, ptr %a
br i1 %x2, label %l3.latch, label %l4.body
l4.body:
call void @f(ptr %arrayidx.i)
%x3 = load i1, ptr %b
%l = trunc i64 %iv to i32
br i1 %x3, label %l4.latch, label %exit
l4.latch:
call void @g()
%x4 = load i1, ptr %b, align 4
br i1 %x4, label %l4.header, label %exit
l3.latch:
br label %l3.header
l2.latch:
br label %l2.header
l1.latch:
%iv.next = add nsw i64 %iv, 1
br label %l1.header
exit:
%lcssa = phi i32 [ %l, %l4.latch ], [ %l, %l4.body ]
ret i32 %lcssa
}
; @test12 moved to sink-promote.ll, as it tests sinking and promotion.
; Test that we don't crash when trying to sink stores and there's no preheader
; available (which is used for creating loads that may be used by the SSA
; updater)
define void @test13() {
; CHECK-LABEL: @test13(
; CHECK-NEXT: br label [[LAB59:%.*]]
; CHECK: lab19:
; CHECK-NEXT: br i1 false, label [[LAB20:%.*]], label [[LAB38_LOOPEXIT:%.*]]
; CHECK: lab20:
; CHECK-NEXT: br label [[LAB60:%.*]]
; CHECK: lab21:
; CHECK-NEXT: br i1 undef, label [[LAB22:%.*]], label [[LAB38:%.*]]
; CHECK: lab22:
; CHECK-NEXT: br label [[LAB38]]
; CHECK: lab38.loopexit:
; CHECK-NEXT: br label [[LAB38]]
; CHECK: lab38:
; CHECK-NEXT: ret void
; CHECK: lab59:
; CHECK-NEXT: indirectbr ptr undef, [label [[LAB60]], label %lab38]
; CHECK: lab60:
; CHECK-NEXT: store i32 2145244101, ptr undef, align 4
; CHECK-NEXT: indirectbr ptr undef, [label [[LAB21:%.*]], label %lab19]
;
br label %lab59
lab19:
br i1 undef, label %lab20, label %lab38
lab20:
br label %lab60
lab21:
br i1 undef, label %lab22, label %lab38
lab22:
br label %lab38
lab38:
ret void
lab59:
indirectbr ptr undef, [label %lab60, label %lab38]
lab60:
store i32 2145244101, ptr undef, align 4
indirectbr ptr undef, [label %lab21, label %lab19]
}
; Check if LICM can sink a sinkable instruction the exit blocks through
; a non-trivially replacable PHI node.
define i32 @test14(i32 %N, i32 %N2, i1 %C) {
; CHECK-LABEL: @test14(
; CHECK-NEXT: Entry:
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: Loop:
; CHECK-NEXT: [[N_ADDR_0_PN:%.*]] = phi i32 [ [[DEC:%.*]], [[CONTLOOP:%.*]] ], [ [[N:%.*]], [[ENTRY:%.*]] ]
; CHECK-NEXT: [[DEC]] = add i32 [[N_ADDR_0_PN]], -1
; CHECK-NEXT: br i1 [[C:%.*]], label [[CONTLOOP]], label [[OUT12_SPLIT_LOOP_EXIT1:%.*]]
; CHECK: ContLoop:
; CHECK-NEXT: [[TMP_1:%.*]] = icmp ne i32 [[N_ADDR_0_PN]], 1
; CHECK-NEXT: br i1 [[TMP_1]], label [[LOOP]], label [[OUT12_SPLIT_LOOP_EXIT:%.*]]
; CHECK: Out12.split.loop.exit:
; CHECK-NEXT: [[N_ADDR_0_PN_LCSSA4:%.*]] = phi i32 [ [[N_ADDR_0_PN]], [[CONTLOOP]] ]
; CHECK-NEXT: [[SINK_MUL_LE3:%.*]] = mul i32 [[N]], [[N_ADDR_0_PN_LCSSA4]]
; CHECK-NEXT: br label [[OUT12:%.*]]
; CHECK: Out12.split.loop.exit1:
; CHECK-NEXT: [[N_ADDR_0_PN_LCSSA:%.*]] = phi i32 [ [[N_ADDR_0_PN]], [[LOOP]] ]
; CHECK-NEXT: [[SINK_MUL_LE:%.*]] = mul i32 [[N]], [[N_ADDR_0_PN_LCSSA]]
; CHECK-NEXT: [[SINK_SUB_LE:%.*]] = sub i32 [[SINK_MUL_LE]], [[N]]
; CHECK-NEXT: br label [[OUT12]]
; CHECK: Out12:
; CHECK-NEXT: [[TMP:%.*]] = phi i32 [ [[SINK_MUL_LE3]], [[OUT12_SPLIT_LOOP_EXIT]] ], [ [[SINK_SUB_LE]], [[OUT12_SPLIT_LOOP_EXIT1]] ]
; CHECK-NEXT: ret i32 [[TMP]]
;
Entry:
br label %Loop
Loop:
%N_addr.0.pn = phi i32 [ %dec, %ContLoop ], [ %N, %Entry ]
%sink.mul = mul i32 %N, %N_addr.0.pn
%sink.sub = sub i32 %sink.mul, %N
%dec = add i32 %N_addr.0.pn, -1
br i1 %C, label %ContLoop, label %Out12
ContLoop:
%tmp.1 = icmp ne i32 %N_addr.0.pn, 1
br i1 %tmp.1, label %Loop, label %Out12
Out12:
%tmp = phi i32 [%sink.mul, %ContLoop], [%sink.sub, %Loop]
ret i32 %tmp
}
; In this test, splitting predecessors is not really required because the
; operations of sinkable instructions (sub and mul) are same. In this case, we
; can sink the same sinkable operations and modify the PHI to pass the operands
; to the shared operations. As of now, we split predecessors of non-trivially
; replicalbe PHIs by default in LICM because all incoming edges of a
; non-trivially replacable PHI in LCSSA is critical.
define i32 @test15(i32 %N, i32 %N2, i1 %C) {
; CHECK-LABEL: @test15(
; CHECK-NEXT: Entry:
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: Loop:
; CHECK-NEXT: [[N_ADDR_0_PN:%.*]] = phi i32 [ [[DEC:%.*]], [[CONTLOOP:%.*]] ], [ [[N:%.*]], [[ENTRY:%.*]] ]
; CHECK-NEXT: [[DEC]] = add i32 [[N_ADDR_0_PN]], -1
; CHECK-NEXT: br i1 [[C:%.*]], label [[CONTLOOP]], label [[OUT12_SPLIT_LOOP_EXIT1:%.*]]
; CHECK: ContLoop:
; CHECK-NEXT: [[TMP_1:%.*]] = icmp ne i32 [[N_ADDR_0_PN]], 1
; CHECK-NEXT: br i1 [[TMP_1]], label [[LOOP]], label [[OUT12_SPLIT_LOOP_EXIT:%.*]]
; CHECK: Out12.split.loop.exit:
; CHECK-NEXT: [[N_ADDR_0_PN_LCSSA5:%.*]] = phi i32 [ [[N_ADDR_0_PN]], [[CONTLOOP]] ]
; CHECK-NEXT: [[SINK_MUL_LE4:%.*]] = mul i32 [[N]], [[N_ADDR_0_PN_LCSSA5]]
; CHECK-NEXT: [[SINK_SUB2_LE:%.*]] = sub i32 [[SINK_MUL_LE4]], [[N2:%.*]]
; CHECK-NEXT: br label [[OUT12:%.*]]
; CHECK: Out12.split.loop.exit1:
; CHECK-NEXT: [[N_ADDR_0_PN_LCSSA:%.*]] = phi i32 [ [[N_ADDR_0_PN]], [[LOOP]] ]
; CHECK-NEXT: [[SINK_MUL_LE:%.*]] = mul i32 [[N]], [[N_ADDR_0_PN_LCSSA]]
; CHECK-NEXT: [[SINK_SUB_LE:%.*]] = sub i32 [[SINK_MUL_LE]], [[N]]
; CHECK-NEXT: br label [[OUT12]]
; CHECK: Out12:
; CHECK-NEXT: [[TMP:%.*]] = phi i32 [ [[SINK_SUB2_LE]], [[OUT12_SPLIT_LOOP_EXIT]] ], [ [[SINK_SUB_LE]], [[OUT12_SPLIT_LOOP_EXIT1]] ]
; CHECK-NEXT: ret i32 [[TMP]]
;
Entry:
br label %Loop
Loop:
%N_addr.0.pn = phi i32 [ %dec, %ContLoop ], [ %N, %Entry ]
%sink.mul = mul i32 %N, %N_addr.0.pn
%sink.sub = sub i32 %sink.mul, %N
%sink.sub2 = sub i32 %sink.mul, %N2
%dec = add i32 %N_addr.0.pn, -1
br i1 %C, label %ContLoop, label %Out12
ContLoop:
%tmp.1 = icmp ne i32 %N_addr.0.pn, 1
br i1 %tmp.1, label %Loop, label %Out12
Out12:
%tmp = phi i32 [%sink.sub2, %ContLoop], [%sink.sub, %Loop]
ret i32 %tmp
}
; Sink through a non-trivially replacable PHI node which use the same sinkable
; instruction multiple times.
define i32 @test16(i1 %c, ptr %P, ptr %P2, i64 %V) {
; CHECK-LABEL: @test16(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[LOOP_PH:%.*]]
; CHECK: loop.ph:
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: Loop:
; CHECK-NEXT: [[IV:%.*]] = phi i64 [ 0, [[LOOP_PH]] ], [ [[NEXT:%.*]], [[CONTLOOP:%.*]] ]
; CHECK-NEXT: [[L2:%.*]] = call i32 @getv()
; CHECK-NEXT: switch i32 [[L2]], label [[CONTLOOP]] [
; CHECK-NEXT: i32 32, label [[OUT_SPLIT_LOOP_EXIT1:%.*]]
; CHECK-NEXT: i32 46, label [[OUT_SPLIT_LOOP_EXIT1]]
; CHECK-NEXT: i32 95, label [[OUT_SPLIT_LOOP_EXIT1]]
; CHECK-NEXT: ]
; CHECK: ContLoop:
; CHECK-NEXT: [[NEXT]] = add nuw i64 [[IV]], 1
; CHECK-NEXT: [[C1:%.*]] = call i1 @getc()
; CHECK-NEXT: br i1 [[C1]], label [[LOOP]], label [[OUT_SPLIT_LOOP_EXIT:%.*]]
; CHECK: Out.split.loop.exit:
; CHECK-NEXT: [[IDX_PH:%.*]] = phi i32 [ [[L2]], [[CONTLOOP]] ]
; CHECK-NEXT: br label [[OUT:%.*]]
; CHECK: Out.split.loop.exit1:
; CHECK-NEXT: [[IV_LCSSA:%.*]] = phi i64 [ [[IV]], [[LOOP]] ], [ [[IV]], [[LOOP]] ], [ [[IV]], [[LOOP]] ]
; CHECK-NEXT: [[L2_LCSSA:%.*]] = phi i32 [ [[L2]], [[LOOP]] ], [ [[L2]], [[LOOP]] ], [ [[L2]], [[LOOP]] ]
; CHECK-NEXT: [[T_LE:%.*]] = trunc i64 [[IV_LCSSA]] to i32
; CHECK-NEXT: [[SINKABLE_LE:%.*]] = mul i32 [[L2_LCSSA]], [[T_LE]]
; CHECK-NEXT: br label [[OUT]]
; CHECK: Out:
; CHECK-NEXT: [[IDX:%.*]] = phi i32 [ [[IDX_PH]], [[OUT_SPLIT_LOOP_EXIT]] ], [ [[SINKABLE_LE]], [[OUT_SPLIT_LOOP_EXIT1]] ]
; CHECK-NEXT: ret i32 [[IDX]]
;
entry:
br label %loop.ph
loop.ph:
br label %Loop
Loop:
%iv = phi i64 [ 0, %loop.ph ], [ %next, %ContLoop ]
%l2 = call i32 @getv()
%t = trunc i64 %iv to i32
%sinkable = mul i32 %l2, %t
switch i32 %l2, label %ContLoop [
i32 32, label %Out
i32 46, label %Out
i32 95, label %Out
]
ContLoop:
%next = add nuw i64 %iv, 1
%c1 = call i1 @getc()
br i1 %c1, label %Loop, label %Out
Out:
%idx = phi i32 [ %l2, %ContLoop ], [ %sinkable, %Loop ], [ %sinkable, %Loop ], [ %sinkable, %Loop ]
ret i32 %idx
}
; Sink a sinkable instruction through multiple non-trivially replacable PHIs in
; differect exit blocks.
define i32 @test17(i32 %N, i32 %N2) {
; CHECK-LABEL: @test17(
; CHECK-NEXT: Entry:
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: Loop:
; CHECK-NEXT: [[N_ADDR_0_PN:%.*]] = phi i32 [ [[DEC:%.*]], [[CONTLOOP3:%.*]] ], [ [[N:%.*]], [[ENTRY:%.*]] ]
; CHECK-NEXT: [[C0:%.*]] = call i1 @getc()
; CHECK-NEXT: br i1 [[C0]], label [[CONTLOOP1:%.*]], label [[OUTA_SPLIT_LOOP_EXIT3:%.*]]
; CHECK: ContLoop1:
; CHECK-NEXT: [[C1:%.*]] = call i1 @getc()
; CHECK-NEXT: br i1 [[C1]], label [[CONTLOOP2:%.*]], label [[OUTA_SPLIT_LOOP_EXIT:%.*]]
; CHECK: ContLoop2:
; CHECK-NEXT: [[C2:%.*]] = call i1 @getc()
; CHECK-NEXT: br i1 [[C2]], label [[CONTLOOP3]], label [[OUTB_SPLIT_LOOP_EXIT1:%.*]]
; CHECK: ContLoop3:
; CHECK-NEXT: [[C3:%.*]] = call i1 @getc()
; CHECK-NEXT: [[DEC]] = add i32 [[N_ADDR_0_PN]], -1
; CHECK-NEXT: br i1 [[C3]], label [[LOOP]], label [[OUTB_SPLIT_LOOP_EXIT:%.*]]
; CHECK: OutA.split.loop.exit:
; CHECK-NEXT: [[N_ADDR_0_PN_LCSSA:%.*]] = phi i32 [ [[N_ADDR_0_PN]], [[CONTLOOP1]] ]
; CHECK-NEXT: [[SINK_MUL_LE:%.*]] = mul i32 [[N]], [[N_ADDR_0_PN_LCSSA]]
; CHECK-NEXT: br label [[OUTA:%.*]]
; CHECK: OutA.split.loop.exit3:
; CHECK-NEXT: [[TMP1_PH4:%.*]] = phi i32 [ [[N2:%.*]], [[LOOP]] ]
; CHECK-NEXT: br label [[OUTA]]
; CHECK: OutA:
; CHECK-NEXT: [[TMP1:%.*]] = phi i32 [ [[SINK_MUL_LE]], [[OUTA_SPLIT_LOOP_EXIT]] ], [ [[TMP1_PH4]], [[OUTA_SPLIT_LOOP_EXIT3]] ]
; CHECK-NEXT: br label [[OUT12:%.*]]
; CHECK: OutB.split.loop.exit:
; CHECK-NEXT: [[TMP2_PH:%.*]] = phi i32 [ [[DEC]], [[CONTLOOP3]] ]
; CHECK-NEXT: br label [[OUTB:%.*]]
; CHECK: OutB.split.loop.exit1:
; CHECK-NEXT: [[N_ADDR_0_PN_LCSSA6:%.*]] = phi i32 [ [[N_ADDR_0_PN]], [[CONTLOOP2]] ]
; CHECK-NEXT: [[SINK_MUL_LE5:%.*]] = mul i32 [[N]], [[N_ADDR_0_PN_LCSSA6]]
; CHECK-NEXT: br label [[OUTB]]
; CHECK: OutB:
; CHECK-NEXT: [[TMP2:%.*]] = phi i32 [ [[TMP2_PH]], [[OUTB_SPLIT_LOOP_EXIT]] ], [ [[SINK_MUL_LE5]], [[OUTB_SPLIT_LOOP_EXIT1]] ]
; CHECK-NEXT: br label [[OUT12]]
; CHECK: Out12:
; CHECK-NEXT: [[TMP:%.*]] = phi i32 [ [[TMP1]], [[OUTA]] ], [ [[TMP2]], [[OUTB]] ]
; CHECK-NEXT: ret i32 [[TMP]]
;
Entry:
br label %Loop
Loop:
%N_addr.0.pn = phi i32 [ %dec, %ContLoop3 ], [ %N, %Entry ]
%sink.mul = mul i32 %N, %N_addr.0.pn
%c0 = call i1 @getc()
br i1 %c0 , label %ContLoop1, label %OutA
ContLoop1:
%c1 = call i1 @getc()
br i1 %c1, label %ContLoop2, label %OutA
ContLoop2:
%c2 = call i1 @getc()
br i1 %c2, label %ContLoop3, label %OutB
ContLoop3:
%c3 = call i1 @getc()
%dec = add i32 %N_addr.0.pn, -1
br i1 %c3, label %Loop, label %OutB
OutA:
%tmp1 = phi i32 [%sink.mul, %ContLoop1], [%N2, %Loop]
br label %Out12
OutB:
%tmp2 = phi i32 [%sink.mul, %ContLoop2], [%dec, %ContLoop3]
br label %Out12
Out12:
%tmp = phi i32 [%tmp1, %OutA], [%tmp2, %OutB]
ret i32 %tmp
}
; Sink a sinkable instruction through both trivially and non-trivially replacable PHIs.
define i32 @test18(i32 %N, i32 %N2) {
; CHECK-LABEL: @test18(
; CHECK-NEXT: Entry:
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: Loop:
; CHECK-NEXT: [[IV:%.*]] = phi i32 [ [[DEC:%.*]], [[CONTLOOP:%.*]] ], [ [[N:%.*]], [[ENTRY:%.*]] ]
; CHECK-NEXT: [[C0:%.*]] = call i1 @getc()
; CHECK-NEXT: br i1 [[C0]], label [[CONTLOOP]], label [[OUT12_SPLIT_LOOP_EXIT1:%.*]]
; CHECK: ContLoop:
; CHECK-NEXT: [[DEC]] = add i32 [[IV]], -1
; CHECK-NEXT: [[C1:%.*]] = call i1 @getc()
; CHECK-NEXT: br i1 [[C1]], label [[LOOP]], label [[OUT12_SPLIT_LOOP_EXIT:%.*]]
; CHECK: Out12.split.loop.exit:
; CHECK-NEXT: [[IV_LCSSA:%.*]] = phi i32 [ [[IV]], [[CONTLOOP]] ]
; CHECK-NEXT: [[TMP2_PH:%.*]] = phi i32 [ [[DEC]], [[CONTLOOP]] ]
; CHECK-NEXT: [[SINK_MUL_LE:%.*]] = mul i32 [[N]], [[IV_LCSSA]]
; CHECK-NEXT: [[SINK_SUB_LE4:%.*]] = sub i32 [[SINK_MUL_LE]], [[N2:%.*]]
; CHECK-NEXT: br label [[OUT12:%.*]]
; CHECK: Out12.split.loop.exit1:
; CHECK-NEXT: [[IV_LCSSA7:%.*]] = phi i32 [ [[IV]], [[LOOP]] ]
; CHECK-NEXT: [[SINK_MUL_LE6:%.*]] = mul i32 [[N]], [[IV_LCSSA7]]
; CHECK-NEXT: [[SINK_SUB_LE:%.*]] = sub i32 [[SINK_MUL_LE6]], [[N2]]
; CHECK-NEXT: br label [[OUT12]]
; CHECK: Out12:
; CHECK-NEXT: [[TMP1:%.*]] = phi i32 [ [[SINK_SUB_LE4]], [[OUT12_SPLIT_LOOP_EXIT]] ], [ [[SINK_SUB_LE]], [[OUT12_SPLIT_LOOP_EXIT1]] ]
; CHECK-NEXT: [[TMP2:%.*]] = phi i32 [ [[TMP2_PH]], [[OUT12_SPLIT_LOOP_EXIT]] ], [ [[SINK_SUB_LE]], [[OUT12_SPLIT_LOOP_EXIT1]] ]
; CHECK-NEXT: [[ADD:%.*]] = add i32 [[TMP1]], [[TMP2]]
; CHECK-NEXT: ret i32 [[ADD]]
;
Entry:
br label %Loop
Loop:
%iv = phi i32 [ %dec, %ContLoop ], [ %N, %Entry ]
%sink.mul = mul i32 %N, %iv
%sink.sub = sub i32 %sink.mul, %N2
%c0 = call i1 @getc()
br i1 %c0, label %ContLoop, label %Out12
ContLoop:
%dec = add i32 %iv, -1
%c1 = call i1 @getc()
br i1 %c1, label %Loop, label %Out12
Out12:
%tmp1 = phi i32 [%sink.sub, %ContLoop], [%sink.sub, %Loop]
%tmp2 = phi i32 [%dec, %ContLoop], [%sink.sub, %Loop]
%add = add i32 %tmp1, %tmp2
ret i32 %add
}
; Do not sink an instruction through a non-trivially replacable PHI, to avoid
; assert while splitting predecessors, if the terminator of predecessor is an
; indirectbr.
define i32 @test19(i1 %cond, i1 %cond2, ptr %address, i32 %v1) nounwind {
; CHECK-LABEL: @test19(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[INDIRECT_GOTO_DEST:%.*]] = select i1 [[COND:%.*]], ptr blockaddress(@test19, [[EXIT:%.*]]), ptr [[ADDRESS:%.*]]
; CHECK-NEXT: [[INDIRECT_GOTO_DEST2:%.*]] = select i1 [[COND2:%.*]], ptr blockaddress(@test19, [[EXIT]]), ptr [[ADDRESS]]
; CHECK-NEXT: br label [[L0:%.*]]
; CHECK: L0:
; CHECK-NEXT: [[V2:%.*]] = call i32 @getv()
; CHECK-NEXT: [[SINKABLE:%.*]] = mul i32 [[V1:%.*]], [[V2]]
; CHECK-NEXT: [[SINKABLE2:%.*]] = add i32 [[V1]], [[V2]]
; CHECK-NEXT: indirectbr ptr [[INDIRECT_GOTO_DEST]], [label [[L1:%.*]], label %exit]
; CHECK: L1:
; CHECK-NEXT: indirectbr ptr [[INDIRECT_GOTO_DEST2]], [label [[L0]], label %exit]
; CHECK: exit:
; CHECK-NEXT: [[R:%.*]] = phi i32 [ [[SINKABLE]], [[L0]] ], [ [[SINKABLE2]], [[L1]] ]
; CHECK-NEXT: ret i32 [[R]]
;
entry:
br label %L0
L0:
%indirect.goto.dest = select i1 %cond, ptr blockaddress(@test19, %exit), ptr %address
%v2 = call i32 @getv()
%sinkable = mul i32 %v1, %v2
%sinkable2 = add i32 %v1, %v2
indirectbr ptr %indirect.goto.dest, [label %L1, label %exit]
L1:
%indirect.goto.dest2 = select i1 %cond2, ptr blockaddress(@test19, %exit), ptr %address
indirectbr ptr %indirect.goto.dest2, [label %L0, label %exit]
exit:
%r = phi i32 [%sinkable, %L0], [%sinkable2, %L1]
ret i32 %r
}
; Do not sink through a non-trivially replacable PHI if splitting predecessors
; not allowed in SplitBlockPredecessors().
define void @test20(ptr %s, i1 %b, i32 %v1, i32 %v2) personality ptr @__CxxFrameHandler3 {
; CHECK-LABEL: @test20(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[WHILE_COND:%.*]]
; CHECK: while.cond:
; CHECK-NEXT: [[V:%.*]] = call i32 @getv()
; CHECK-NEXT: [[SINKABLE:%.*]] = mul i32 [[V]], [[V2:%.*]]
; CHECK-NEXT: [[SINKABLE2:%.*]] = add i32 [[V]], [[V2]]
; CHECK-NEXT: br i1 [[B:%.*]], label [[TRY_CONT:%.*]], label [[WHILE_BODY:%.*]]
; CHECK: while.body:
; CHECK-NEXT: invoke void @may_throw()
; CHECK-NEXT: to label [[WHILE_BODY2:%.*]] unwind label [[CATCH_DISPATCH:%.*]]
; CHECK: while.body2:
; CHECK-NEXT: invoke void @may_throw2()
; CHECK-NEXT: to label [[WHILE_COND]] unwind label [[CATCH_DISPATCH]]
; CHECK: catch.dispatch:
; CHECK-NEXT: [[DOTLCSSA1:%.*]] = phi i32 [ [[SINKABLE]], [[WHILE_BODY]] ], [ [[SINKABLE2]], [[WHILE_BODY2]] ]
; CHECK-NEXT: [[CP:%.*]] = cleanuppad within none []
; CHECK-NEXT: store i32 [[DOTLCSSA1]], ptr [[S:%.*]], align 4
; CHECK-NEXT: cleanupret from [[CP]] unwind to caller
; CHECK: try.cont:
; CHECK-NEXT: ret void
;
entry:
br label %while.cond
while.cond:
%v = call i32 @getv()
%sinkable = mul i32 %v, %v2
%sinkable2 = add i32 %v, %v2
br i1 %b, label %try.cont, label %while.body
while.body:
invoke void @may_throw()
to label %while.body2 unwind label %catch.dispatch
while.body2:
invoke void @may_throw2()
to label %while.cond unwind label %catch.dispatch
catch.dispatch:
%.lcssa1 = phi i32 [ %sinkable, %while.body ], [ %sinkable2, %while.body2 ]
%cp = cleanuppad within none []
store i32 %.lcssa1, ptr %s
cleanupret from %cp unwind to caller
try.cont:
ret void
}
; The sinkable call should be sunk into an exit block split. After splitting
; the exit block, BlockColor for new blocks should be added properly so
; that we should be able to access valid ColorVector.
define i32 @test21_pr36184(ptr %P) personality ptr @__CxxFrameHandler3 {
; CHECK-LABEL: @test21_pr36184(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[LOOP_PH:%.*]]
; CHECK: loop.ph:
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: Loop:
; CHECK-NEXT: br i1 false, label [[CONTLOOP:%.*]], label [[OUT_SPLIT_LOOP_EXIT1:%.*]]
; CHECK: ContLoop:
; CHECK-NEXT: br i1 false, label [[LOOP]], label [[OUT_SPLIT_LOOP_EXIT:%.*]]
; CHECK: Out.split.loop.exit:
; CHECK-NEXT: [[IDX_PH:%.*]] = phi i32 [ 0, [[CONTLOOP]] ]
; CHECK-NEXT: br label [[OUT:%.*]]
; CHECK: Out.split.loop.exit1:
; CHECK-NEXT: [[SINKABLECALL_LE:%.*]] = call i32 @strlen(ptr [[P:%.*]]) #[[ATTR3]]
; CHECK-NEXT: br label [[OUT]]
; CHECK: Out:
; CHECK-NEXT: [[IDX:%.*]] = phi i32 [ [[IDX_PH]], [[OUT_SPLIT_LOOP_EXIT]] ], [ [[SINKABLECALL_LE]], [[OUT_SPLIT_LOOP_EXIT1]] ]
; CHECK-NEXT: ret i32 [[IDX]]
;
entry:
br label %loop.ph
loop.ph:
br label %Loop
Loop:
%sinkableCall = call i32 @strlen( ptr %P ) readonly
br i1 undef, label %ContLoop, label %Out
ContLoop:
br i1 undef, label %Loop, label %Out
Out:
%idx = phi i32 [ %sinkableCall, %Loop ], [0, %ContLoop ]
ret i32 %idx
}
; We do not support splitting a landingpad block if BlockColors is not empty.
define void @test22(i1 %b, i32 %v1, i32 %v2) personality ptr @__CxxFrameHandler3 {
; CHECK-LABEL: @test22(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[WHILE_COND:%.*]]
; CHECK: while.cond:
; CHECK-NEXT: br i1 [[B:%.*]], label [[TRY_CONT:%.*]], label [[WHILE_BODY:%.*]]
; CHECK: while.body:
; CHECK-NEXT: invoke void @may_throw()
; CHECK-NEXT: to label [[WHILE_BODY2:%.*]] unwind label [[LPADBB:%.*]]
; CHECK: while.body2:
; CHECK-NEXT: [[V:%.*]] = call i32 @getv()
; CHECK-NEXT: [[MUL:%.*]] = mul i32 [[V]], [[V2:%.*]]
; CHECK-NEXT: invoke void @may_throw2()
; CHECK-NEXT: to label [[WHILE_COND]] unwind label [[LPADBB]]
; CHECK: lpadBB:
; CHECK-NEXT: [[DOTLCSSA1:%.*]] = phi i32 [ 0, [[WHILE_BODY]] ], [ [[MUL]], [[WHILE_BODY2]] ]
; CHECK-NEXT: [[TMP0:%.*]] = landingpad { ptr, i32 }
; CHECK-NEXT: catch ptr null
; CHECK-NEXT: br label [[LPADBBSUCC1:%.*]]
; CHECK: lpadBBSucc1:
; CHECK-NEXT: ret void
; CHECK: try.cont:
; CHECK-NEXT: ret void
;
entry:
br label %while.cond
while.cond:
br i1 %b, label %try.cont, label %while.body
while.body:
invoke void @may_throw()
to label %while.body2 unwind label %lpadBB
while.body2:
%v = call i32 @getv()
%mul = mul i32 %v, %v2
invoke void @may_throw2()
to label %while.cond unwind label %lpadBB
lpadBB:
%.lcssa1 = phi i32 [ 0, %while.body ], [ %mul, %while.body2 ]
landingpad { ptr, i32 }
catch ptr null
br label %lpadBBSucc1
lpadBBSucc1:
ret void
try.cont:
ret void
}
define i32 @not_willreturn(ptr %p) {
; CHECK-LABEL: @not_willreturn(
; CHECK-NEXT: [[X:%.*]] = call i32 @getv() #[[ATTR5:[0-9]+]]
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: store volatile i8 0, ptr [[P:%.*]], align 1
; CHECK-NEXT: br i1 true, label [[LOOP]], label [[OUT:%.*]]
; CHECK: out:
; CHECK-NEXT: [[X_LCSSA:%.*]] = phi i32 [ [[X]], [[LOOP]] ]
; CHECK-NEXT: ret i32 [[X_LCSSA]]
;
br label %loop
loop:
%x = call i32 @getv() nounwind readnone
store volatile i8 0, ptr %p
br i1 true, label %loop, label %out
out:
ret i32 %x
}
declare void @use.i32(i32)
declare void @use.i64(i64)
; Don't duplicate freeze just because it's free.
define i32 @duplicate_freeze(i1 %c, i32 %x) {
; CHECK-LABEL: @duplicate_freeze(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[FR:%.*]] = freeze i32 [[X:%.*]]
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: call void @use.i32(i32 [[FR]])
; CHECK-NEXT: br i1 [[C:%.*]], label [[LOOP]], label [[EXIT:%.*]]
; CHECK: exit:
; CHECK-NEXT: [[FR_LCSSA:%.*]] = phi i32 [ [[FR]], [[LOOP]] ]
; CHECK-NEXT: ret i32 [[FR_LCSSA]]
;
entry:
br label %loop
loop:
%fr = freeze i32 %x
call void @use.i32(i32 %fr)
br i1 %c, label %loop, label %exit
exit:
ret i32 %fr
}
; Don't duplicate ptrtoint just because it's free.
define i64 @duplicate_ptrtoint(i1 %c, ptr %p) {
; CHECK-LABEL: @duplicate_ptrtoint(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[PI:%.*]] = ptrtoint ptr [[P:%.*]] to i64
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: call void @use.i64(i64 [[PI]])
; CHECK-NEXT: br i1 [[C:%.*]], label [[LOOP]], label [[EXIT:%.*]]
; CHECK: exit:
; CHECK-NEXT: [[PI_LCSSA:%.*]] = phi i64 [ [[PI]], [[LOOP]] ]
; CHECK-NEXT: ret i64 [[PI_LCSSA]]
;
entry:
br label %loop
loop:
%pi = ptrtoint ptr %p to i64
call void @use.i64(i64 %pi)
br i1 %c, label %loop, label %exit
exit:
ret i64 %pi
}
declare void @may_throw()
declare void @may_throw2()
declare i32 @__CxxFrameHandler3(...)
declare i32 @getv()
declare i1 @getc()
declare void @f(ptr)
declare void @g()