Files
clang-p2996/llvm/test/Transforms/SLPVectorizer/X86/phi-undef-input.ll
Alexey Bataev 31eaf86a1e [SLP]Improve minbitwidth analysis.
This improves overall analysis for minbitwidth in SLP. It allows to
analyze the trees with store/insertelement root nodes. Also, instead of
using single minbitwidth, detected from the very first analysis stage,
it tries to detect the best one for each trunc/ext subtree in the graph
and use it for the subtree.
Results in better code and less vector register pressure.

Metric: size..text

Program                                                                                                                                                size..text
                                                                                                                                                       results     results0    diff
                                                                      test-suite :: SingleSource/Benchmarks/Adobe-C++/simple_types_loop_invariant.test    92549.00    92609.00  0.1%
                                                                                  test-suite :: External/SPEC/CINT2017speed/625.x264_s/625.x264_s.test   663381.00   663493.00  0.0%
                                                                                   test-suite :: External/SPEC/CINT2017rate/525.x264_r/525.x264_r.test   663381.00   663493.00  0.0%
                                                                                               test-suite :: MultiSource/Benchmarks/Bullet/bullet.test   307182.00   307214.00  0.0%
                                                                             test-suite :: External/SPEC/CFP2017speed/638.imagick_s/638.imagick_s.test  1394420.00  1394484.00  0.0%
                                                                              test-suite :: External/SPEC/CFP2017rate/538.imagick_r/538.imagick_r.test  1394420.00  1394484.00  0.0%
                                                                                test-suite :: External/SPEC/CFP2017rate/510.parest_r/510.parest_r.test  2040257.00  2040273.00  0.0%

                                                                              test-suite :: External/SPEC/CFP2017rate/526.blender_r/526.blender_r.test 12396098.00 12395858.00 -0.0%
                                                                                         test-suite :: External/SPEC/CINT2006/445.gobmk/445.gobmk.test   909944.00   909768.00 -0.0%

SingleSource/Benchmarks/Adobe-C++/simple_types_loop_invariant - 4 scalar
instructions remain scalar (good).
Spec2017/x264 - the whole function idct4x4dc is vectorized using <16
x i16> instead of <16 x i32>, also zext/trunc are removed. In other
places last vector zext/sext removed and replaced by
extractelement + scalar zext/sext pair.
MultiSource/Benchmarks/Bullet/bullet - reduce or <4 x i32> replaced by
reduce or <4 x i8>
Spec2017/imagick - Removed extra zext from 2 packs of the operations.
Spec2017/parest - Removed extra zext, replaced by extractelement+scalar
zext
Spec2017/blender - the whole bunch of vector zext/sext replaced by
extractelement+scalar zext/sext, some extra code vectorized in smaller
types.
Spec2006/gobmk - fixed cost estimation, some small code remains scalar.

Original Pull Request: https://github.com/llvm/llvm-project/pull/84334

The patch has the same functionality (no test changes, no changes in
benchmarks) as the original patch, just has some compile time
improvements + fixes for xxhash unittest, discovered earlier in the
previous version of the patch.

Reviewers:

Pull Request: https://github.com/llvm/llvm-project/pull/84536
2024-03-19 08:19:45 -07:00

229 lines
8.7 KiB
LLVM

; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt < %s -passes=slp-vectorizer -slp-threshold=-1000 -mtriple=x86_64 -S | FileCheck %s
; The inputs to vector phi should remain undef.
define i32 @phi3UndefInput(i1 %cond, i8 %arg0, i8 %arg1, i8 %arg2, i8 %arg3) {
; CHECK-LABEL: @phi3UndefInput(
; CHECK-NEXT: entry:
; CHECK-NEXT: br i1 [[COND:%.*]], label [[BB2:%.*]], label [[BB3:%.*]]
; CHECK: bb2:
; CHECK-NEXT: [[TMP0:%.*]] = insertelement <4 x i8> poison, i8 [[ARG0:%.*]], i32 0
; CHECK-NEXT: [[TMP1:%.*]] = insertelement <4 x i8> [[TMP0]], i8 [[ARG1:%.*]], i32 1
; CHECK-NEXT: [[TMP2:%.*]] = insertelement <4 x i8> [[TMP1]], i8 [[ARG2:%.*]], i32 2
; CHECK-NEXT: [[TMP3:%.*]] = insertelement <4 x i8> [[TMP2]], i8 [[ARG3:%.*]], i32 3
; CHECK-NEXT: br label [[BB3]]
; CHECK: bb3:
; CHECK-NEXT: [[TMP4:%.*]] = phi <4 x i8> [ [[TMP3]], [[BB2]] ], [ <i8 0, i8 undef, i8 undef, i8 undef>, [[ENTRY:%.*]] ]
; CHECK-NEXT: [[TMP5:%.*]] = call i8 @llvm.vector.reduce.or.v4i8(<4 x i8> [[TMP4]])
; CHECK-NEXT: [[TMP6:%.*]] = zext i8 [[TMP5]] to i32
; CHECK-NEXT: ret i32 [[TMP6]]
;
entry:
br i1 %cond, label %bb2, label %bb3
bb2:
br label %bb3
bb3:
%phi0 = phi i8 [ %arg0, %bb2 ], [ 0, %entry ]
%phi1 = phi i8 [ %arg1, %bb2 ], [ undef, %entry ]
%phi2 = phi i8 [ %arg2, %bb2 ], [ undef, %entry ]
%phi3 = phi i8 [ %arg3, %bb2 ], [ undef, %entry ]
%zext0 = zext i8 %phi0 to i32
%zext1 = zext i8 %phi1 to i32
%zext2 = zext i8 %phi2 to i32
%zext3 = zext i8 %phi3 to i32
%or1 = or i32 %zext0, %zext1
%or2 = or i32 %or1, %zext2
%or3 = or i32 %or2, %zext3
ret i32 %or3
}
define i32 @phi2UndefInput(i1 %cond, i8 %arg0, i8 %arg1, i8 %arg2, i8 %arg3) {
; CHECK-LABEL: @phi2UndefInput(
; CHECK-NEXT: entry:
; CHECK-NEXT: br i1 [[COND:%.*]], label [[BB2:%.*]], label [[BB3:%.*]]
; CHECK: bb2:
; CHECK-NEXT: [[TMP0:%.*]] = insertelement <4 x i8> poison, i8 [[ARG0:%.*]], i32 0
; CHECK-NEXT: [[TMP1:%.*]] = insertelement <4 x i8> [[TMP0]], i8 [[ARG1:%.*]], i32 1
; CHECK-NEXT: [[TMP2:%.*]] = insertelement <4 x i8> [[TMP1]], i8 [[ARG2:%.*]], i32 2
; CHECK-NEXT: [[TMP3:%.*]] = insertelement <4 x i8> [[TMP2]], i8 [[ARG3:%.*]], i32 3
; CHECK-NEXT: br label [[BB3]]
; CHECK: bb3:
; CHECK-NEXT: [[TMP4:%.*]] = phi <4 x i8> [ [[TMP3]], [[BB2]] ], [ <i8 0, i8 0, i8 undef, i8 undef>, [[ENTRY:%.*]] ]
; CHECK-NEXT: [[TMP5:%.*]] = call i8 @llvm.vector.reduce.or.v4i8(<4 x i8> [[TMP4]])
; CHECK-NEXT: [[TMP6:%.*]] = zext i8 [[TMP5]] to i32
; CHECK-NEXT: ret i32 [[TMP6]]
;
entry:
br i1 %cond, label %bb2, label %bb3
bb2:
br label %bb3
bb3:
%phi0 = phi i8 [ %arg0, %bb2 ], [ 0, %entry ]
%phi1 = phi i8 [ %arg1, %bb2 ], [ 0, %entry ]
%phi2 = phi i8 [ %arg2, %bb2 ], [ undef, %entry ]
%phi3 = phi i8 [ %arg3, %bb2 ], [ undef, %entry ]
%zext0 = zext i8 %phi0 to i32
%zext1 = zext i8 %phi1 to i32
%zext2 = zext i8 %phi2 to i32
%zext3 = zext i8 %phi3 to i32
%or1 = or i32 %zext0, %zext1
%or2 = or i32 %or1, %zext2
%or3 = or i32 %or2, %zext3
ret i32 %or3
}
define i32 @phi1UndefInput(i1 %cond, i8 %arg0, i8 %arg1, i8 %arg2, i8 %arg3) {
; CHECK-LABEL: @phi1UndefInput(
; CHECK-NEXT: entry:
; CHECK-NEXT: br i1 [[COND:%.*]], label [[BB2:%.*]], label [[BB3:%.*]]
; CHECK: bb2:
; CHECK-NEXT: [[TMP0:%.*]] = insertelement <4 x i8> poison, i8 [[ARG0:%.*]], i32 0
; CHECK-NEXT: [[TMP1:%.*]] = insertelement <4 x i8> [[TMP0]], i8 [[ARG1:%.*]], i32 1
; CHECK-NEXT: [[TMP2:%.*]] = insertelement <4 x i8> [[TMP1]], i8 [[ARG2:%.*]], i32 2
; CHECK-NEXT: [[TMP3:%.*]] = insertelement <4 x i8> [[TMP2]], i8 [[ARG3:%.*]], i32 3
; CHECK-NEXT: br label [[BB3]]
; CHECK: bb3:
; CHECK-NEXT: [[TMP4:%.*]] = phi <4 x i8> [ [[TMP3]], [[BB2]] ], [ <i8 0, i8 0, i8 0, i8 undef>, [[ENTRY:%.*]] ]
; CHECK-NEXT: [[TMP5:%.*]] = call i8 @llvm.vector.reduce.or.v4i8(<4 x i8> [[TMP4]])
; CHECK-NEXT: [[TMP6:%.*]] = zext i8 [[TMP5]] to i32
; CHECK-NEXT: ret i32 [[TMP6]]
;
entry:
br i1 %cond, label %bb2, label %bb3
bb2:
br label %bb3
bb3:
%phi0 = phi i8 [ %arg0, %bb2 ], [ 0, %entry ]
%phi1 = phi i8 [ %arg1, %bb2 ], [ 0, %entry ]
%phi2 = phi i8 [ %arg2, %bb2 ], [ 0, %entry ]
%phi3 = phi i8 [ %arg3, %bb2 ], [ undef, %entry ]
%zext0 = zext i8 %phi0 to i32
%zext1 = zext i8 %phi1 to i32
%zext2 = zext i8 %phi2 to i32
%zext3 = zext i8 %phi3 to i32
%or1 = or i32 %zext0, %zext1
%or2 = or i32 %or1, %zext2
%or3 = or i32 %or2, %zext3
ret i32 %or3
}
define i32 @phi1Undef1PoisonInput(i1 %cond, i8 %arg0, i8 %arg1, i8 %arg2, i8 %arg3) {
; CHECK-LABEL: @phi1Undef1PoisonInput(
; CHECK-NEXT: entry:
; CHECK-NEXT: br i1 [[COND:%.*]], label [[BB2:%.*]], label [[BB3:%.*]]
; CHECK: bb2:
; CHECK-NEXT: [[TMP0:%.*]] = insertelement <4 x i8> poison, i8 [[ARG0:%.*]], i32 0
; CHECK-NEXT: [[TMP1:%.*]] = insertelement <4 x i8> [[TMP0]], i8 [[ARG1:%.*]], i32 1
; CHECK-NEXT: [[TMP2:%.*]] = insertelement <4 x i8> [[TMP1]], i8 [[ARG2:%.*]], i32 2
; CHECK-NEXT: [[TMP3:%.*]] = insertelement <4 x i8> [[TMP2]], i8 [[ARG3:%.*]], i32 3
; CHECK-NEXT: br label [[BB3]]
; CHECK: bb3:
; CHECK-NEXT: [[TMP4:%.*]] = phi <4 x i8> [ [[TMP3]], [[BB2]] ], [ <i8 0, i8 0, i8 poison, i8 undef>, [[ENTRY:%.*]] ]
; CHECK-NEXT: [[TMP5:%.*]] = call i8 @llvm.vector.reduce.or.v4i8(<4 x i8> [[TMP4]])
; CHECK-NEXT: [[TMP6:%.*]] = zext i8 [[TMP5]] to i32
; CHECK-NEXT: ret i32 [[TMP6]]
;
entry:
br i1 %cond, label %bb2, label %bb3
bb2:
br label %bb3
bb3:
%phi0 = phi i8 [ %arg0, %bb2 ], [ 0, %entry ]
%phi1 = phi i8 [ %arg1, %bb2 ], [ 0, %entry ]
%phi2 = phi i8 [ %arg2, %bb2 ], [ poison, %entry ]
%phi3 = phi i8 [ %arg3, %bb2 ], [ undef, %entry ]
%zext0 = zext i8 %phi0 to i32
%zext1 = zext i8 %phi1 to i32
%zext2 = zext i8 %phi2 to i32
%zext3 = zext i8 %phi3 to i32
%or1 = or i32 %zext0, %zext1
%or2 = or i32 %or1, %zext2
%or3 = or i32 %or2, %zext3
ret i32 %or3
}
define i32 @phi1Undef2PoisonInputs(i1 %cond, i8 %arg0, i8 %arg1, i8 %arg2, i8 %arg3) {
; CHECK-LABEL: @phi1Undef2PoisonInputs(
; CHECK-NEXT: entry:
; CHECK-NEXT: br i1 [[COND:%.*]], label [[BB2:%.*]], label [[BB3:%.*]]
; CHECK: bb2:
; CHECK-NEXT: [[TMP0:%.*]] = insertelement <4 x i8> poison, i8 [[ARG1:%.*]], i32 0
; CHECK-NEXT: [[TMP1:%.*]] = insertelement <4 x i8> [[TMP0]], i8 [[ARG0:%.*]], i32 1
; CHECK-NEXT: [[TMP2:%.*]] = insertelement <4 x i8> [[TMP1]], i8 [[ARG2:%.*]], i32 2
; CHECK-NEXT: [[TMP3:%.*]] = insertelement <4 x i8> [[TMP2]], i8 [[ARG3:%.*]], i32 3
; CHECK-NEXT: br label [[BB3]]
; CHECK: bb3:
; CHECK-NEXT: [[TMP4:%.*]] = phi <4 x i8> [ [[TMP3]], [[BB2]] ], [ <i8 0, i8 poison, i8 poison, i8 undef>, [[ENTRY:%.*]] ]
; CHECK-NEXT: [[TMP5:%.*]] = call i8 @llvm.vector.reduce.or.v4i8(<4 x i8> [[TMP4]])
; CHECK-NEXT: [[TMP6:%.*]] = zext i8 [[TMP5]] to i32
; CHECK-NEXT: ret i32 [[TMP6]]
;
entry:
br i1 %cond, label %bb2, label %bb3
bb2:
br label %bb3
bb3:
%phi0 = phi i8 [ %arg0, %bb2 ], [ poison, %entry ]
%phi1 = phi i8 [ %arg1, %bb2 ], [ 0, %entry ]
%phi2 = phi i8 [ %arg2, %bb2 ], [ poison, %entry ]
%phi3 = phi i8 [ %arg3, %bb2 ], [ undef, %entry ]
%zext0 = zext i8 %phi0 to i32
%zext1 = zext i8 %phi1 to i32
%zext2 = zext i8 %phi2 to i32
%zext3 = zext i8 %phi3 to i32
%or1 = or i32 %zext0, %zext1
%or2 = or i32 %or1, %zext2
%or3 = or i32 %or2, %zext3
ret i32 %or3
}
define i32 @phi1Undef1PoisonGapInput(i1 %cond, i8 %arg0, i8 %arg1, i8 %arg2, i8 %arg3) {
; CHECK-LABEL: @phi1Undef1PoisonGapInput(
; CHECK-NEXT: entry:
; CHECK-NEXT: br i1 [[COND:%.*]], label [[BB2:%.*]], label [[BB3:%.*]]
; CHECK: bb2:
; CHECK-NEXT: [[TMP0:%.*]] = insertelement <4 x i8> poison, i8 [[ARG1:%.*]], i32 0
; CHECK-NEXT: [[TMP1:%.*]] = insertelement <4 x i8> [[TMP0]], i8 [[ARG3:%.*]], i32 1
; CHECK-NEXT: [[TMP2:%.*]] = insertelement <4 x i8> [[TMP1]], i8 [[ARG0:%.*]], i32 2
; CHECK-NEXT: [[TMP3:%.*]] = insertelement <4 x i8> [[TMP2]], i8 [[ARG2:%.*]], i32 3
; CHECK-NEXT: br label [[BB3]]
; CHECK: bb3:
; CHECK-NEXT: [[TMP4:%.*]] = phi <4 x i8> [ [[TMP3]], [[BB2]] ], [ <i8 0, i8 0, i8 poison, i8 undef>, [[ENTRY:%.*]] ]
; CHECK-NEXT: [[TMP5:%.*]] = call i8 @llvm.vector.reduce.or.v4i8(<4 x i8> [[TMP4]])
; CHECK-NEXT: [[TMP6:%.*]] = zext i8 [[TMP5]] to i32
; CHECK-NEXT: ret i32 [[TMP6]]
;
entry:
br i1 %cond, label %bb2, label %bb3
bb2:
br label %bb3
bb3:
%phi0 = phi i8 [ %arg0, %bb2 ], [ poison, %entry ]
%phi1 = phi i8 [ %arg1, %bb2 ], [ 0, %entry ]
%phi2 = phi i8 [ %arg2, %bb2 ], [ undef, %entry ]
%phi3 = phi i8 [ %arg3, %bb2 ], [ 0, %entry ]
%zext0 = zext i8 %phi0 to i32
%zext1 = zext i8 %phi1 to i32
%zext2 = zext i8 %phi2 to i32
%zext3 = zext i8 %phi3 to i32
%or1 = or i32 %zext0, %zext1
%or2 = or i32 %or1, %zext2
%or3 = or i32 %or2, %zext3
ret i32 %or3
}