Files
clang-p2996/llvm/tools/llvm-exegesis/lib/SchedClassResolution.cpp
Aiden Grossman faf675ce34 [llvm-exegesis] Remove llvm prefix where unnecessary (#79802)
This patch removes the llvm:: prefix within llvm-exegesis where it is
not necessary. This is most occurrences of the prefix within exegesis as
exegesis is within the llvm namespace. This patch makes things more
consistent as the vast majority of the code did not use the llvm::
prefix for anything.
2024-01-29 11:40:06 -08:00

349 lines
15 KiB
C++

//===-- SchedClassResolution.cpp --------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "SchedClassResolution.h"
#include "BenchmarkResult.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MCA/Support.h"
#include "llvm/Support/FormatVariadic.h"
#include <vector>
namespace llvm {
namespace exegesis {
// Return the non-redundant list of WriteProcRes used by the given sched class.
// The scheduling model for LLVM is such that each instruction has a certain
// number of uops which consume resources which are described by WriteProcRes
// entries. Each entry describe how many cycles are spent on a specific ProcRes
// kind.
// For example, an instruction might have 3 uOps, one dispatching on P0
// (ProcResIdx=1) and two on P06 (ProcResIdx = 7).
// Note that LLVM additionally denormalizes resource consumption to include
// usage of super resources by subresources. So in practice if there exists a
// P016 (ProcResIdx=10), then the cycles consumed by P0 are also consumed by
// P06 (ProcResIdx = 7) and P016 (ProcResIdx = 10), and the resources consumed
// by P06 are also consumed by P016. In the figure below, parenthesized cycles
// denote implied usage of superresources by subresources:
// P0 P06 P016
// uOp1 1 (1) (1)
// uOp2 1 (1)
// uOp3 1 (1)
// =============================
// 1 3 3
// Eventually we end up with three entries for the WriteProcRes of the
// instruction:
// {ProcResIdx=1, Cycles=1} // P0
// {ProcResIdx=7, Cycles=3} // P06
// {ProcResIdx=10, Cycles=3} // P016
//
// Note that in this case, P016 does not contribute any cycles, so it would
// be removed by this function.
// FIXME: Merge this with the equivalent in llvm-mca.
static SmallVector<MCWriteProcResEntry, 8>
getNonRedundantWriteProcRes(const MCSchedClassDesc &SCDesc,
const MCSubtargetInfo &STI) {
SmallVector<MCWriteProcResEntry, 8> Result;
const auto &SM = STI.getSchedModel();
const unsigned NumProcRes = SM.getNumProcResourceKinds();
// Collect resource masks.
SmallVector<uint64_t> ProcResourceMasks(NumProcRes);
mca::computeProcResourceMasks(SM, ProcResourceMasks);
// Sort entries by smaller resources for (basic) topological ordering.
using ResourceMaskAndEntry = std::pair<uint64_t, const MCWriteProcResEntry *>;
SmallVector<ResourceMaskAndEntry, 8> ResourceMaskAndEntries;
for (const auto *WPR = STI.getWriteProcResBegin(&SCDesc),
*const WPREnd = STI.getWriteProcResEnd(&SCDesc);
WPR != WPREnd; ++WPR) {
uint64_t Mask = ProcResourceMasks[WPR->ProcResourceIdx];
ResourceMaskAndEntries.push_back({Mask, WPR});
}
sort(ResourceMaskAndEntries,
[](const ResourceMaskAndEntry &A, const ResourceMaskAndEntry &B) {
unsigned popcntA = popcount(A.first);
unsigned popcntB = popcount(B.first);
if (popcntA < popcntB)
return true;
if (popcntA > popcntB)
return false;
return A.first < B.first;
});
SmallVector<float, 32> ProcResUnitUsage(NumProcRes);
for (const ResourceMaskAndEntry &Entry : ResourceMaskAndEntries) {
const MCWriteProcResEntry *WPR = Entry.second;
const MCProcResourceDesc *const ProcResDesc =
SM.getProcResource(WPR->ProcResourceIdx);
// TODO: Handle AcquireAtAtCycle in llvm-exegesis and llvm-mca. See
// https://github.com/llvm/llvm-project/issues/62680 and
// https://github.com/llvm/llvm-project/issues/62681
assert(WPR->AcquireAtCycle == 0 &&
"`llvm-exegesis` does not handle AcquireAtCycle > 0");
if (ProcResDesc->SubUnitsIdxBegin == nullptr) {
// This is a ProcResUnit.
Result.push_back(
{WPR->ProcResourceIdx, WPR->ReleaseAtCycle, WPR->AcquireAtCycle});
ProcResUnitUsage[WPR->ProcResourceIdx] += WPR->ReleaseAtCycle;
} else {
// This is a ProcResGroup. First see if it contributes any cycles or if
// it has cycles just from subunits.
float RemainingCycles = WPR->ReleaseAtCycle;
for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin;
SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits;
++SubResIdx) {
RemainingCycles -= ProcResUnitUsage[*SubResIdx];
}
if (RemainingCycles < 0.01f) {
// The ProcResGroup contributes no cycles of its own.
continue;
}
// The ProcResGroup contributes `RemainingCycles` cycles of its own.
Result.push_back({WPR->ProcResourceIdx,
static_cast<uint16_t>(std::round(RemainingCycles)),
WPR->AcquireAtCycle});
// Spread the remaining cycles over all subunits.
for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin;
SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits;
++SubResIdx) {
ProcResUnitUsage[*SubResIdx] += RemainingCycles / ProcResDesc->NumUnits;
}
}
}
return Result;
}
// Distributes a pressure budget as evenly as possible on the provided subunits
// given the already existing port pressure distribution.
//
// The algorithm is as follows: while there is remaining pressure to
// distribute, find the subunits with minimal pressure, and distribute
// remaining pressure equally up to the pressure of the unit with
// second-to-minimal pressure.
// For example, let's assume we want to distribute 2*P1256
// (Subunits = [P1,P2,P5,P6]), and the starting DensePressure is:
// DensePressure = P0 P1 P2 P3 P4 P5 P6 P7
// 0.1 0.3 0.2 0.0 0.0 0.5 0.5 0.5
// RemainingPressure = 2.0
// We sort the subunits by pressure:
// Subunits = [(P2,p=0.2), (P1,p=0.3), (P5,p=0.5), (P6, p=0.5)]
// We'll first start by the subunits with minimal pressure, which are at
// the beginning of the sorted array. In this example there is one (P2).
// The subunit with second-to-minimal pressure is the next one in the
// array (P1). So we distribute 0.1 pressure to P2, and remove 0.1 cycles
// from the budget.
// Subunits = [(P2,p=0.3), (P1,p=0.3), (P5,p=0.5), (P5,p=0.5)]
// RemainingPressure = 1.9
// We repeat this process: distribute 0.2 pressure on each of the minimal
// P2 and P1, decrease budget by 2*0.2:
// Subunits = [(P2,p=0.5), (P1,p=0.5), (P5,p=0.5), (P5,p=0.5)]
// RemainingPressure = 1.5
// There are no second-to-minimal subunits so we just share the remaining
// budget (1.5 cycles) equally:
// Subunits = [(P2,p=0.875), (P1,p=0.875), (P5,p=0.875), (P5,p=0.875)]
// RemainingPressure = 0.0
// We stop as there is no remaining budget to distribute.
static void distributePressure(float RemainingPressure,
SmallVector<uint16_t, 32> Subunits,
SmallVector<float, 32> &DensePressure) {
// Find the number of subunits with minimal pressure (they are at the
// front).
sort(Subunits, [&DensePressure](const uint16_t A, const uint16_t B) {
return DensePressure[A] < DensePressure[B];
});
const auto getPressureForSubunit = [&DensePressure,
&Subunits](size_t I) -> float & {
return DensePressure[Subunits[I]];
};
size_t NumMinimalSU = 1;
while (NumMinimalSU < Subunits.size() &&
getPressureForSubunit(NumMinimalSU) == getPressureForSubunit(0)) {
++NumMinimalSU;
}
while (RemainingPressure > 0.0f) {
if (NumMinimalSU == Subunits.size()) {
// All units are minimal, just distribute evenly and be done.
for (size_t I = 0; I < NumMinimalSU; ++I) {
getPressureForSubunit(I) += RemainingPressure / NumMinimalSU;
}
return;
}
// Distribute the remaining pressure equally.
const float MinimalPressure = getPressureForSubunit(NumMinimalSU - 1);
const float SecondToMinimalPressure = getPressureForSubunit(NumMinimalSU);
assert(MinimalPressure < SecondToMinimalPressure);
const float Increment = SecondToMinimalPressure - MinimalPressure;
if (RemainingPressure <= NumMinimalSU * Increment) {
// There is not enough remaining pressure.
for (size_t I = 0; I < NumMinimalSU; ++I) {
getPressureForSubunit(I) += RemainingPressure / NumMinimalSU;
}
return;
}
// Bump all minimal pressure subunits to `SecondToMinimalPressure`.
for (size_t I = 0; I < NumMinimalSU; ++I) {
getPressureForSubunit(I) = SecondToMinimalPressure;
RemainingPressure -= SecondToMinimalPressure;
}
while (NumMinimalSU < Subunits.size() &&
getPressureForSubunit(NumMinimalSU) == SecondToMinimalPressure) {
++NumMinimalSU;
}
}
}
std::vector<std::pair<uint16_t, float>>
computeIdealizedProcResPressure(const MCSchedModel &SM,
SmallVector<MCWriteProcResEntry, 8> WPRS) {
// DensePressure[I] is the port pressure for Proc Resource I.
SmallVector<float, 32> DensePressure(SM.getNumProcResourceKinds());
sort(WPRS, [](const MCWriteProcResEntry &A, const MCWriteProcResEntry &B) {
return A.ProcResourceIdx < B.ProcResourceIdx;
});
for (const MCWriteProcResEntry &WPR : WPRS) {
// Get units for the entry.
const MCProcResourceDesc *const ProcResDesc =
SM.getProcResource(WPR.ProcResourceIdx);
if (ProcResDesc->SubUnitsIdxBegin == nullptr) {
// This is a ProcResUnit.
DensePressure[WPR.ProcResourceIdx] += WPR.ReleaseAtCycle;
} else {
// This is a ProcResGroup.
SmallVector<uint16_t, 32> Subunits(ProcResDesc->SubUnitsIdxBegin,
ProcResDesc->SubUnitsIdxBegin +
ProcResDesc->NumUnits);
distributePressure(WPR.ReleaseAtCycle, Subunits, DensePressure);
}
}
// Turn dense pressure into sparse pressure by removing zero entries.
std::vector<std::pair<uint16_t, float>> Pressure;
for (unsigned I = 0, E = SM.getNumProcResourceKinds(); I < E; ++I) {
if (DensePressure[I] > 0.0f)
Pressure.emplace_back(I, DensePressure[I]);
}
return Pressure;
}
ResolvedSchedClass::ResolvedSchedClass(const MCSubtargetInfo &STI,
unsigned ResolvedSchedClassId,
bool WasVariant)
: SchedClassId(ResolvedSchedClassId),
SCDesc(STI.getSchedModel().getSchedClassDesc(ResolvedSchedClassId)),
WasVariant(WasVariant),
NonRedundantWriteProcRes(getNonRedundantWriteProcRes(*SCDesc, STI)),
IdealizedProcResPressure(computeIdealizedProcResPressure(
STI.getSchedModel(), NonRedundantWriteProcRes)) {
assert((SCDesc == nullptr || !SCDesc->isVariant()) &&
"ResolvedSchedClass should never be variant");
}
static unsigned ResolveVariantSchedClassId(const MCSubtargetInfo &STI,
const MCInstrInfo &InstrInfo,
unsigned SchedClassId,
const MCInst &MCI) {
const auto &SM = STI.getSchedModel();
while (SchedClassId && SM.getSchedClassDesc(SchedClassId)->isVariant()) {
SchedClassId = STI.resolveVariantSchedClass(SchedClassId, &MCI, &InstrInfo,
SM.getProcessorID());
}
return SchedClassId;
}
std::pair<unsigned /*SchedClassId*/, bool /*WasVariant*/>
ResolvedSchedClass::resolveSchedClassId(const MCSubtargetInfo &SubtargetInfo,
const MCInstrInfo &InstrInfo,
const MCInst &MCI) {
unsigned SchedClassId = InstrInfo.get(MCI.getOpcode()).getSchedClass();
const bool WasVariant = SchedClassId && SubtargetInfo.getSchedModel()
.getSchedClassDesc(SchedClassId)
->isVariant();
SchedClassId =
ResolveVariantSchedClassId(SubtargetInfo, InstrInfo, SchedClassId, MCI);
return std::make_pair(SchedClassId, WasVariant);
}
// Returns a ProxResIdx by id or name.
static unsigned findProcResIdx(const MCSubtargetInfo &STI,
const StringRef NameOrId) {
// Interpret the key as an ProcResIdx.
unsigned ProcResIdx = 0;
if (to_integer(NameOrId, ProcResIdx, 10))
return ProcResIdx;
// Interpret the key as a ProcRes name.
const auto &SchedModel = STI.getSchedModel();
for (int I = 0, E = SchedModel.getNumProcResourceKinds(); I < E; ++I) {
if (NameOrId == SchedModel.getProcResource(I)->Name)
return I;
}
return 0;
}
std::vector<BenchmarkMeasure> ResolvedSchedClass::getAsPoint(
Benchmark::ModeE Mode, const MCSubtargetInfo &STI,
ArrayRef<PerInstructionStats> Representative) const {
const size_t NumMeasurements = Representative.size();
std::vector<BenchmarkMeasure> SchedClassPoint(NumMeasurements);
if (Mode == Benchmark::Latency) {
assert(NumMeasurements == 1 && "Latency is a single measure.");
BenchmarkMeasure &LatencyMeasure = SchedClassPoint[0];
// Find the latency.
LatencyMeasure.PerInstructionValue = 0.0;
for (unsigned I = 0; I < SCDesc->NumWriteLatencyEntries; ++I) {
const MCWriteLatencyEntry *const WLE =
STI.getWriteLatencyEntry(SCDesc, I);
LatencyMeasure.PerInstructionValue =
std::max<double>(LatencyMeasure.PerInstructionValue, WLE->Cycles);
}
} else if (Mode == Benchmark::Uops) {
for (auto I : zip(SchedClassPoint, Representative)) {
BenchmarkMeasure &Measure = std::get<0>(I);
const PerInstructionStats &Stats = std::get<1>(I);
StringRef Key = Stats.key();
uint16_t ProcResIdx = findProcResIdx(STI, Key);
if (ProcResIdx > 0) {
// Find the pressure on ProcResIdx `Key`.
const auto ProcResPressureIt =
find_if(IdealizedProcResPressure,
[ProcResIdx](const std::pair<uint16_t, float> &WPR) {
return WPR.first == ProcResIdx;
});
Measure.PerInstructionValue =
ProcResPressureIt == IdealizedProcResPressure.end()
? 0.0
: ProcResPressureIt->second;
} else if (Key == "NumMicroOps") {
Measure.PerInstructionValue = SCDesc->NumMicroOps;
} else {
errs() << "expected `key` to be either a ProcResIdx or a ProcRes "
"name, got "
<< Key << "\n";
return {};
}
}
} else if (Mode == Benchmark::InverseThroughput) {
assert(NumMeasurements == 1 && "Inverse Throughput is a single measure.");
BenchmarkMeasure &RThroughputMeasure = SchedClassPoint[0];
RThroughputMeasure.PerInstructionValue =
MCSchedModel::getReciprocalThroughput(STI, *SCDesc);
} else {
llvm_unreachable("unimplemented measurement matching mode");
}
return SchedClassPoint;
}
} // namespace exegesis
} // namespace llvm