Files
clang-p2996/llvm/unittests/Transforms/Utils/CodeMoverUtilsTest.cpp
Congzhe b0662a7a7d [CodeMoverUtils] Enhance CodeMoverUtils to sink an entire BB (#87857)
When moving an entire basic block after `InsertPoint`, currently we
check each instruction whether their users are dominated by
`InsertPoint`, however, this can be improved such that even a user is
not dominated by `InsertPoint`, as long as it appears as a subsequent
instruction in the same BB, it is safe to move.

This patch is similar to commit 751be2a064
that enhanced hoisting an entire BB, and this patch enhances sinking an
entire BB. Please refer to the added functionality in test case
`llvm/unittests/Transforms/Utils/CodeMoverUtilsTest.cpp` that was not
supported without this patch.
2024-04-10 00:28:21 -04:00

885 lines
33 KiB
C++

//===- CodeMoverUtils.cpp - Unit tests for CodeMoverUtils ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/CodeMoverUtils.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/DependenceAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
#include "gtest/gtest.h"
using namespace llvm;
static std::unique_ptr<Module> parseIR(LLVMContext &C, const char *IR) {
SMDiagnostic Err;
std::unique_ptr<Module> Mod = parseAssemblyString(IR, Err, C);
if (!Mod)
Err.print("CodeMoverUtilsTests", errs());
return Mod;
}
static void run(Module &M, StringRef FuncName,
function_ref<void(Function &F, DominatorTree &DT,
PostDominatorTree &PDT, DependenceInfo &DI)>
Test) {
auto *F = M.getFunction(FuncName);
DominatorTree DT(*F);
PostDominatorTree PDT(*F);
TargetLibraryInfoImpl TLII;
TargetLibraryInfo TLI(TLII);
AssumptionCache AC(*F);
AliasAnalysis AA(TLI);
LoopInfo LI(DT);
ScalarEvolution SE(*F, TLI, AC, DT, LI);
DependenceInfo DI(F, &AA, &SE, &LI);
Test(*F, DT, PDT, DI);
}
static BasicBlock *getBasicBlockByName(Function &F, StringRef Name) {
for (BasicBlock &BB : F)
if (BB.getName() == Name)
return &BB;
llvm_unreachable("Expected to find basic block!");
}
static Instruction *getInstructionByName(Function &F, StringRef Name) {
for (BasicBlock &BB : F)
for (Instruction &I : BB)
if (I.getName() == Name)
return &I;
llvm_unreachable("Expected to find instruction!");
}
TEST(CodeMoverUtils, IsControlFlowEquivalentSimpleTest) {
LLVMContext C;
// void foo(int &i, bool cond1, bool cond2) {
// if (cond1)
// i = 1;
// if (cond1)
// i = 2;
// if (cond2)
// i = 3;
// }
std::unique_ptr<Module> M =
parseIR(C, R"(define void @foo(i32* %i, i1 %cond1, i1 %cond2) {
entry:
br i1 %cond1, label %if.first, label %if.first.end
if.first:
store i32 1, i32* %i, align 4
br label %if.first.end
if.first.end:
br i1 %cond1, label %if.second, label %if.second.end
if.second:
store i32 2, i32* %i, align 4
br label %if.second.end
if.second.end:
br i1 %cond2, label %if.third, label %if.third.end
if.third:
store i32 3, i32* %i, align 4
br label %if.third.end
if.third.end:
ret void
})");
run(*M, "foo",
[&](Function &F, DominatorTree &DT, PostDominatorTree &PDT,
DependenceInfo &DI) {
BasicBlock *FirstIfBody = getBasicBlockByName(F, "if.first");
EXPECT_TRUE(
isControlFlowEquivalent(*FirstIfBody, *FirstIfBody, DT, PDT));
BasicBlock *SecondIfBody = getBasicBlockByName(F, "if.second");
EXPECT_TRUE(
isControlFlowEquivalent(*FirstIfBody, *SecondIfBody, DT, PDT));
BasicBlock *ThirdIfBody = getBasicBlockByName(F, "if.third");
EXPECT_FALSE(
isControlFlowEquivalent(*FirstIfBody, *ThirdIfBody, DT, PDT));
EXPECT_FALSE(
isControlFlowEquivalent(*SecondIfBody, *ThirdIfBody, DT, PDT));
});
}
TEST(CodeMoverUtils, IsControlFlowEquivalentOppositeCondTest) {
LLVMContext C;
// void foo(int &i, unsigned X, unsigned Y) {
// if (X < Y)
// i = 1;
// if (Y > X)
// i = 2;
// if (X >= Y)
// i = 3;
// else
// i = 4;
// if (X == Y)
// i = 5;
// if (Y == X)
// i = 6;
// else
// i = 7;
// if (X != Y)
// i = 8;
// else
// i = 9;
// }
std::unique_ptr<Module> M =
parseIR(C, R"(define void @foo(i32* %i, i32 %X, i32 %Y) {
entry:
%cmp1 = icmp ult i32 %X, %Y
br i1 %cmp1, label %if.first, label %if.first.end
if.first:
store i32 1, i32* %i, align 4
br label %if.first.end
if.first.end:
%cmp2 = icmp ugt i32 %Y, %X
br i1 %cmp2, label %if.second, label %if.second.end
if.second:
store i32 2, i32* %i, align 4
br label %if.second.end
if.second.end:
%cmp3 = icmp uge i32 %X, %Y
br i1 %cmp3, label %if.third, label %if.third.else
if.third:
store i32 3, i32* %i, align 4
br label %if.third.end
if.third.else:
store i32 4, i32* %i, align 4
br label %if.third.end
if.third.end:
%cmp4 = icmp eq i32 %X, %Y
br i1 %cmp4, label %if.fourth, label %if.fourth.end
if.fourth:
store i32 5, i32* %i, align 4
br label %if.fourth.end
if.fourth.end:
%cmp5 = icmp eq i32 %Y, %X
br i1 %cmp5, label %if.fifth, label %if.fifth.else
if.fifth:
store i32 6, i32* %i, align 4
br label %if.fifth.end
if.fifth.else:
store i32 7, i32* %i, align 4
br label %if.fifth.end
if.fifth.end:
%cmp6 = icmp ne i32 %X, %Y
br i1 %cmp6, label %if.sixth, label %if.sixth.else
if.sixth:
store i32 8, i32* %i, align 4
br label %if.sixth.end
if.sixth.else:
store i32 9, i32* %i, align 4
br label %if.sixth.end
if.sixth.end:
ret void
})");
run(*M, "foo",
[&](Function &F, DominatorTree &DT, PostDominatorTree &PDT,
DependenceInfo &DI) {
BasicBlock *FirstIfBody = getBasicBlockByName(F, "if.first");
BasicBlock *SecondIfBody = getBasicBlockByName(F, "if.second");
BasicBlock *ThirdIfBody = getBasicBlockByName(F, "if.third");
BasicBlock *ThirdElseBody = getBasicBlockByName(F, "if.third.else");
EXPECT_TRUE(
isControlFlowEquivalent(*FirstIfBody, *ThirdElseBody, DT, PDT));
EXPECT_TRUE(
isControlFlowEquivalent(*SecondIfBody, *ThirdElseBody, DT, PDT));
EXPECT_FALSE(
isControlFlowEquivalent(*ThirdIfBody, *ThirdElseBody, DT, PDT));
BasicBlock *FourthIfBody = getBasicBlockByName(F, "if.fourth");
BasicBlock *FifthIfBody = getBasicBlockByName(F, "if.fifth");
BasicBlock *FifthElseBody = getBasicBlockByName(F, "if.fifth.else");
EXPECT_FALSE(
isControlFlowEquivalent(*FifthIfBody, *FifthElseBody, DT, PDT));
BasicBlock *SixthIfBody = getBasicBlockByName(F, "if.sixth");
EXPECT_TRUE(
isControlFlowEquivalent(*FifthElseBody, *SixthIfBody, DT, PDT));
BasicBlock *SixthElseBody = getBasicBlockByName(F, "if.sixth.else");
EXPECT_TRUE(
isControlFlowEquivalent(*FourthIfBody, *SixthElseBody, DT, PDT));
EXPECT_TRUE(
isControlFlowEquivalent(*FifthIfBody, *SixthElseBody, DT, PDT));
});
}
TEST(CodeMoverUtils, IsControlFlowEquivalentCondNestTest) {
LLVMContext C;
// void foo(int &i, bool cond1, bool cond2) {
// if (cond1)
// if (cond2)
// i = 1;
// if (cond2)
// if (cond1)
// i = 2;
// }
std::unique_ptr<Module> M =
parseIR(C, R"(define void @foo(i32* %i, i1 %cond1, i1 %cond2) {
entry:
br i1 %cond1, label %if.outer.first, label %if.first.end
if.outer.first:
br i1 %cond2, label %if.inner.first, label %if.first.end
if.inner.first:
store i32 1, i32* %i, align 4
br label %if.first.end
if.first.end:
br i1 %cond2, label %if.outer.second, label %if.second.end
if.outer.second:
br i1 %cond1, label %if.inner.second, label %if.second.end
if.inner.second:
store i32 2, i32* %i, align 4
br label %if.second.end
if.second.end:
ret void
})");
run(*M, "foo",
[&](Function &F, DominatorTree &DT, PostDominatorTree &PDT,
DependenceInfo &DI) {
BasicBlock *FirstOuterIfBody = getBasicBlockByName(F, "if.outer.first");
BasicBlock *FirstInnerIfBody = getBasicBlockByName(F, "if.inner.first");
BasicBlock *SecondOuterIfBody =
getBasicBlockByName(F, "if.outer.second");
BasicBlock *SecondInnerIfBody =
getBasicBlockByName(F, "if.inner.second");
EXPECT_TRUE(isControlFlowEquivalent(*FirstInnerIfBody,
*SecondInnerIfBody, DT, PDT));
EXPECT_FALSE(isControlFlowEquivalent(*FirstOuterIfBody,
*SecondOuterIfBody, DT, PDT));
EXPECT_FALSE(isControlFlowEquivalent(*FirstOuterIfBody,
*SecondInnerIfBody, DT, PDT));
EXPECT_FALSE(isControlFlowEquivalent(*FirstInnerIfBody,
*SecondOuterIfBody, DT, PDT));
});
}
TEST(CodeMoverUtils, IsControlFlowEquivalentImbalanceTest) {
LLVMContext C;
// void foo(int &i, bool cond1, bool cond2) {
// if (cond1)
// if (cond2)
// if (cond3)
// i = 1;
// if (cond2)
// if (cond3)
// i = 2;
// if (cond1)
// if (cond1)
// i = 3;
// if (cond1)
// i = 4;
// }
std::unique_ptr<Module> M = parseIR(
C, R"(define void @foo(i32* %i, i1 %cond1, i1 %cond2, i1 %cond3) {
entry:
br i1 %cond1, label %if.outer.first, label %if.first.end
if.outer.first:
br i1 %cond2, label %if.middle.first, label %if.first.end
if.middle.first:
br i1 %cond3, label %if.inner.first, label %if.first.end
if.inner.first:
store i32 1, i32* %i, align 4
br label %if.first.end
if.first.end:
br i1 %cond2, label %if.outer.second, label %if.second.end
if.outer.second:
br i1 %cond3, label %if.inner.second, label %if.second.end
if.inner.second:
store i32 2, i32* %i, align 4
br label %if.second.end
if.second.end:
br i1 %cond1, label %if.outer.third, label %if.third.end
if.outer.third:
br i1 %cond1, label %if.inner.third, label %if.third.end
if.inner.third:
store i32 3, i32* %i, align 4
br label %if.third.end
if.third.end:
br i1 %cond1, label %if.fourth, label %if.fourth.end
if.fourth:
store i32 4, i32* %i, align 4
br label %if.fourth.end
if.fourth.end:
ret void
})");
run(*M, "foo",
[&](Function &F, DominatorTree &DT, PostDominatorTree &PDT,
DependenceInfo &DI) {
BasicBlock *FirstIfBody = getBasicBlockByName(F, "if.inner.first");
BasicBlock *SecondIfBody = getBasicBlockByName(F, "if.inner.second");
EXPECT_FALSE(
isControlFlowEquivalent(*FirstIfBody, *SecondIfBody, DT, PDT));
BasicBlock *ThirdIfBody = getBasicBlockByName(F, "if.inner.third");
BasicBlock *FourthIfBody = getBasicBlockByName(F, "if.fourth");
EXPECT_TRUE(
isControlFlowEquivalent(*ThirdIfBody, *FourthIfBody, DT, PDT));
});
}
TEST(CodeMoverUtils, IsControlFlowEquivalentPointerTest) {
LLVMContext C;
// void foo(int &i, int *cond) {
// if (*cond)
// i = 1;
// if (*cond)
// i = 2;
// *cond = 1;
// if (*cond)
// i = 3;
// }
std::unique_ptr<Module> M =
parseIR(C, R"(define void @foo(i32* %i, i32* %cond) {
entry:
%0 = load i32, i32* %cond, align 4
%tobool1 = icmp ne i32 %0, 0
br i1 %tobool1, label %if.first, label %if.first.end
if.first:
store i32 1, i32* %i, align 4
br label %if.first.end
if.first.end:
%1 = load i32, i32* %cond, align 4
%tobool2 = icmp ne i32 %1, 0
br i1 %tobool2, label %if.second, label %if.second.end
if.second:
store i32 2, i32* %i, align 4
br label %if.second.end
if.second.end:
store i32 1, i32* %cond, align 4
%2 = load i32, i32* %cond, align 4
%tobool3 = icmp ne i32 %2, 0
br i1 %tobool3, label %if.third, label %if.third.end
if.third:
store i32 3, i32* %i, align 4
br label %if.third.end
if.third.end:
ret void
})");
run(*M, "foo",
[&](Function &F, DominatorTree &DT, PostDominatorTree &PDT,
DependenceInfo &DI) {
BasicBlock *FirstIfBody = getBasicBlockByName(F, "if.first");
BasicBlock *SecondIfBody = getBasicBlockByName(F, "if.second");
// Limitation: if we can prove cond haven't been modify between %0 and
// %1, then we can prove FirstIfBody and SecondIfBody are control flow
// equivalent.
EXPECT_FALSE(
isControlFlowEquivalent(*FirstIfBody, *SecondIfBody, DT, PDT));
BasicBlock *ThirdIfBody = getBasicBlockByName(F, "if.third");
EXPECT_FALSE(
isControlFlowEquivalent(*FirstIfBody, *ThirdIfBody, DT, PDT));
EXPECT_FALSE(
isControlFlowEquivalent(*SecondIfBody, *ThirdIfBody, DT, PDT));
});
}
TEST(CodeMoverUtils, IsControlFlowEquivalentNotPostdomTest) {
LLVMContext C;
// void foo(bool cond1, bool cond2) {
// if (cond1) {
// if (cond2)
// return;
// } else
// if (cond2)
// return;
// return;
// }
std::unique_ptr<Module> M =
parseIR(C, R"(define void @foo(i1 %cond1, i1 %cond2) {
idom:
br i1 %cond1, label %succ0, label %succ1
succ0:
br i1 %cond2, label %succ0ret, label %succ0succ1
succ0ret:
ret void
succ0succ1:
br label %bb
succ1:
br i1 %cond2, label %succ1ret, label %succ1succ1
succ1ret:
ret void
succ1succ1:
br label %bb
bb:
ret void
})");
run(*M, "foo",
[&](Function &F, DominatorTree &DT, PostDominatorTree &PDT,
DependenceInfo &DI) {
BasicBlock &Idom = F.front();
assert(Idom.getName() == "idom" && "Expecting BasicBlock idom");
BasicBlock &BB = F.back();
assert(BB.getName() == "bb" && "Expecting BasicBlock bb");
EXPECT_FALSE(isControlFlowEquivalent(Idom, BB, DT, PDT));
});
}
TEST(CodeMoverUtils, IsSafeToMoveTest1) {
LLVMContext C;
// void safecall() noexcept willreturn nosync;
// void unsafecall();
// void foo(int * __restrict__ A, int * __restrict__ B, int * __restrict__ C,
// long N) {
// X = N / 1;
// safecall();
// unsafecall1();
// unsafecall2();
// for (long i = 0; i < N; ++i) {
// A[5] = 5;
// A[i] = 0;
// B[i] = A[i];
// C[i] = A[i];
// A[6] = 6;
// }
// }
std::unique_ptr<Module> M = parseIR(
C, R"(define void @foo(i32* noalias %A, i32* noalias %B, i32* noalias %C
, i64 %N) {
entry:
%X = sdiv i64 1, %N
call void @safecall()
%cmp1 = icmp slt i64 0, %N
call void @unsafecall1()
call void @unsafecall2()
br i1 %cmp1, label %for.body, label %for.end
for.body:
%i = phi i64 [ 0, %entry ], [ %inc, %for.body ]
%arrayidx_A5 = getelementptr inbounds i32, i32* %A, i64 5
store i32 5, i32* %arrayidx_A5, align 4
%arrayidx_A = getelementptr inbounds i32, i32* %A, i64 %i
store i32 0, i32* %arrayidx_A, align 4
%load1 = load i32, i32* %arrayidx_A, align 4
%arrayidx_B = getelementptr inbounds i32, i32* %B, i64 %i
store i32 %load1, i32* %arrayidx_B, align 4
%load2 = load i32, i32* %arrayidx_A, align 4
%arrayidx_C = getelementptr inbounds i32, i32* %C, i64 %i
store i32 %load2, i32* %arrayidx_C, align 4
%arrayidx_A6 = getelementptr inbounds i32, i32* %A, i64 6
store i32 6, i32* %arrayidx_A6, align 4
%inc = add nsw i64 %i, 1
%cmp = icmp slt i64 %inc, %N
br i1 %cmp, label %for.body, label %for.end
for.end:
ret void
}
declare void @safecall() nounwind nosync willreturn
declare void @unsafecall1()
declare void @unsafecall2())");
run(*M, "foo",
[&](Function &F, DominatorTree &DT, PostDominatorTree &PDT,
DependenceInfo &DI) {
BasicBlock *Entry = getBasicBlockByName(F, "entry");
Instruction *CI_safecall = Entry->front().getNextNode();
assert(isa<CallInst>(CI_safecall) &&
"Expecting CI_safecall to be a CallInst");
Instruction *CI_unsafecall = CI_safecall->getNextNode()->getNextNode();
assert(isa<CallInst>(CI_unsafecall) &&
"Expecting CI_unsafecall to be a CallInst");
BasicBlock *ForBody = getBasicBlockByName(F, "for.body");
Instruction &PN = ForBody->front();
assert(isa<PHINode>(PN) && "Expecting PN to be a PHINode");
Instruction *SI_A5 =
getInstructionByName(F, "arrayidx_A5")->getNextNode();
Instruction *SI = getInstructionByName(F, "arrayidx_A")->getNextNode();
Instruction *LI1 = getInstructionByName(F, "load1");
Instruction *LI2 = getInstructionByName(F, "load2");
Instruction *SI_A6 =
getInstructionByName(F, "arrayidx_A6")->getNextNode();
// Can move after CI_safecall, as it does not throw, not synchronize, or
// must return.
EXPECT_TRUE(isSafeToMoveBefore(*CI_safecall->getPrevNode(),
*CI_safecall->getNextNode(), DT, &PDT,
&DI));
// Cannot move CI_unsafecall, as it may throw.
EXPECT_FALSE(isSafeToMoveBefore(*CI_unsafecall->getNextNode(),
*CI_unsafecall, DT, &PDT, &DI));
// Moving instruction to non control flow equivalent places are not
// supported.
EXPECT_FALSE(
isSafeToMoveBefore(*SI_A5, *Entry->getTerminator(), DT, &PDT, &DI));
// Moving PHINode is not supported.
EXPECT_FALSE(isSafeToMoveBefore(PN, *PN.getNextNode()->getNextNode(),
DT, &PDT, &DI));
// Cannot move non-PHINode before PHINode.
EXPECT_FALSE(isSafeToMoveBefore(*PN.getNextNode(), PN, DT, &PDT, &DI));
// Moving Terminator is not supported.
EXPECT_FALSE(isSafeToMoveBefore(*Entry->getTerminator(),
*PN.getNextNode(), DT, &PDT, &DI));
// Cannot move %arrayidx_A after SI, as SI is its user.
EXPECT_FALSE(isSafeToMoveBefore(*SI->getPrevNode(), *SI->getNextNode(),
DT, &PDT, &DI));
// Cannot move SI before %arrayidx_A, as %arrayidx_A is its operand.
EXPECT_FALSE(
isSafeToMoveBefore(*SI, *SI->getPrevNode(), DT, &PDT, &DI));
// Cannot move LI2 after SI_A6, as there is a flow dependence.
EXPECT_FALSE(
isSafeToMoveBefore(*LI2, *SI_A6->getNextNode(), DT, &PDT, &DI));
// Cannot move SI after LI1, as there is a anti dependence.
EXPECT_FALSE(
isSafeToMoveBefore(*SI, *LI1->getNextNode(), DT, &PDT, &DI));
// Cannot move SI_A5 after SI, as there is a output dependence.
EXPECT_FALSE(isSafeToMoveBefore(*SI_A5, *LI1, DT, &PDT, &DI));
// Can move LI2 before LI1, as there is only an input dependence.
EXPECT_TRUE(isSafeToMoveBefore(*LI2, *LI1, DT, &PDT, &DI));
});
}
TEST(CodeMoverUtils, IsSafeToMoveTest2) {
LLVMContext C;
std::unique_ptr<Module> M =
parseIR(C, R"(define void @foo(i1 %cond, i32 %op0, i32 %op1) {
entry:
br i1 %cond, label %if.then.first, label %if.end.first
if.then.first:
%add = add i32 %op0, %op1
%user = add i32 %add, 1
br label %if.end.first
if.end.first:
br i1 %cond, label %if.then.second, label %if.end.second
if.then.second:
%sub_op0 = add i32 %op0, 1
%sub = sub i32 %sub_op0, %op1
br label %if.end.second
if.end.second:
ret void
})");
run(*M, "foo",
[&](Function &F, DominatorTree &DT, PostDominatorTree &PDT,
DependenceInfo &DI) {
Instruction *AddInst = getInstructionByName(F, "add");
Instruction *SubInst = getInstructionByName(F, "sub");
// Cannot move as %user uses %add and %sub doesn't dominates %user.
EXPECT_FALSE(isSafeToMoveBefore(*AddInst, *SubInst, DT, &PDT, &DI));
// Cannot move as %sub_op0 is an operand of %sub and %add doesn't
// dominates %sub_op0.
EXPECT_FALSE(isSafeToMoveBefore(*SubInst, *AddInst, DT, &PDT, &DI));
});
}
TEST(CodeMoverUtils, IsSafeToMoveTest3) {
LLVMContext C;
std::unique_ptr<Module> M = parseIR(C, R"(define void @foo(i64 %N) {
entry:
br label %for.body
for.body:
%i = phi i64 [ 0, %entry ], [ %inc, %for.latch ]
%inc = add nsw i64 %i, 1
br label %for.latch
for.latch:
%cmp = icmp slt i64 %inc, %N
%add = add i64 100, %N
%add2 = add i64 %add, %N
br i1 %cmp, label %for.body, label %for.end
for.end:
ret void
})");
run(*M, "foo",
[&](Function &F, DominatorTree &DT, PostDominatorTree &PDT,
DependenceInfo &DI) {
Instruction *IncInst = getInstructionByName(F, "inc");
Instruction *CmpInst = getInstructionByName(F, "cmp");
BasicBlock *BB0 = getBasicBlockByName(F, "for.body");
BasicBlock *BB1 = getBasicBlockByName(F, "for.latch");
// Can move as the incoming block of %inc for %i (%for.latch) dominated
// by %cmp.
EXPECT_TRUE(isSafeToMoveBefore(*IncInst, *CmpInst, DT, &PDT, &DI));
// Can move as the operands of instructions in BB1 either dominate
// InsertPoint or appear before that instruction, e.g., %add appears
// before %add2 although %add does not dominate InsertPoint.
EXPECT_TRUE(
isSafeToMoveBefore(*BB1, *BB0->getTerminator(), DT, &PDT, &DI));
});
}
TEST(CodeMoverUtils, IsSafeToMoveTest4) {
LLVMContext C;
std::unique_ptr<Module> M =
parseIR(C, R"(define void @foo(i1 %cond, i32 %op0, i32 %op1) {
entry:
br i1 %cond, label %if.end.first, label %if.then.first
if.then.first:
%add = add i32 %op0, %op1
%user = add i32 %add, 1
%add2 = add i32 %op0, 1
br label %if.end.first
if.end.first:
br i1 %cond, label %if.end.second, label %if.then.second
if.then.second:
%sub_op0 = add i32 %op0, 1
%sub = sub i32 %sub_op0, %op1
%sub2 = sub i32 %op0, 1
br label %if.end.second
if.end.second:
ret void
})");
run(*M, "foo",
[&](Function &F, DominatorTree &DT, PostDominatorTree &PDT,
DependenceInfo &DI) {
Instruction *AddInst = getInstructionByName(F, "add");
Instruction *AddInst2 = getInstructionByName(F, "add2");
Instruction *SubInst = getInstructionByName(F, "sub");
Instruction *SubInst2 = getInstructionByName(F, "sub2");
// Cannot move as %user uses %add and %sub doesn't dominates %user.
EXPECT_FALSE(isSafeToMoveBefore(*AddInst, *SubInst, DT, &PDT, &DI));
// Cannot move as %sub_op0 is an operand of %sub and %add doesn't
// dominates %sub_op0.
EXPECT_FALSE(isSafeToMoveBefore(*SubInst, *AddInst, DT, &PDT, &DI));
// Can move as %add2 and %sub2 are control flow equivalent,
// although %add2 does not strictly dominate %sub2.
EXPECT_TRUE(isSafeToMoveBefore(*AddInst2, *SubInst2, DT, &PDT, &DI));
// Can move as %add2 and %sub2 are control flow equivalent,
// although %add2 does not strictly dominate %sub2.
EXPECT_TRUE(isSafeToMoveBefore(*SubInst2, *AddInst2, DT, &PDT, &DI));
BasicBlock *BB0 = getBasicBlockByName(F, "if.then.first");
BasicBlock *BB1 = getBasicBlockByName(F, "if.then.second");
EXPECT_TRUE(
isSafeToMoveBefore(*BB0, *BB1->getTerminator(), DT, &PDT, &DI));
});
}
TEST(CodeMoverUtils, IsSafeToMoveTest5) {
LLVMContext C;
std::unique_ptr<Module> M =
parseIR(C, R"(define void @dependence(i32* noalias %A, i32* noalias %B){
entry:
store i32 0, i32* %A, align 4 ; storeA0
store i32 2, i32* %A, align 4 ; storeA1
%tmp0 = load i32, i32* %A, align 4 ; loadA0
store i32 1, i32* %B, align 4 ; storeB0
%tmp1 = load i32, i32* %A, align 4 ; loadA1
store i32 2, i32* %A, align 4 ; storeA2
store i32 4, i32* %B, align 4 ; StoreB1
%tmp2 = load i32, i32* %A, align 4 ; loadA2
%tmp3 = load i32, i32* %A, align 4 ; loadA3
%tmp4 = load i32, i32* %B, align 4 ; loadB2
%tmp5 = load i32, i32* %B, align 4 ; loadB3
ret void
})");
run(*M, "dependence",
[&](Function &F, DominatorTree &DT, PostDominatorTree &PDT,
DependenceInfo &DI) {
Instruction *LoadA0 = getInstructionByName(F, "tmp0");
Instruction *LoadA1 = getInstructionByName(F, "tmp1");
Instruction *LoadA2 = getInstructionByName(F, "tmp2");
Instruction *LoadA3 = getInstructionByName(F, "tmp3");
Instruction *LoadB2 = getInstructionByName(F, "tmp4");
Instruction *LoadB3 = getInstructionByName(F, "tmp5");
Instruction *StoreA1 = LoadA0->getPrevNode();
Instruction *StoreA0 = StoreA1->getPrevNode();
Instruction *StoreB0 = LoadA0->getNextNode();
Instruction *StoreB1 = LoadA2->getPrevNode();
Instruction *StoreA2 = StoreB1->getPrevNode();
// Input forward dependency
EXPECT_TRUE(isSafeToMoveBefore(*LoadA2, *LoadB2, DT, &PDT, &DI));
// Input backward dependency
EXPECT_TRUE(isSafeToMoveBefore(*LoadA3, *LoadA2, DT, &PDT, &DI));
// Output forward dependency
EXPECT_FALSE(isSafeToMoveBefore(*StoreA0, *LoadA0, DT, &PDT, &DI));
// Output backward dependency
EXPECT_FALSE(isSafeToMoveBefore(*StoreA1, *StoreA0, DT, &PDT, &DI));
// Flow forward dependency
EXPECT_FALSE(isSafeToMoveBefore(*StoreA1, *StoreB0, DT, &PDT, &DI));
// Flow backward dependency
EXPECT_FALSE(isSafeToMoveBefore(*LoadA0, *StoreA1, DT, &PDT, &DI));
// Anti forward dependency
EXPECT_FALSE(isSafeToMoveBefore(*LoadA1, *StoreB1, DT, &PDT, &DI));
// Anti backward dependency
EXPECT_FALSE(isSafeToMoveBefore(*StoreA2, *LoadA1, DT, &PDT, &DI));
// No input backward dependency
EXPECT_TRUE(isSafeToMoveBefore(*LoadB2, *LoadA3, DT, &PDT, &DI));
// No input forward dependency
EXPECT_TRUE(isSafeToMoveBefore(*LoadA3, *LoadB3, DT, &PDT, &DI));
// No Output forward dependency
EXPECT_TRUE(isSafeToMoveBefore(*StoreA2, *LoadA2, DT, &PDT, &DI));
// No Output backward dependency
EXPECT_TRUE(isSafeToMoveBefore(*StoreB1, *StoreA2, DT, &PDT, &DI));
// No flow forward dependency
EXPECT_TRUE(isSafeToMoveBefore(*StoreB0, *StoreA2, DT, &PDT, &DI));
// No flow backward dependency
EXPECT_TRUE(isSafeToMoveBefore(*LoadA1, *StoreB0, DT, &PDT, &DI));
// No anti backward dependency
EXPECT_TRUE(isSafeToMoveBefore(*StoreB0, *LoadA0, DT, &PDT, &DI));
// No anti forward dependency
EXPECT_TRUE(isSafeToMoveBefore(*LoadA0, *LoadA1, DT, &PDT, &DI));
});
}
TEST(CodeMoverUtils, IsSafeToMoveTest6) {
LLVMContext C;
std::unique_ptr<Module> M = parseIR(
C, R"(define void @dependence(i1 %cond, i32* noalias %A, i32* noalias %B){
entry:
br i1 %cond, label %bb0, label %bb1
bb0:
br label %bb1
bb1:
store i32 0, i32* %A, align 4 ; storeA0
br i1 %cond, label %bb2, label %bb3
bb2:
br label %bb3
bb3:
store i32 2, i32* %A, align 4 ; storeA1
br i1 %cond, label %bb4, label %bb5
bb4:
br label %bb5
bb5:
%tmp0 = load i32, i32* %A, align 4 ; loadA0
br i1 %cond, label %bb6, label %bb7
bb6:
br label %bb7
bb7:
store i32 1, i32* %B, align 4 ; storeB0
br i1 %cond, label %bb8, label %bb9
bb8:
br label %bb9
bb9:
%tmp1 = load i32, i32* %A, align 4 ; loadA1
br i1 %cond, label %bb10, label %bb11
bb10:
br label %bb11
bb11:
store i32 2, i32* %A, align 4 ; storeA2
br i1 %cond, label %bb12, label %bb13
bb12:
br label %bb13
bb13:
store i32 4, i32* %B, align 4 ; StoreB1
br i1 %cond, label %bb14, label %bb15
bb14:
br label %bb15
bb15:
%tmp2 = load i32, i32* %A, align 4 ; loadA2
br i1 %cond, label %bb16, label %bb17
bb16:
br label %bb17
bb17:
%tmp3 = load i32, i32* %A, align 4 ; loadA3
br i1 %cond, label %bb18, label %bb19
bb18:
br label %bb19
bb19:
%tmp4 = load i32, i32* %B, align 4 ; loadB2
br i1 %cond, label %bb20, label %bb21
bb20:
br label %bb21
bb21:
%tmp5 = load i32, i32* %B, align 4 ; loadB3
ret void
})");
run(*M, "dependence",
[&](Function &F, DominatorTree &DT, PostDominatorTree &PDT,
DependenceInfo &DI) {
BasicBlock *BB1 = getBasicBlockByName(F, "bb1");
BasicBlock *BB3 = getBasicBlockByName(F, "bb3");
BasicBlock *BB7 = getBasicBlockByName(F, "bb7");
BasicBlock *BB11 = getBasicBlockByName(F, "bb11");
BasicBlock *BB13 = getBasicBlockByName(F, "bb13");
Instruction *LoadA0 = getInstructionByName(F, "tmp0");
Instruction *LoadA1 = getInstructionByName(F, "tmp1");
Instruction *LoadA2 = getInstructionByName(F, "tmp2");
Instruction *LoadA3 = getInstructionByName(F, "tmp3");
Instruction *LoadB2 = getInstructionByName(F, "tmp4");
Instruction *LoadB3 = getInstructionByName(F, "tmp5");
Instruction &StoreA1 = BB3->front();
Instruction &StoreA0 = BB1->front();
Instruction &StoreB0 = BB7->front();
Instruction &StoreB1 = BB13->front();
Instruction &StoreA2 = BB11->front();
// Input forward dependency
EXPECT_TRUE(isSafeToMoveBefore(*LoadA2, *LoadB2, DT, &PDT, &DI));
// Input backward dependency
EXPECT_TRUE(isSafeToMoveBefore(*LoadA3, *LoadA2, DT, &PDT, &DI));
// Output forward dependency
EXPECT_FALSE(isSafeToMoveBefore(StoreA0, *LoadA0, DT, &PDT, &DI));
// Output backward dependency
EXPECT_FALSE(isSafeToMoveBefore(StoreA1, StoreA0, DT, &PDT, &DI));
// Flow forward dependency
EXPECT_FALSE(isSafeToMoveBefore(StoreA1, StoreB0, DT, &PDT, &DI));
// Flow backward dependency
EXPECT_FALSE(isSafeToMoveBefore(*LoadA0, StoreA1, DT, &PDT, &DI));
// Anti forward dependency
EXPECT_FALSE(isSafeToMoveBefore(*LoadA1, StoreB1, DT, &PDT, &DI));
// Anti backward dependency
EXPECT_FALSE(isSafeToMoveBefore(StoreA2, *LoadA1, DT, &PDT, &DI));
// No input backward dependency
EXPECT_TRUE(isSafeToMoveBefore(*LoadB2, *LoadA3, DT, &PDT, &DI));
// No input forward dependency
EXPECT_TRUE(isSafeToMoveBefore(*LoadA3, *LoadB3, DT, &PDT, &DI));
// No Output forward dependency
EXPECT_TRUE(isSafeToMoveBefore(StoreA2, *LoadA2, DT, &PDT, &DI));
// No Output backward dependency
EXPECT_TRUE(isSafeToMoveBefore(StoreB1, StoreA2, DT, &PDT, &DI));
// No flow forward dependency
EXPECT_TRUE(isSafeToMoveBefore(StoreB0, StoreA2, DT, &PDT, &DI));
// No flow backward dependency
EXPECT_TRUE(isSafeToMoveBefore(*LoadA1, StoreB0, DT, &PDT, &DI));
// No anti backward dependency
EXPECT_TRUE(isSafeToMoveBefore(StoreB0, *LoadA0, DT, &PDT, &DI));
// No anti forward dependency
EXPECT_TRUE(isSafeToMoveBefore(*LoadA0, *LoadA1, DT, &PDT, &DI));
});
}