Suggested by @lattner in https://discourse.llvm.org/t/rfc-define-precise-arith-semantics/65507/22. Tested with: `ninja check-mlir check-mlir-integration check-mlir-mlir-spirv-cpu-runner check-mlir-mlir-vulkan-runner check-mlir-examples` and `bazel build --config=generic_clang @llvm-project//mlir:all`. Reviewed By: lattner, Mogball, rriddle, jpienaar, mehdi_amini Differential Revision: https://reviews.llvm.org/D134762
53 lines
1.8 KiB
C++
53 lines
1.8 KiB
C++
//===- TensorToLinalgPass.cpp - Tensor to Linalg Passes -------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a pass to convert Tensor dialect to Linalg dialect.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Conversion/TensorToLinalg/TensorToLinalgPass.h"
|
|
|
|
#include "mlir/Conversion/TensorToLinalg/TensorToLinalg.h"
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
|
#include "mlir/Dialect/Linalg/IR/Linalg.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
|
|
namespace mlir {
|
|
#define GEN_PASS_DEF_CONVERTTENSORTOLINALG
|
|
#include "mlir/Conversion/Passes.h.inc"
|
|
} // namespace mlir
|
|
|
|
using namespace mlir;
|
|
|
|
namespace {
|
|
/// A pass converting MLIR Tensor operations into the Linalg dialect.
|
|
class ConvertTensorToLinalgPass
|
|
: public impl::ConvertTensorToLinalgBase<ConvertTensorToLinalgPass> {
|
|
void runOnOperation() override {
|
|
auto &context = getContext();
|
|
ConversionTarget target(context);
|
|
target
|
|
.addLegalDialect<mlir::arith::ArithDialect, mlir::linalg::LinalgDialect,
|
|
mlir::tensor::TensorDialect>();
|
|
target.addIllegalOp<mlir::tensor::PadOp>();
|
|
|
|
RewritePatternSet patterns(&context);
|
|
populateTensorToLinalgPatterns(patterns);
|
|
|
|
if (failed(applyPartialConversion(getOperation(), target,
|
|
std::move(patterns))))
|
|
return signalPassFailure();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
std::unique_ptr<OperationPass<ModuleOp>>
|
|
mlir::createConvertTensorToLinalgPass() {
|
|
return std::make_unique<ConvertTensorToLinalgPass>();
|
|
}
|