Files
clang-p2996/mlir/lib/Dialect/Affine/Analysis/Utils.cpp
Uday Bondhugula c79ffb02bb Generalize affine fusion to work at all depths and inside other region-holding ops (#72288)
Generalize affine fusion to work at any inner depth; fusing loops inside
other
affine.for or even inside scf.for or scf.while nests. Apply in post
order on
all affine nests on the pass' top-level operation.

Fix MDG init for blocks inside other affine nests.

Relax unnecessary requirement for unique vars during merge and align of
FlatLinearValueConstraints. There are several cases where
FlatLinearValueConstraints need to have duplicate Values for the
dimensions:
for eg. in dependence relation systems with source and destination
accesses
could have common loop IVs. `mergeAndAlign` can be done even in the
presence
of Values reappearing by simply aligning from left to right in that
order.

While at this, drop outdated comments; improve some debug messages.
2023-11-16 08:52:12 +05:30

2170 lines
87 KiB
C++

//===- Utils.cpp ---- Misc utilities for analysis -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements miscellaneous analysis routines for non-loop IR
// structures.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/Analysis/Utils.h"
#include "mlir/Analysis/Presburger/PresburgerRelation.h"
#include "mlir/Dialect/Affine/Analysis/AffineAnalysis.h"
#include "mlir/Dialect/Affine/Analysis/LoopAnalysis.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Affine/IR/AffineValueMap.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/Interfaces/CallInterfaces.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <optional>
#define DEBUG_TYPE "analysis-utils"
using namespace mlir;
using namespace affine;
using namespace presburger;
using llvm::SmallDenseMap;
using Node = MemRefDependenceGraph::Node;
// LoopNestStateCollector walks loop nests and collects load and store
// operations, and whether or not a region holding op other than ForOp and IfOp
// was encountered in the loop nest.
void LoopNestStateCollector::collect(Operation *opToWalk) {
opToWalk->walk([&](Operation *op) {
if (isa<AffineForOp>(op))
forOps.push_back(cast<AffineForOp>(op));
else if (op->getNumRegions() != 0 && !isa<AffineIfOp>(op))
hasNonAffineRegionOp = true;
else if (isa<AffineReadOpInterface>(op))
loadOpInsts.push_back(op);
else if (isa<AffineWriteOpInterface>(op))
storeOpInsts.push_back(op);
});
}
// Returns the load op count for 'memref'.
unsigned Node::getLoadOpCount(Value memref) const {
unsigned loadOpCount = 0;
for (Operation *loadOp : loads) {
if (memref == cast<AffineReadOpInterface>(loadOp).getMemRef())
++loadOpCount;
}
return loadOpCount;
}
// Returns the store op count for 'memref'.
unsigned Node::getStoreOpCount(Value memref) const {
unsigned storeOpCount = 0;
for (Operation *storeOp : stores) {
if (memref == cast<AffineWriteOpInterface>(storeOp).getMemRef())
++storeOpCount;
}
return storeOpCount;
}
// Returns all store ops in 'storeOps' which access 'memref'.
void Node::getStoreOpsForMemref(Value memref,
SmallVectorImpl<Operation *> *storeOps) const {
for (Operation *storeOp : stores) {
if (memref == cast<AffineWriteOpInterface>(storeOp).getMemRef())
storeOps->push_back(storeOp);
}
}
// Returns all load ops in 'loadOps' which access 'memref'.
void Node::getLoadOpsForMemref(Value memref,
SmallVectorImpl<Operation *> *loadOps) const {
for (Operation *loadOp : loads) {
if (memref == cast<AffineReadOpInterface>(loadOp).getMemRef())
loadOps->push_back(loadOp);
}
}
// Returns all memrefs in 'loadAndStoreMemrefSet' for which this node
// has at least one load and store operation.
void Node::getLoadAndStoreMemrefSet(
DenseSet<Value> *loadAndStoreMemrefSet) const {
llvm::SmallDenseSet<Value, 2> loadMemrefs;
for (Operation *loadOp : loads) {
loadMemrefs.insert(cast<AffineReadOpInterface>(loadOp).getMemRef());
}
for (Operation *storeOp : stores) {
auto memref = cast<AffineWriteOpInterface>(storeOp).getMemRef();
if (loadMemrefs.count(memref) > 0)
loadAndStoreMemrefSet->insert(memref);
}
}
// Initializes the data dependence graph by walking operations in `block`.
// Assigns each node in the graph a node id based on program order in 'f'.
bool MemRefDependenceGraph::init() {
LLVM_DEBUG(llvm::dbgs() << "--- Initializing MDG ---\n");
// Map from a memref to the set of ids of the nodes that have ops accessing
// the memref.
DenseMap<Value, SetVector<unsigned>> memrefAccesses;
DenseMap<Operation *, unsigned> forToNodeMap;
for (Operation &op : block) {
if (dyn_cast<AffineForOp>(op)) {
// Create graph node 'id' to represent top-level 'forOp' and record
// all loads and store accesses it contains.
LoopNestStateCollector collector;
collector.collect(&op);
// Return false if a region holding op other than 'affine.for' and
// 'affine.if' was found (not currently supported).
if (collector.hasNonAffineRegionOp)
return false;
Node node(nextNodeId++, &op);
for (auto *opInst : collector.loadOpInsts) {
node.loads.push_back(opInst);
auto memref = cast<AffineReadOpInterface>(opInst).getMemRef();
memrefAccesses[memref].insert(node.id);
}
for (auto *opInst : collector.storeOpInsts) {
node.stores.push_back(opInst);
auto memref = cast<AffineWriteOpInterface>(opInst).getMemRef();
memrefAccesses[memref].insert(node.id);
}
forToNodeMap[&op] = node.id;
nodes.insert({node.id, node});
} else if (dyn_cast<AffineReadOpInterface>(op)) {
// Create graph node for top-level load op.
Node node(nextNodeId++, &op);
node.loads.push_back(&op);
auto memref = cast<AffineReadOpInterface>(op).getMemRef();
memrefAccesses[memref].insert(node.id);
nodes.insert({node.id, node});
} else if (dyn_cast<AffineWriteOpInterface>(op)) {
// Create graph node for top-level store op.
Node node(nextNodeId++, &op);
node.stores.push_back(&op);
auto memref = cast<AffineWriteOpInterface>(op).getMemRef();
memrefAccesses[memref].insert(node.id);
nodes.insert({node.id, node});
} else if (op.getNumResults() > 0 && !op.use_empty()) {
// Create graph node for top-level producer of SSA values, which
// could be used by loop nest nodes.
Node node(nextNodeId++, &op);
nodes.insert({node.id, node});
} else if (!isMemoryEffectFree(&op) &&
(op.getNumRegions() == 0 || isa<RegionBranchOpInterface>(op))) {
// Create graph node for top-level op unless it is known to be
// memory-effect free. This covers all unknown/unregistered ops,
// non-affine ops with memory effects, and region-holding ops with a
// well-defined control flow. During the fusion validity checks, we look
// for non-affine ops on the path from source to destination, at which
// point we check which memrefs if any are used in the region.
Node node(nextNodeId++, &op);
nodes.insert({node.id, node});
} else if (op.getNumRegions() != 0) {
// Return false if non-handled/unknown region-holding ops are found. We
// won't know what such ops do or what its regions mean; for e.g., it may
// not be an imperative op.
LLVM_DEBUG(llvm::dbgs()
<< "MDG init failed; unknown region-holding op found!\n");
return false;
}
}
for (auto &idAndNode : nodes) {
LLVM_DEBUG(llvm::dbgs() << "Create node " << idAndNode.first << " for:\n"
<< *(idAndNode.second.op) << "\n");
(void)idAndNode;
}
// Add dependence edges between nodes which produce SSA values and their
// users. Load ops can be considered as the ones producing SSA values.
for (auto &idAndNode : nodes) {
const Node &node = idAndNode.second;
// Stores don't define SSA values, skip them.
if (!node.stores.empty())
continue;
Operation *opInst = node.op;
for (Value value : opInst->getResults()) {
for (Operation *user : value.getUsers()) {
// Ignore users outside of the block.
if (block.getParent()->findAncestorOpInRegion(*user)->getBlock() !=
&block)
continue;
SmallVector<AffineForOp, 4> loops;
getAffineForIVs(*user, &loops);
// Find the surrounding affine.for nested immediately within the
// block.
auto *it = llvm::find_if(loops, [&](AffineForOp loop) {
return loop->getBlock() == &block;
});
if (it == loops.end())
continue;
assert(forToNodeMap.count(*it) > 0 && "missing mapping");
unsigned userLoopNestId = forToNodeMap[*it];
addEdge(node.id, userLoopNestId, value);
}
}
}
// Walk memref access lists and add graph edges between dependent nodes.
for (auto &memrefAndList : memrefAccesses) {
unsigned n = memrefAndList.second.size();
for (unsigned i = 0; i < n; ++i) {
unsigned srcId = memrefAndList.second[i];
bool srcHasStore =
getNode(srcId)->getStoreOpCount(memrefAndList.first) > 0;
for (unsigned j = i + 1; j < n; ++j) {
unsigned dstId = memrefAndList.second[j];
bool dstHasStore =
getNode(dstId)->getStoreOpCount(memrefAndList.first) > 0;
if (srcHasStore || dstHasStore)
addEdge(srcId, dstId, memrefAndList.first);
}
}
}
return true;
}
// Returns the graph node for 'id'.
Node *MemRefDependenceGraph::getNode(unsigned id) {
auto it = nodes.find(id);
assert(it != nodes.end());
return &it->second;
}
// Returns the graph node for 'forOp'.
Node *MemRefDependenceGraph::getForOpNode(AffineForOp forOp) {
for (auto &idAndNode : nodes)
if (idAndNode.second.op == forOp)
return &idAndNode.second;
return nullptr;
}
// Adds a node with 'op' to the graph and returns its unique identifier.
unsigned MemRefDependenceGraph::addNode(Operation *op) {
Node node(nextNodeId++, op);
nodes.insert({node.id, node});
return node.id;
}
// Remove node 'id' (and its associated edges) from graph.
void MemRefDependenceGraph::removeNode(unsigned id) {
// Remove each edge in 'inEdges[id]'.
if (inEdges.count(id) > 0) {
SmallVector<Edge, 2> oldInEdges = inEdges[id];
for (auto &inEdge : oldInEdges) {
removeEdge(inEdge.id, id, inEdge.value);
}
}
// Remove each edge in 'outEdges[id]'.
if (outEdges.count(id) > 0) {
SmallVector<Edge, 2> oldOutEdges = outEdges[id];
for (auto &outEdge : oldOutEdges) {
removeEdge(id, outEdge.id, outEdge.value);
}
}
// Erase remaining node state.
inEdges.erase(id);
outEdges.erase(id);
nodes.erase(id);
}
// Returns true if node 'id' writes to any memref which escapes (or is an
// argument to) the block. Returns false otherwise.
bool MemRefDependenceGraph::writesToLiveInOrEscapingMemrefs(unsigned id) {
Node *node = getNode(id);
for (auto *storeOpInst : node->stores) {
auto memref = cast<AffineWriteOpInterface>(storeOpInst).getMemRef();
auto *op = memref.getDefiningOp();
// Return true if 'memref' is a block argument.
if (!op)
return true;
// Return true if any use of 'memref' does not deference it in an affine
// way.
for (auto *user : memref.getUsers())
if (!isa<AffineMapAccessInterface>(*user))
return true;
}
return false;
}
// Returns true iff there is an edge from node 'srcId' to node 'dstId' which
// is for 'value' if non-null, or for any value otherwise. Returns false
// otherwise.
bool MemRefDependenceGraph::hasEdge(unsigned srcId, unsigned dstId,
Value value) {
if (outEdges.count(srcId) == 0 || inEdges.count(dstId) == 0) {
return false;
}
bool hasOutEdge = llvm::any_of(outEdges[srcId], [=](Edge &edge) {
return edge.id == dstId && (!value || edge.value == value);
});
bool hasInEdge = llvm::any_of(inEdges[dstId], [=](Edge &edge) {
return edge.id == srcId && (!value || edge.value == value);
});
return hasOutEdge && hasInEdge;
}
// Adds an edge from node 'srcId' to node 'dstId' for 'value'.
void MemRefDependenceGraph::addEdge(unsigned srcId, unsigned dstId,
Value value) {
if (!hasEdge(srcId, dstId, value)) {
outEdges[srcId].push_back({dstId, value});
inEdges[dstId].push_back({srcId, value});
if (isa<MemRefType>(value.getType()))
memrefEdgeCount[value]++;
}
}
// Removes an edge from node 'srcId' to node 'dstId' for 'value'.
void MemRefDependenceGraph::removeEdge(unsigned srcId, unsigned dstId,
Value value) {
assert(inEdges.count(dstId) > 0);
assert(outEdges.count(srcId) > 0);
if (isa<MemRefType>(value.getType())) {
assert(memrefEdgeCount.count(value) > 0);
memrefEdgeCount[value]--;
}
// Remove 'srcId' from 'inEdges[dstId]'.
for (auto *it = inEdges[dstId].begin(); it != inEdges[dstId].end(); ++it) {
if ((*it).id == srcId && (*it).value == value) {
inEdges[dstId].erase(it);
break;
}
}
// Remove 'dstId' from 'outEdges[srcId]'.
for (auto *it = outEdges[srcId].begin(); it != outEdges[srcId].end(); ++it) {
if ((*it).id == dstId && (*it).value == value) {
outEdges[srcId].erase(it);
break;
}
}
}
// Returns true if there is a path in the dependence graph from node 'srcId'
// to node 'dstId'. Returns false otherwise. `srcId`, `dstId`, and the
// operations that the edges connected are expected to be from the same block.
bool MemRefDependenceGraph::hasDependencePath(unsigned srcId, unsigned dstId) {
// Worklist state is: <node-id, next-output-edge-index-to-visit>
SmallVector<std::pair<unsigned, unsigned>, 4> worklist;
worklist.push_back({srcId, 0});
Operation *dstOp = getNode(dstId)->op;
// Run DFS traversal to see if 'dstId' is reachable from 'srcId'.
while (!worklist.empty()) {
auto &idAndIndex = worklist.back();
// Return true if we have reached 'dstId'.
if (idAndIndex.first == dstId)
return true;
// Pop and continue if node has no out edges, or if all out edges have
// already been visited.
if (outEdges.count(idAndIndex.first) == 0 ||
idAndIndex.second == outEdges[idAndIndex.first].size()) {
worklist.pop_back();
continue;
}
// Get graph edge to traverse.
Edge edge = outEdges[idAndIndex.first][idAndIndex.second];
// Increment next output edge index for 'idAndIndex'.
++idAndIndex.second;
// Add node at 'edge.id' to the worklist. We don't need to consider
// nodes that are "after" dstId in the containing block; one can't have a
// path to `dstId` from any of those nodes.
bool afterDst = dstOp->isBeforeInBlock(getNode(edge.id)->op);
if (!afterDst && edge.id != idAndIndex.first)
worklist.push_back({edge.id, 0});
}
return false;
}
// Returns the input edge count for node 'id' and 'memref' from src nodes
// which access 'memref' with a store operation.
unsigned MemRefDependenceGraph::getIncomingMemRefAccesses(unsigned id,
Value memref) {
unsigned inEdgeCount = 0;
if (inEdges.count(id) > 0)
for (auto &inEdge : inEdges[id])
if (inEdge.value == memref) {
Node *srcNode = getNode(inEdge.id);
// Only count in edges from 'srcNode' if 'srcNode' accesses 'memref'
if (srcNode->getStoreOpCount(memref) > 0)
++inEdgeCount;
}
return inEdgeCount;
}
// Returns the output edge count for node 'id' and 'memref' (if non-null),
// otherwise returns the total output edge count from node 'id'.
unsigned MemRefDependenceGraph::getOutEdgeCount(unsigned id, Value memref) {
unsigned outEdgeCount = 0;
if (outEdges.count(id) > 0)
for (auto &outEdge : outEdges[id])
if (!memref || outEdge.value == memref)
++outEdgeCount;
return outEdgeCount;
}
/// Return all nodes which define SSA values used in node 'id'.
void MemRefDependenceGraph::gatherDefiningNodes(
unsigned id, DenseSet<unsigned> &definingNodes) {
for (MemRefDependenceGraph::Edge edge : inEdges[id])
// By definition of edge, if the edge value is a non-memref value,
// then the dependence is between a graph node which defines an SSA value
// and another graph node which uses the SSA value.
if (!isa<MemRefType>(edge.value.getType()))
definingNodes.insert(edge.id);
}
// Computes and returns an insertion point operation, before which the
// the fused <srcId, dstId> loop nest can be inserted while preserving
// dependences. Returns nullptr if no such insertion point is found.
Operation *
MemRefDependenceGraph::getFusedLoopNestInsertionPoint(unsigned srcId,
unsigned dstId) {
if (outEdges.count(srcId) == 0)
return getNode(dstId)->op;
// Skip if there is any defining node of 'dstId' that depends on 'srcId'.
DenseSet<unsigned> definingNodes;
gatherDefiningNodes(dstId, definingNodes);
if (llvm::any_of(definingNodes,
[&](unsigned id) { return hasDependencePath(srcId, id); })) {
LLVM_DEBUG(llvm::dbgs()
<< "Can't fuse: a defining op with a user in the dst "
"loop has dependence from the src loop\n");
return nullptr;
}
// Build set of insts in range (srcId, dstId) which depend on 'srcId'.
SmallPtrSet<Operation *, 2> srcDepInsts;
for (auto &outEdge : outEdges[srcId])
if (outEdge.id != dstId)
srcDepInsts.insert(getNode(outEdge.id)->op);
// Build set of insts in range (srcId, dstId) on which 'dstId' depends.
SmallPtrSet<Operation *, 2> dstDepInsts;
for (auto &inEdge : inEdges[dstId])
if (inEdge.id != srcId)
dstDepInsts.insert(getNode(inEdge.id)->op);
Operation *srcNodeInst = getNode(srcId)->op;
Operation *dstNodeInst = getNode(dstId)->op;
// Computing insertion point:
// *) Walk all operation positions in Block operation list in the
// range (src, dst). For each operation 'op' visited in this search:
// *) Store in 'firstSrcDepPos' the first position where 'op' has a
// dependence edge from 'srcNode'.
// *) Store in 'lastDstDepPost' the last position where 'op' has a
// dependence edge to 'dstNode'.
// *) Compare 'firstSrcDepPos' and 'lastDstDepPost' to determine the
// operation insertion point (or return null pointer if no such
// insertion point exists: 'firstSrcDepPos' <= 'lastDstDepPos').
SmallVector<Operation *, 2> depInsts;
std::optional<unsigned> firstSrcDepPos;
std::optional<unsigned> lastDstDepPos;
unsigned pos = 0;
for (Block::iterator it = std::next(Block::iterator(srcNodeInst));
it != Block::iterator(dstNodeInst); ++it) {
Operation *op = &(*it);
if (srcDepInsts.count(op) > 0 && firstSrcDepPos == std::nullopt)
firstSrcDepPos = pos;
if (dstDepInsts.count(op) > 0)
lastDstDepPos = pos;
depInsts.push_back(op);
++pos;
}
if (firstSrcDepPos.has_value()) {
if (lastDstDepPos.has_value()) {
if (*firstSrcDepPos <= *lastDstDepPos) {
// No valid insertion point exists which preserves dependences.
return nullptr;
}
}
// Return the insertion point at 'firstSrcDepPos'.
return depInsts[*firstSrcDepPos];
}
// No dependence targets in range (or only dst deps in range), return
// 'dstNodInst' insertion point.
return dstNodeInst;
}
// Updates edge mappings from node 'srcId' to node 'dstId' after fusing them,
// taking into account that:
// *) if 'removeSrcId' is true, 'srcId' will be removed after fusion,
// *) memrefs in 'privateMemRefs' has been replaced in node at 'dstId' by a
// private memref.
void MemRefDependenceGraph::updateEdges(unsigned srcId, unsigned dstId,
const DenseSet<Value> &privateMemRefs,
bool removeSrcId) {
// For each edge in 'inEdges[srcId]': add new edge remapping to 'dstId'.
if (inEdges.count(srcId) > 0) {
SmallVector<Edge, 2> oldInEdges = inEdges[srcId];
for (auto &inEdge : oldInEdges) {
// Add edge from 'inEdge.id' to 'dstId' if it's not a private memref.
if (privateMemRefs.count(inEdge.value) == 0)
addEdge(inEdge.id, dstId, inEdge.value);
}
}
// For each edge in 'outEdges[srcId]': remove edge from 'srcId' to 'dstId'.
// If 'srcId' is going to be removed, remap all the out edges to 'dstId'.
if (outEdges.count(srcId) > 0) {
SmallVector<Edge, 2> oldOutEdges = outEdges[srcId];
for (auto &outEdge : oldOutEdges) {
// Remove any out edges from 'srcId' to 'dstId' across memrefs.
if (outEdge.id == dstId)
removeEdge(srcId, outEdge.id, outEdge.value);
else if (removeSrcId) {
addEdge(dstId, outEdge.id, outEdge.value);
removeEdge(srcId, outEdge.id, outEdge.value);
}
}
}
// Remove any edges in 'inEdges[dstId]' on 'oldMemRef' (which is being
// replaced by a private memref). These edges could come from nodes
// other than 'srcId' which were removed in the previous step.
if (inEdges.count(dstId) > 0 && !privateMemRefs.empty()) {
SmallVector<Edge, 2> oldInEdges = inEdges[dstId];
for (auto &inEdge : oldInEdges)
if (privateMemRefs.count(inEdge.value) > 0)
removeEdge(inEdge.id, dstId, inEdge.value);
}
}
// Update edge mappings for nodes 'sibId' and 'dstId' to reflect fusion
// of sibling node 'sibId' into node 'dstId'.
void MemRefDependenceGraph::updateEdges(unsigned sibId, unsigned dstId) {
// For each edge in 'inEdges[sibId]':
// *) Add new edge from source node 'inEdge.id' to 'dstNode'.
// *) Remove edge from source node 'inEdge.id' to 'sibNode'.
if (inEdges.count(sibId) > 0) {
SmallVector<Edge, 2> oldInEdges = inEdges[sibId];
for (auto &inEdge : oldInEdges) {
addEdge(inEdge.id, dstId, inEdge.value);
removeEdge(inEdge.id, sibId, inEdge.value);
}
}
// For each edge in 'outEdges[sibId]' to node 'id'
// *) Add new edge from 'dstId' to 'outEdge.id'.
// *) Remove edge from 'sibId' to 'outEdge.id'.
if (outEdges.count(sibId) > 0) {
SmallVector<Edge, 2> oldOutEdges = outEdges[sibId];
for (auto &outEdge : oldOutEdges) {
addEdge(dstId, outEdge.id, outEdge.value);
removeEdge(sibId, outEdge.id, outEdge.value);
}
}
}
// Adds ops in 'loads' and 'stores' to node at 'id'.
void MemRefDependenceGraph::addToNode(
unsigned id, const SmallVectorImpl<Operation *> &loads,
const SmallVectorImpl<Operation *> &stores) {
Node *node = getNode(id);
llvm::append_range(node->loads, loads);
llvm::append_range(node->stores, stores);
}
void MemRefDependenceGraph::clearNodeLoadAndStores(unsigned id) {
Node *node = getNode(id);
node->loads.clear();
node->stores.clear();
}
// Calls 'callback' for each input edge incident to node 'id' which carries a
// memref dependence.
void MemRefDependenceGraph::forEachMemRefInputEdge(
unsigned id, const std::function<void(Edge)> &callback) {
if (inEdges.count(id) > 0)
forEachMemRefEdge(inEdges[id], callback);
}
// Calls 'callback' for each output edge from node 'id' which carries a
// memref dependence.
void MemRefDependenceGraph::forEachMemRefOutputEdge(
unsigned id, const std::function<void(Edge)> &callback) {
if (outEdges.count(id) > 0)
forEachMemRefEdge(outEdges[id], callback);
}
// Calls 'callback' for each edge in 'edges' which carries a memref
// dependence.
void MemRefDependenceGraph::forEachMemRefEdge(
ArrayRef<Edge> edges, const std::function<void(Edge)> &callback) {
for (const auto &edge : edges) {
// Skip if 'edge' is not a memref dependence edge.
if (!isa<MemRefType>(edge.value.getType()))
continue;
assert(nodes.count(edge.id) > 0);
// Skip if 'edge.id' is not a loop nest.
if (!isa<AffineForOp>(getNode(edge.id)->op))
continue;
// Visit current input edge 'edge'.
callback(edge);
}
}
void MemRefDependenceGraph::print(raw_ostream &os) const {
os << "\nMemRefDependenceGraph\n";
os << "\nNodes:\n";
for (const auto &idAndNode : nodes) {
os << "Node: " << idAndNode.first << "\n";
auto it = inEdges.find(idAndNode.first);
if (it != inEdges.end()) {
for (const auto &e : it->second)
os << " InEdge: " << e.id << " " << e.value << "\n";
}
it = outEdges.find(idAndNode.first);
if (it != outEdges.end()) {
for (const auto &e : it->second)
os << " OutEdge: " << e.id << " " << e.value << "\n";
}
}
}
void mlir::affine::getAffineForIVs(Operation &op,
SmallVectorImpl<AffineForOp> *loops) {
auto *currOp = op.getParentOp();
AffineForOp currAffineForOp;
// Traverse up the hierarchy collecting all 'affine.for' operation while
// skipping over 'affine.if' operations.
while (currOp && !currOp->hasTrait<OpTrait::AffineScope>()) {
if (auto currAffineForOp = dyn_cast<AffineForOp>(currOp))
loops->push_back(currAffineForOp);
currOp = currOp->getParentOp();
}
std::reverse(loops->begin(), loops->end());
}
void mlir::affine::getEnclosingAffineOps(Operation &op,
SmallVectorImpl<Operation *> *ops) {
ops->clear();
Operation *currOp = op.getParentOp();
// Traverse up the hierarchy collecting all `affine.for`, `affine.if`, and
// affine.parallel operations.
while (currOp && !currOp->hasTrait<OpTrait::AffineScope>()) {
if (isa<AffineIfOp, AffineForOp, AffineParallelOp>(currOp))
ops->push_back(currOp);
currOp = currOp->getParentOp();
}
std::reverse(ops->begin(), ops->end());
}
// Populates 'cst' with FlatAffineValueConstraints which represent original
// domain of the loop bounds that define 'ivs'.
LogicalResult ComputationSliceState::getSourceAsConstraints(
FlatAffineValueConstraints &cst) const {
assert(!ivs.empty() && "Cannot have a slice without its IVs");
cst = FlatAffineValueConstraints(/*numDims=*/ivs.size(), /*numSymbols=*/0,
/*numLocals=*/0, ivs);
for (Value iv : ivs) {
AffineForOp loop = getForInductionVarOwner(iv);
assert(loop && "Expected affine for");
if (failed(cst.addAffineForOpDomain(loop)))
return failure();
}
return success();
}
// Populates 'cst' with FlatAffineValueConstraints which represent slice bounds.
LogicalResult
ComputationSliceState::getAsConstraints(FlatAffineValueConstraints *cst) const {
assert(!lbOperands.empty());
// Adds src 'ivs' as dimension variables in 'cst'.
unsigned numDims = ivs.size();
// Adds operands (dst ivs and symbols) as symbols in 'cst'.
unsigned numSymbols = lbOperands[0].size();
SmallVector<Value, 4> values(ivs);
// Append 'ivs' then 'operands' to 'values'.
values.append(lbOperands[0].begin(), lbOperands[0].end());
*cst = FlatAffineValueConstraints(numDims, numSymbols, 0, values);
// Add loop bound constraints for values which are loop IVs of the destination
// of fusion and equality constraints for symbols which are constants.
for (unsigned i = numDims, end = values.size(); i < end; ++i) {
Value value = values[i];
assert(cst->containsVar(value) && "value expected to be present");
if (isValidSymbol(value)) {
// Check if the symbol is a constant.
if (std::optional<int64_t> cOp = getConstantIntValue(value))
cst->addBound(BoundType::EQ, value, cOp.value());
} else if (auto loop = getForInductionVarOwner(value)) {
if (failed(cst->addAffineForOpDomain(loop)))
return failure();
}
}
// Add slices bounds on 'ivs' using maps 'lbs'/'ubs' with 'lbOperands[0]'
LogicalResult ret = cst->addSliceBounds(ivs, lbs, ubs, lbOperands[0]);
assert(succeeded(ret) &&
"should not fail as we never have semi-affine slice maps");
(void)ret;
return success();
}
// Clears state bounds and operand state.
void ComputationSliceState::clearBounds() {
lbs.clear();
ubs.clear();
lbOperands.clear();
ubOperands.clear();
}
void ComputationSliceState::dump() const {
llvm::errs() << "\tIVs:\n";
for (Value iv : ivs)
llvm::errs() << "\t\t" << iv << "\n";
llvm::errs() << "\tLBs:\n";
for (auto en : llvm::enumerate(lbs)) {
llvm::errs() << "\t\t" << en.value() << "\n";
llvm::errs() << "\t\tOperands:\n";
for (Value lbOp : lbOperands[en.index()])
llvm::errs() << "\t\t\t" << lbOp << "\n";
}
llvm::errs() << "\tUBs:\n";
for (auto en : llvm::enumerate(ubs)) {
llvm::errs() << "\t\t" << en.value() << "\n";
llvm::errs() << "\t\tOperands:\n";
for (Value ubOp : ubOperands[en.index()])
llvm::errs() << "\t\t\t" << ubOp << "\n";
}
}
/// Fast check to determine if the computation slice is maximal. Returns true if
/// each slice dimension maps to an existing dst dimension and both the src
/// and the dst loops for those dimensions have the same bounds. Returns false
/// if both the src and the dst loops don't have the same bounds. Returns
/// std::nullopt if none of the above can be proven.
std::optional<bool> ComputationSliceState::isSliceMaximalFastCheck() const {
assert(lbs.size() == ubs.size() && !lbs.empty() && !ivs.empty() &&
"Unexpected number of lbs, ubs and ivs in slice");
for (unsigned i = 0, end = lbs.size(); i < end; ++i) {
AffineMap lbMap = lbs[i];
AffineMap ubMap = ubs[i];
// Check if this slice is just an equality along this dimension.
if (!lbMap || !ubMap || lbMap.getNumResults() != 1 ||
ubMap.getNumResults() != 1 ||
lbMap.getResult(0) + 1 != ubMap.getResult(0) ||
// The condition above will be true for maps describing a single
// iteration (e.g., lbMap.getResult(0) = 0, ubMap.getResult(0) = 1).
// Make sure we skip those cases by checking that the lb result is not
// just a constant.
isa<AffineConstantExpr>(lbMap.getResult(0)))
return std::nullopt;
// Limited support: we expect the lb result to be just a loop dimension for
// now.
AffineDimExpr result = dyn_cast<AffineDimExpr>(lbMap.getResult(0));
if (!result)
return std::nullopt;
// Retrieve dst loop bounds.
AffineForOp dstLoop =
getForInductionVarOwner(lbOperands[i][result.getPosition()]);
if (!dstLoop)
return std::nullopt;
AffineMap dstLbMap = dstLoop.getLowerBoundMap();
AffineMap dstUbMap = dstLoop.getUpperBoundMap();
// Retrieve src loop bounds.
AffineForOp srcLoop = getForInductionVarOwner(ivs[i]);
assert(srcLoop && "Expected affine for");
AffineMap srcLbMap = srcLoop.getLowerBoundMap();
AffineMap srcUbMap = srcLoop.getUpperBoundMap();
// Limited support: we expect simple src and dst loops with a single
// constant component per bound for now.
if (srcLbMap.getNumResults() != 1 || srcUbMap.getNumResults() != 1 ||
dstLbMap.getNumResults() != 1 || dstUbMap.getNumResults() != 1)
return std::nullopt;
AffineExpr srcLbResult = srcLbMap.getResult(0);
AffineExpr dstLbResult = dstLbMap.getResult(0);
AffineExpr srcUbResult = srcUbMap.getResult(0);
AffineExpr dstUbResult = dstUbMap.getResult(0);
if (!isa<AffineConstantExpr>(srcLbResult) ||
!isa<AffineConstantExpr>(srcUbResult) ||
!isa<AffineConstantExpr>(dstLbResult) ||
!isa<AffineConstantExpr>(dstUbResult))
return std::nullopt;
// Check if src and dst loop bounds are the same. If not, we can guarantee
// that the slice is not maximal.
if (srcLbResult != dstLbResult || srcUbResult != dstUbResult ||
srcLoop.getStep() != dstLoop.getStep())
return false;
}
return true;
}
/// Returns true if it is deterministically verified that the original iteration
/// space of the slice is contained within the new iteration space that is
/// created after fusing 'this' slice into its destination.
std::optional<bool> ComputationSliceState::isSliceValid() const {
// Fast check to determine if the slice is valid. If the following conditions
// are verified to be true, slice is declared valid by the fast check:
// 1. Each slice loop is a single iteration loop bound in terms of a single
// destination loop IV.
// 2. Loop bounds of the destination loop IV (from above) and those of the
// source loop IV are exactly the same.
// If the fast check is inconclusive or false, we proceed with a more
// expensive analysis.
// TODO: Store the result of the fast check, as it might be used again in
// `canRemoveSrcNodeAfterFusion`.
std::optional<bool> isValidFastCheck = isSliceMaximalFastCheck();
if (isValidFastCheck && *isValidFastCheck)
return true;
// Create constraints for the source loop nest using which slice is computed.
FlatAffineValueConstraints srcConstraints;
// TODO: Store the source's domain to avoid computation at each depth.
if (failed(getSourceAsConstraints(srcConstraints))) {
LLVM_DEBUG(llvm::dbgs() << "Unable to compute source's domain\n");
return std::nullopt;
}
// As the set difference utility currently cannot handle symbols in its
// operands, validity of the slice cannot be determined.
if (srcConstraints.getNumSymbolVars() > 0) {
LLVM_DEBUG(llvm::dbgs() << "Cannot handle symbols in source domain\n");
return std::nullopt;
}
// TODO: Handle local vars in the source domains while using the 'projectOut'
// utility below. Currently, aligning is not done assuming that there will be
// no local vars in the source domain.
if (srcConstraints.getNumLocalVars() != 0) {
LLVM_DEBUG(llvm::dbgs() << "Cannot handle locals in source domain\n");
return std::nullopt;
}
// Create constraints for the slice loop nest that would be created if the
// fusion succeeds.
FlatAffineValueConstraints sliceConstraints;
if (failed(getAsConstraints(&sliceConstraints))) {
LLVM_DEBUG(llvm::dbgs() << "Unable to compute slice's domain\n");
return std::nullopt;
}
// Projecting out every dimension other than the 'ivs' to express slice's
// domain completely in terms of source's IVs.
sliceConstraints.projectOut(ivs.size(),
sliceConstraints.getNumVars() - ivs.size());
LLVM_DEBUG(llvm::dbgs() << "Domain of the source of the slice:\n");
LLVM_DEBUG(srcConstraints.dump());
LLVM_DEBUG(llvm::dbgs() << "Domain of the slice if this fusion succeeds "
"(expressed in terms of its source's IVs):\n");
LLVM_DEBUG(sliceConstraints.dump());
// TODO: Store 'srcSet' to avoid recalculating for each depth.
PresburgerSet srcSet(srcConstraints);
PresburgerSet sliceSet(sliceConstraints);
PresburgerSet diffSet = sliceSet.subtract(srcSet);
if (!diffSet.isIntegerEmpty()) {
LLVM_DEBUG(llvm::dbgs() << "Incorrect slice\n");
return false;
}
return true;
}
/// Returns true if the computation slice encloses all the iterations of the
/// sliced loop nest. Returns false if it does not. Returns std::nullopt if it
/// cannot determine if the slice is maximal or not.
std::optional<bool> ComputationSliceState::isMaximal() const {
// Fast check to determine if the computation slice is maximal. If the result
// is inconclusive, we proceed with a more expensive analysis.
std::optional<bool> isMaximalFastCheck = isSliceMaximalFastCheck();
if (isMaximalFastCheck)
return isMaximalFastCheck;
// Create constraints for the src loop nest being sliced.
FlatAffineValueConstraints srcConstraints(/*numDims=*/ivs.size(),
/*numSymbols=*/0,
/*numLocals=*/0, ivs);
for (Value iv : ivs) {
AffineForOp loop = getForInductionVarOwner(iv);
assert(loop && "Expected affine for");
if (failed(srcConstraints.addAffineForOpDomain(loop)))
return std::nullopt;
}
// Create constraints for the slice using the dst loop nest information. We
// retrieve existing dst loops from the lbOperands.
SmallVector<Value> consumerIVs;
for (Value lbOp : lbOperands[0])
if (getForInductionVarOwner(lbOp))
consumerIVs.push_back(lbOp);
// Add empty IV Values for those new loops that are not equalities and,
// therefore, are not yet materialized in the IR.
for (int i = consumerIVs.size(), end = ivs.size(); i < end; ++i)
consumerIVs.push_back(Value());
FlatAffineValueConstraints sliceConstraints(/*numDims=*/consumerIVs.size(),
/*numSymbols=*/0,
/*numLocals=*/0, consumerIVs);
if (failed(sliceConstraints.addDomainFromSliceMaps(lbs, ubs, lbOperands[0])))
return std::nullopt;
if (srcConstraints.getNumDimVars() != sliceConstraints.getNumDimVars())
// Constraint dims are different. The integer set difference can't be
// computed so we don't know if the slice is maximal.
return std::nullopt;
// Compute the difference between the src loop nest and the slice integer
// sets.
PresburgerSet srcSet(srcConstraints);
PresburgerSet sliceSet(sliceConstraints);
PresburgerSet diffSet = srcSet.subtract(sliceSet);
return diffSet.isIntegerEmpty();
}
unsigned MemRefRegion::getRank() const {
return cast<MemRefType>(memref.getType()).getRank();
}
std::optional<int64_t> MemRefRegion::getConstantBoundingSizeAndShape(
SmallVectorImpl<int64_t> *shape, std::vector<SmallVector<int64_t, 4>> *lbs,
SmallVectorImpl<int64_t> *lbDivisors) const {
auto memRefType = cast<MemRefType>(memref.getType());
unsigned rank = memRefType.getRank();
if (shape)
shape->reserve(rank);
assert(rank == cst.getNumDimVars() && "inconsistent memref region");
// Use a copy of the region constraints that has upper/lower bounds for each
// memref dimension with static size added to guard against potential
// over-approximation from projection or union bounding box. We may not add
// this on the region itself since they might just be redundant constraints
// that will need non-trivials means to eliminate.
FlatAffineValueConstraints cstWithShapeBounds(cst);
for (unsigned r = 0; r < rank; r++) {
cstWithShapeBounds.addBound(BoundType::LB, r, 0);
int64_t dimSize = memRefType.getDimSize(r);
if (ShapedType::isDynamic(dimSize))
continue;
cstWithShapeBounds.addBound(BoundType::UB, r, dimSize - 1);
}
// Find a constant upper bound on the extent of this memref region along each
// dimension.
int64_t numElements = 1;
int64_t diffConstant;
int64_t lbDivisor;
for (unsigned d = 0; d < rank; d++) {
SmallVector<int64_t, 4> lb;
std::optional<int64_t> diff =
cstWithShapeBounds.getConstantBoundOnDimSize64(d, &lb, &lbDivisor);
if (diff.has_value()) {
diffConstant = *diff;
assert(diffConstant >= 0 && "Dim size bound can't be negative");
assert(lbDivisor > 0);
} else {
// If no constant bound is found, then it can always be bound by the
// memref's dim size if the latter has a constant size along this dim.
auto dimSize = memRefType.getDimSize(d);
if (dimSize == ShapedType::kDynamic)
return std::nullopt;
diffConstant = dimSize;
// Lower bound becomes 0.
lb.resize(cstWithShapeBounds.getNumSymbolVars() + 1, 0);
lbDivisor = 1;
}
numElements *= diffConstant;
if (lbs) {
lbs->push_back(lb);
assert(lbDivisors && "both lbs and lbDivisor or none");
lbDivisors->push_back(lbDivisor);
}
if (shape) {
shape->push_back(diffConstant);
}
}
return numElements;
}
void MemRefRegion::getLowerAndUpperBound(unsigned pos, AffineMap &lbMap,
AffineMap &ubMap) const {
assert(pos < cst.getNumDimVars() && "invalid position");
auto memRefType = cast<MemRefType>(memref.getType());
unsigned rank = memRefType.getRank();
assert(rank == cst.getNumDimVars() && "inconsistent memref region");
auto boundPairs = cst.getLowerAndUpperBound(
pos, /*offset=*/0, /*num=*/rank, cst.getNumDimAndSymbolVars(),
/*localExprs=*/{}, memRefType.getContext());
lbMap = boundPairs.first;
ubMap = boundPairs.second;
assert(lbMap && "lower bound for a region must exist");
assert(ubMap && "upper bound for a region must exist");
assert(lbMap.getNumInputs() == cst.getNumDimAndSymbolVars() - rank);
assert(ubMap.getNumInputs() == cst.getNumDimAndSymbolVars() - rank);
}
LogicalResult MemRefRegion::unionBoundingBox(const MemRefRegion &other) {
assert(memref == other.memref);
return cst.unionBoundingBox(*other.getConstraints());
}
/// Computes the memory region accessed by this memref with the region
/// represented as constraints symbolic/parametric in 'loopDepth' loops
/// surrounding opInst and any additional Function symbols.
// For example, the memref region for this load operation at loopDepth = 1 will
// be as below:
//
// affine.for %i = 0 to 32 {
// affine.for %ii = %i to (d0) -> (d0 + 8) (%i) {
// load %A[%ii]
// }
// }
//
// region: {memref = %A, write = false, {%i <= m0 <= %i + 7} }
// The last field is a 2-d FlatAffineValueConstraints symbolic in %i.
//
// TODO: extend this to any other memref dereferencing ops
// (dma_start, dma_wait).
LogicalResult MemRefRegion::compute(Operation *op, unsigned loopDepth,
const ComputationSliceState *sliceState,
bool addMemRefDimBounds) {
assert((isa<AffineReadOpInterface, AffineWriteOpInterface>(op)) &&
"affine read/write op expected");
MemRefAccess access(op);
memref = access.memref;
write = access.isStore();
unsigned rank = access.getRank();
LLVM_DEBUG(llvm::dbgs() << "MemRefRegion::compute: " << *op
<< "\ndepth: " << loopDepth << "\n";);
// 0-d memrefs.
if (rank == 0) {
SmallVector<Value, 4> ivs;
getAffineIVs(*op, ivs);
assert(loopDepth <= ivs.size() && "invalid 'loopDepth'");
// The first 'loopDepth' IVs are symbols for this region.
ivs.resize(loopDepth);
// A 0-d memref has a 0-d region.
cst = FlatAffineValueConstraints(rank, loopDepth, /*numLocals=*/0, ivs);
return success();
}
// Build the constraints for this region.
AffineValueMap accessValueMap;
access.getAccessMap(&accessValueMap);
AffineMap accessMap = accessValueMap.getAffineMap();
unsigned numDims = accessMap.getNumDims();
unsigned numSymbols = accessMap.getNumSymbols();
unsigned numOperands = accessValueMap.getNumOperands();
// Merge operands with slice operands.
SmallVector<Value, 4> operands;
operands.resize(numOperands);
for (unsigned i = 0; i < numOperands; ++i)
operands[i] = accessValueMap.getOperand(i);
if (sliceState != nullptr) {
operands.reserve(operands.size() + sliceState->lbOperands[0].size());
// Append slice operands to 'operands' as symbols.
for (auto extraOperand : sliceState->lbOperands[0]) {
if (!llvm::is_contained(operands, extraOperand)) {
operands.push_back(extraOperand);
numSymbols++;
}
}
}
// We'll first associate the dims and symbols of the access map to the dims
// and symbols resp. of cst. This will change below once cst is
// fully constructed out.
cst = FlatAffineValueConstraints(numDims, numSymbols, 0, operands);
// Add equality constraints.
// Add inequalities for loop lower/upper bounds.
for (unsigned i = 0; i < numDims + numSymbols; ++i) {
auto operand = operands[i];
if (auto affineFor = getForInductionVarOwner(operand)) {
// Note that cst can now have more dimensions than accessMap if the
// bounds expressions involve outer loops or other symbols.
// TODO: rewrite this to use getInstIndexSet; this way
// conditionals will be handled when the latter supports it.
if (failed(cst.addAffineForOpDomain(affineFor)))
return failure();
} else if (auto parallelOp = getAffineParallelInductionVarOwner(operand)) {
if (failed(cst.addAffineParallelOpDomain(parallelOp)))
return failure();
} else if (isValidSymbol(operand)) {
// Check if the symbol is a constant.
Value symbol = operand;
if (auto constVal = getConstantIntValue(symbol))
cst.addBound(BoundType::EQ, symbol, constVal.value());
} else {
LLVM_DEBUG(llvm::dbgs() << "unknown affine dimensional value");
return failure();
}
}
// Add lower/upper bounds on loop IVs using bounds from 'sliceState'.
if (sliceState != nullptr) {
// Add dim and symbol slice operands.
for (auto operand : sliceState->lbOperands[0]) {
cst.addInductionVarOrTerminalSymbol(operand);
}
// Add upper/lower bounds from 'sliceState' to 'cst'.
LogicalResult ret =
cst.addSliceBounds(sliceState->ivs, sliceState->lbs, sliceState->ubs,
sliceState->lbOperands[0]);
assert(succeeded(ret) &&
"should not fail as we never have semi-affine slice maps");
(void)ret;
}
// Add access function equalities to connect loop IVs to data dimensions.
if (failed(cst.composeMap(&accessValueMap))) {
op->emitError("getMemRefRegion: compose affine map failed");
LLVM_DEBUG(accessValueMap.getAffineMap().dump());
return failure();
}
// Set all variables appearing after the first 'rank' variables as
// symbolic variables - so that the ones corresponding to the memref
// dimensions are the dimensional variables for the memref region.
cst.setDimSymbolSeparation(cst.getNumDimAndSymbolVars() - rank);
// Eliminate any loop IVs other than the outermost 'loopDepth' IVs, on which
// this memref region is symbolic.
SmallVector<Value, 4> enclosingIVs;
getAffineIVs(*op, enclosingIVs);
assert(loopDepth <= enclosingIVs.size() && "invalid loop depth");
enclosingIVs.resize(loopDepth);
SmallVector<Value, 4> vars;
cst.getValues(cst.getNumDimVars(), cst.getNumDimAndSymbolVars(), &vars);
for (Value var : vars) {
if ((isAffineInductionVar(var)) && !llvm::is_contained(enclosingIVs, var)) {
cst.projectOut(var);
}
}
// Project out any local variables (these would have been added for any
// mod/divs).
cst.projectOut(cst.getNumDimAndSymbolVars(), cst.getNumLocalVars());
// Constant fold any symbolic variables.
cst.constantFoldVarRange(/*pos=*/cst.getNumDimVars(),
/*num=*/cst.getNumSymbolVars());
assert(cst.getNumDimVars() == rank && "unexpected MemRefRegion format");
// Add upper/lower bounds for each memref dimension with static size
// to guard against potential over-approximation from projection.
// TODO: Support dynamic memref dimensions.
if (addMemRefDimBounds) {
auto memRefType = cast<MemRefType>(memref.getType());
for (unsigned r = 0; r < rank; r++) {
cst.addBound(BoundType::LB, /*pos=*/r, /*value=*/0);
if (memRefType.isDynamicDim(r))
continue;
cst.addBound(BoundType::UB, /*pos=*/r, memRefType.getDimSize(r) - 1);
}
}
cst.removeTrivialRedundancy();
LLVM_DEBUG(llvm::dbgs() << "Memory region:\n");
LLVM_DEBUG(cst.dump());
return success();
}
std::optional<int64_t>
mlir::affine::getMemRefIntOrFloatEltSizeInBytes(MemRefType memRefType) {
auto elementType = memRefType.getElementType();
unsigned sizeInBits;
if (elementType.isIntOrFloat()) {
sizeInBits = elementType.getIntOrFloatBitWidth();
} else if (auto vectorType = dyn_cast<VectorType>(elementType)) {
if (vectorType.getElementType().isIntOrFloat())
sizeInBits =
vectorType.getElementTypeBitWidth() * vectorType.getNumElements();
else
return std::nullopt;
} else {
return std::nullopt;
}
return llvm::divideCeil(sizeInBits, 8);
}
// Returns the size of the region.
std::optional<int64_t> MemRefRegion::getRegionSize() {
auto memRefType = cast<MemRefType>(memref.getType());
if (!memRefType.getLayout().isIdentity()) {
LLVM_DEBUG(llvm::dbgs() << "Non-identity layout map not yet supported\n");
return false;
}
// Indices to use for the DmaStart op.
// Indices for the original memref being DMAed from/to.
SmallVector<Value, 4> memIndices;
// Indices for the faster buffer being DMAed into/from.
SmallVector<Value, 4> bufIndices;
// Compute the extents of the buffer.
std::optional<int64_t> numElements = getConstantBoundingSizeAndShape();
if (!numElements) {
LLVM_DEBUG(llvm::dbgs() << "Dynamic shapes not yet supported\n");
return std::nullopt;
}
auto eltSize = getMemRefIntOrFloatEltSizeInBytes(memRefType);
if (!eltSize)
return std::nullopt;
return *eltSize * *numElements;
}
/// Returns the size of memref data in bytes if it's statically shaped,
/// std::nullopt otherwise. If the element of the memref has vector type, takes
/// into account size of the vector as well.
// TODO: improve/complete this when we have target data.
std::optional<uint64_t>
mlir::affine::getIntOrFloatMemRefSizeInBytes(MemRefType memRefType) {
if (!memRefType.hasStaticShape())
return std::nullopt;
auto elementType = memRefType.getElementType();
if (!elementType.isIntOrFloat() && !isa<VectorType>(elementType))
return std::nullopt;
auto sizeInBytes = getMemRefIntOrFloatEltSizeInBytes(memRefType);
if (!sizeInBytes)
return std::nullopt;
for (unsigned i = 0, e = memRefType.getRank(); i < e; i++) {
sizeInBytes = *sizeInBytes * memRefType.getDimSize(i);
}
return sizeInBytes;
}
template <typename LoadOrStoreOp>
LogicalResult mlir::affine::boundCheckLoadOrStoreOp(LoadOrStoreOp loadOrStoreOp,
bool emitError) {
static_assert(llvm::is_one_of<LoadOrStoreOp, AffineReadOpInterface,
AffineWriteOpInterface>::value,
"argument should be either a AffineReadOpInterface or a "
"AffineWriteOpInterface");
Operation *op = loadOrStoreOp.getOperation();
MemRefRegion region(op->getLoc());
if (failed(region.compute(op, /*loopDepth=*/0, /*sliceState=*/nullptr,
/*addMemRefDimBounds=*/false)))
return success();
LLVM_DEBUG(llvm::dbgs() << "Memory region");
LLVM_DEBUG(region.getConstraints()->dump());
bool outOfBounds = false;
unsigned rank = loadOrStoreOp.getMemRefType().getRank();
// For each dimension, check for out of bounds.
for (unsigned r = 0; r < rank; r++) {
FlatAffineValueConstraints ucst(*region.getConstraints());
// Intersect memory region with constraint capturing out of bounds (both out
// of upper and out of lower), and check if the constraint system is
// feasible. If it is, there is at least one point out of bounds.
SmallVector<int64_t, 4> ineq(rank + 1, 0);
int64_t dimSize = loadOrStoreOp.getMemRefType().getDimSize(r);
// TODO: handle dynamic dim sizes.
if (dimSize == -1)
continue;
// Check for overflow: d_i >= memref dim size.
ucst.addBound(BoundType::LB, r, dimSize);
outOfBounds = !ucst.isEmpty();
if (outOfBounds && emitError) {
loadOrStoreOp.emitOpError()
<< "memref out of upper bound access along dimension #" << (r + 1);
}
// Check for a negative index.
FlatAffineValueConstraints lcst(*region.getConstraints());
std::fill(ineq.begin(), ineq.end(), 0);
// d_i <= -1;
lcst.addBound(BoundType::UB, r, -1);
outOfBounds = !lcst.isEmpty();
if (outOfBounds && emitError) {
loadOrStoreOp.emitOpError()
<< "memref out of lower bound access along dimension #" << (r + 1);
}
}
return failure(outOfBounds);
}
// Explicitly instantiate the template so that the compiler knows we need them!
template LogicalResult
mlir::affine::boundCheckLoadOrStoreOp(AffineReadOpInterface loadOp,
bool emitError);
template LogicalResult
mlir::affine::boundCheckLoadOrStoreOp(AffineWriteOpInterface storeOp,
bool emitError);
// Returns in 'positions' the Block positions of 'op' in each ancestor
// Block from the Block containing operation, stopping at 'limitBlock'.
static void findInstPosition(Operation *op, Block *limitBlock,
SmallVectorImpl<unsigned> *positions) {
Block *block = op->getBlock();
while (block != limitBlock) {
// FIXME: This algorithm is unnecessarily O(n) and should be improved to not
// rely on linear scans.
int instPosInBlock = std::distance(block->begin(), op->getIterator());
positions->push_back(instPosInBlock);
op = block->getParentOp();
block = op->getBlock();
}
std::reverse(positions->begin(), positions->end());
}
// Returns the Operation in a possibly nested set of Blocks, where the
// position of the operation is represented by 'positions', which has a
// Block position for each level of nesting.
static Operation *getInstAtPosition(ArrayRef<unsigned> positions,
unsigned level, Block *block) {
unsigned i = 0;
for (auto &op : *block) {
if (i != positions[level]) {
++i;
continue;
}
if (level == positions.size() - 1)
return &op;
if (auto childAffineForOp = dyn_cast<AffineForOp>(op))
return getInstAtPosition(positions, level + 1,
childAffineForOp.getBody());
for (auto &region : op.getRegions()) {
for (auto &b : region)
if (auto *ret = getInstAtPosition(positions, level + 1, &b))
return ret;
}
return nullptr;
}
return nullptr;
}
// Adds loop IV bounds to 'cst' for loop IVs not found in 'ivs'.
static LogicalResult addMissingLoopIVBounds(SmallPtrSet<Value, 8> &ivs,
FlatAffineValueConstraints *cst) {
for (unsigned i = 0, e = cst->getNumDimVars(); i < e; ++i) {
auto value = cst->getValue(i);
if (ivs.count(value) == 0) {
assert(isAffineForInductionVar(value));
auto loop = getForInductionVarOwner(value);
if (failed(cst->addAffineForOpDomain(loop)))
return failure();
}
}
return success();
}
/// Returns the innermost common loop depth for the set of operations in 'ops'.
// TODO: Move this to LoopUtils.
unsigned mlir::affine::getInnermostCommonLoopDepth(
ArrayRef<Operation *> ops, SmallVectorImpl<AffineForOp> *surroundingLoops) {
unsigned numOps = ops.size();
assert(numOps > 0 && "Expected at least one operation");
std::vector<SmallVector<AffineForOp, 4>> loops(numOps);
unsigned loopDepthLimit = std::numeric_limits<unsigned>::max();
for (unsigned i = 0; i < numOps; ++i) {
getAffineForIVs(*ops[i], &loops[i]);
loopDepthLimit =
std::min(loopDepthLimit, static_cast<unsigned>(loops[i].size()));
}
unsigned loopDepth = 0;
for (unsigned d = 0; d < loopDepthLimit; ++d) {
unsigned i;
for (i = 1; i < numOps; ++i) {
if (loops[i - 1][d] != loops[i][d])
return loopDepth;
}
if (surroundingLoops)
surroundingLoops->push_back(loops[i - 1][d]);
++loopDepth;
}
return loopDepth;
}
/// Computes in 'sliceUnion' the union of all slice bounds computed at
/// 'loopDepth' between all dependent pairs of ops in 'opsA' and 'opsB', and
/// then verifies if it is valid. Returns 'SliceComputationResult::Success' if
/// union was computed correctly, an appropriate failure otherwise.
SliceComputationResult
mlir::affine::computeSliceUnion(ArrayRef<Operation *> opsA,
ArrayRef<Operation *> opsB, unsigned loopDepth,
unsigned numCommonLoops, bool isBackwardSlice,
ComputationSliceState *sliceUnion) {
// Compute the union of slice bounds between all pairs in 'opsA' and
// 'opsB' in 'sliceUnionCst'.
FlatAffineValueConstraints sliceUnionCst;
assert(sliceUnionCst.getNumDimAndSymbolVars() == 0);
std::vector<std::pair<Operation *, Operation *>> dependentOpPairs;
for (auto *i : opsA) {
MemRefAccess srcAccess(i);
for (auto *j : opsB) {
MemRefAccess dstAccess(j);
if (srcAccess.memref != dstAccess.memref)
continue;
// Check if 'loopDepth' exceeds nesting depth of src/dst ops.
if ((!isBackwardSlice && loopDepth > getNestingDepth(i)) ||
(isBackwardSlice && loopDepth > getNestingDepth(j))) {
LLVM_DEBUG(llvm::dbgs() << "Invalid loop depth\n");
return SliceComputationResult::GenericFailure;
}
bool readReadAccesses = isa<AffineReadOpInterface>(srcAccess.opInst) &&
isa<AffineReadOpInterface>(dstAccess.opInst);
FlatAffineValueConstraints dependenceConstraints;
// Check dependence between 'srcAccess' and 'dstAccess'.
DependenceResult result = checkMemrefAccessDependence(
srcAccess, dstAccess, /*loopDepth=*/numCommonLoops + 1,
&dependenceConstraints, /*dependenceComponents=*/nullptr,
/*allowRAR=*/readReadAccesses);
if (result.value == DependenceResult::Failure) {
LLVM_DEBUG(llvm::dbgs() << "Dependence check failed\n");
return SliceComputationResult::GenericFailure;
}
if (result.value == DependenceResult::NoDependence)
continue;
dependentOpPairs.emplace_back(i, j);
// Compute slice bounds for 'srcAccess' and 'dstAccess'.
ComputationSliceState tmpSliceState;
mlir::affine::getComputationSliceState(i, j, &dependenceConstraints,
loopDepth, isBackwardSlice,
&tmpSliceState);
if (sliceUnionCst.getNumDimAndSymbolVars() == 0) {
// Initialize 'sliceUnionCst' with the bounds computed in previous step.
if (failed(tmpSliceState.getAsConstraints(&sliceUnionCst))) {
LLVM_DEBUG(llvm::dbgs()
<< "Unable to compute slice bound constraints\n");
return SliceComputationResult::GenericFailure;
}
assert(sliceUnionCst.getNumDimAndSymbolVars() > 0);
continue;
}
// Compute constraints for 'tmpSliceState' in 'tmpSliceCst'.
FlatAffineValueConstraints tmpSliceCst;
if (failed(tmpSliceState.getAsConstraints(&tmpSliceCst))) {
LLVM_DEBUG(llvm::dbgs()
<< "Unable to compute slice bound constraints\n");
return SliceComputationResult::GenericFailure;
}
// Align coordinate spaces of 'sliceUnionCst' and 'tmpSliceCst' if needed.
if (!sliceUnionCst.areVarsAlignedWithOther(tmpSliceCst)) {
// Pre-constraint var alignment: record loop IVs used in each constraint
// system.
SmallPtrSet<Value, 8> sliceUnionIVs;
for (unsigned k = 0, l = sliceUnionCst.getNumDimVars(); k < l; ++k)
sliceUnionIVs.insert(sliceUnionCst.getValue(k));
SmallPtrSet<Value, 8> tmpSliceIVs;
for (unsigned k = 0, l = tmpSliceCst.getNumDimVars(); k < l; ++k)
tmpSliceIVs.insert(tmpSliceCst.getValue(k));
sliceUnionCst.mergeAndAlignVarsWithOther(/*offset=*/0, &tmpSliceCst);
// Post-constraint var alignment: add loop IV bounds missing after
// var alignment to constraint systems. This can occur if one constraint
// system uses an loop IV that is not used by the other. The call
// to unionBoundingBox below expects constraints for each Loop IV, even
// if they are the unsliced full loop bounds added here.
if (failed(addMissingLoopIVBounds(sliceUnionIVs, &sliceUnionCst)))
return SliceComputationResult::GenericFailure;
if (failed(addMissingLoopIVBounds(tmpSliceIVs, &tmpSliceCst)))
return SliceComputationResult::GenericFailure;
}
// Compute union bounding box of 'sliceUnionCst' and 'tmpSliceCst'.
if (sliceUnionCst.getNumLocalVars() > 0 ||
tmpSliceCst.getNumLocalVars() > 0 ||
failed(sliceUnionCst.unionBoundingBox(tmpSliceCst))) {
LLVM_DEBUG(llvm::dbgs()
<< "Unable to compute union bounding box of slice bounds\n");
return SliceComputationResult::GenericFailure;
}
}
}
// Empty union.
if (sliceUnionCst.getNumDimAndSymbolVars() == 0)
return SliceComputationResult::GenericFailure;
// Gather loops surrounding ops from loop nest where slice will be inserted.
SmallVector<Operation *, 4> ops;
for (auto &dep : dependentOpPairs) {
ops.push_back(isBackwardSlice ? dep.second : dep.first);
}
SmallVector<AffineForOp, 4> surroundingLoops;
unsigned innermostCommonLoopDepth =
getInnermostCommonLoopDepth(ops, &surroundingLoops);
if (loopDepth > innermostCommonLoopDepth) {
LLVM_DEBUG(llvm::dbgs() << "Exceeds max loop depth\n");
return SliceComputationResult::GenericFailure;
}
// Store 'numSliceLoopIVs' before converting dst loop IVs to dims.
unsigned numSliceLoopIVs = sliceUnionCst.getNumDimVars();
// Convert any dst loop IVs which are symbol variables to dim variables.
sliceUnionCst.convertLoopIVSymbolsToDims();
sliceUnion->clearBounds();
sliceUnion->lbs.resize(numSliceLoopIVs, AffineMap());
sliceUnion->ubs.resize(numSliceLoopIVs, AffineMap());
// Get slice bounds from slice union constraints 'sliceUnionCst'.
sliceUnionCst.getSliceBounds(/*offset=*/0, numSliceLoopIVs,
opsA[0]->getContext(), &sliceUnion->lbs,
&sliceUnion->ubs);
// Add slice bound operands of union.
SmallVector<Value, 4> sliceBoundOperands;
sliceUnionCst.getValues(numSliceLoopIVs,
sliceUnionCst.getNumDimAndSymbolVars(),
&sliceBoundOperands);
// Copy src loop IVs from 'sliceUnionCst' to 'sliceUnion'.
sliceUnion->ivs.clear();
sliceUnionCst.getValues(0, numSliceLoopIVs, &sliceUnion->ivs);
// Set loop nest insertion point to block start at 'loopDepth'.
sliceUnion->insertPoint =
isBackwardSlice
? surroundingLoops[loopDepth - 1].getBody()->begin()
: std::prev(surroundingLoops[loopDepth - 1].getBody()->end());
// Give each bound its own copy of 'sliceBoundOperands' for subsequent
// canonicalization.
sliceUnion->lbOperands.resize(numSliceLoopIVs, sliceBoundOperands);
sliceUnion->ubOperands.resize(numSliceLoopIVs, sliceBoundOperands);
// Check if the slice computed is valid. Return success only if it is verified
// that the slice is valid, otherwise return appropriate failure status.
std::optional<bool> isSliceValid = sliceUnion->isSliceValid();
if (!isSliceValid) {
LLVM_DEBUG(llvm::dbgs() << "Cannot determine if the slice is valid\n");
return SliceComputationResult::GenericFailure;
}
if (!*isSliceValid)
return SliceComputationResult::IncorrectSliceFailure;
return SliceComputationResult::Success;
}
// TODO: extend this to handle multiple result maps.
static std::optional<uint64_t> getConstDifference(AffineMap lbMap,
AffineMap ubMap) {
assert(lbMap.getNumResults() == 1 && "expected single result bound map");
assert(ubMap.getNumResults() == 1 && "expected single result bound map");
assert(lbMap.getNumDims() == ubMap.getNumDims());
assert(lbMap.getNumSymbols() == ubMap.getNumSymbols());
AffineExpr lbExpr(lbMap.getResult(0));
AffineExpr ubExpr(ubMap.getResult(0));
auto loopSpanExpr = simplifyAffineExpr(ubExpr - lbExpr, lbMap.getNumDims(),
lbMap.getNumSymbols());
auto cExpr = dyn_cast<AffineConstantExpr>(loopSpanExpr);
if (!cExpr)
return std::nullopt;
return cExpr.getValue();
}
// Builds a map 'tripCountMap' from AffineForOp to constant trip count for loop
// nest surrounding represented by slice loop bounds in 'slice'. Returns true
// on success, false otherwise (if a non-constant trip count was encountered).
// TODO: Make this work with non-unit step loops.
bool mlir::affine::buildSliceTripCountMap(
const ComputationSliceState &slice,
llvm::SmallDenseMap<Operation *, uint64_t, 8> *tripCountMap) {
unsigned numSrcLoopIVs = slice.ivs.size();
// Populate map from AffineForOp -> trip count
for (unsigned i = 0; i < numSrcLoopIVs; ++i) {
AffineForOp forOp = getForInductionVarOwner(slice.ivs[i]);
auto *op = forOp.getOperation();
AffineMap lbMap = slice.lbs[i];
AffineMap ubMap = slice.ubs[i];
// If lower or upper bound maps are null or provide no results, it implies
// that source loop was not at all sliced, and the entire loop will be a
// part of the slice.
if (!lbMap || lbMap.getNumResults() == 0 || !ubMap ||
ubMap.getNumResults() == 0) {
// The iteration of src loop IV 'i' was not sliced. Use full loop bounds.
if (forOp.hasConstantLowerBound() && forOp.hasConstantUpperBound()) {
(*tripCountMap)[op] =
forOp.getConstantUpperBound() - forOp.getConstantLowerBound();
continue;
}
std::optional<uint64_t> maybeConstTripCount = getConstantTripCount(forOp);
if (maybeConstTripCount.has_value()) {
(*tripCountMap)[op] = *maybeConstTripCount;
continue;
}
return false;
}
std::optional<uint64_t> tripCount = getConstDifference(lbMap, ubMap);
// Slice bounds are created with a constant ub - lb difference.
if (!tripCount.has_value())
return false;
(*tripCountMap)[op] = *tripCount;
}
return true;
}
// Return the number of iterations in the given slice.
uint64_t mlir::affine::getSliceIterationCount(
const llvm::SmallDenseMap<Operation *, uint64_t, 8> &sliceTripCountMap) {
uint64_t iterCount = 1;
for (const auto &count : sliceTripCountMap) {
iterCount *= count.second;
}
return iterCount;
}
const char *const kSliceFusionBarrierAttrName = "slice_fusion_barrier";
// Computes slice bounds by projecting out any loop IVs from
// 'dependenceConstraints' at depth greater than 'loopDepth', and computes slice
// bounds in 'sliceState' which represent the one loop nest's IVs in terms of
// the other loop nest's IVs, symbols and constants (using 'isBackwardsSlice').
void mlir::affine::getComputationSliceState(
Operation *depSourceOp, Operation *depSinkOp,
FlatAffineValueConstraints *dependenceConstraints, unsigned loopDepth,
bool isBackwardSlice, ComputationSliceState *sliceState) {
// Get loop nest surrounding src operation.
SmallVector<AffineForOp, 4> srcLoopIVs;
getAffineForIVs(*depSourceOp, &srcLoopIVs);
unsigned numSrcLoopIVs = srcLoopIVs.size();
// Get loop nest surrounding dst operation.
SmallVector<AffineForOp, 4> dstLoopIVs;
getAffineForIVs(*depSinkOp, &dstLoopIVs);
unsigned numDstLoopIVs = dstLoopIVs.size();
assert((!isBackwardSlice && loopDepth <= numSrcLoopIVs) ||
(isBackwardSlice && loopDepth <= numDstLoopIVs));
// Project out dimensions other than those up to 'loopDepth'.
unsigned pos = isBackwardSlice ? numSrcLoopIVs + loopDepth : loopDepth;
unsigned num =
isBackwardSlice ? numDstLoopIVs - loopDepth : numSrcLoopIVs - loopDepth;
dependenceConstraints->projectOut(pos, num);
// Add slice loop IV values to 'sliceState'.
unsigned offset = isBackwardSlice ? 0 : loopDepth;
unsigned numSliceLoopIVs = isBackwardSlice ? numSrcLoopIVs : numDstLoopIVs;
dependenceConstraints->getValues(offset, offset + numSliceLoopIVs,
&sliceState->ivs);
// Set up lower/upper bound affine maps for the slice.
sliceState->lbs.resize(numSliceLoopIVs, AffineMap());
sliceState->ubs.resize(numSliceLoopIVs, AffineMap());
// Get bounds for slice IVs in terms of other IVs, symbols, and constants.
dependenceConstraints->getSliceBounds(offset, numSliceLoopIVs,
depSourceOp->getContext(),
&sliceState->lbs, &sliceState->ubs);
// Set up bound operands for the slice's lower and upper bounds.
SmallVector<Value, 4> sliceBoundOperands;
unsigned numDimsAndSymbols = dependenceConstraints->getNumDimAndSymbolVars();
for (unsigned i = 0; i < numDimsAndSymbols; ++i) {
if (i < offset || i >= offset + numSliceLoopIVs) {
sliceBoundOperands.push_back(dependenceConstraints->getValue(i));
}
}
// Give each bound its own copy of 'sliceBoundOperands' for subsequent
// canonicalization.
sliceState->lbOperands.resize(numSliceLoopIVs, sliceBoundOperands);
sliceState->ubOperands.resize(numSliceLoopIVs, sliceBoundOperands);
// Set destination loop nest insertion point to block start at 'dstLoopDepth'.
sliceState->insertPoint =
isBackwardSlice ? dstLoopIVs[loopDepth - 1].getBody()->begin()
: std::prev(srcLoopIVs[loopDepth - 1].getBody()->end());
llvm::SmallDenseSet<Value, 8> sequentialLoops;
if (isa<AffineReadOpInterface>(depSourceOp) &&
isa<AffineReadOpInterface>(depSinkOp)) {
// For read-read access pairs, clear any slice bounds on sequential loops.
// Get sequential loops in loop nest rooted at 'srcLoopIVs[0]'.
getSequentialLoops(isBackwardSlice ? srcLoopIVs[0] : dstLoopIVs[0],
&sequentialLoops);
}
auto getSliceLoop = [&](unsigned i) {
return isBackwardSlice ? srcLoopIVs[i] : dstLoopIVs[i];
};
auto isInnermostInsertion = [&]() {
return (isBackwardSlice ? loopDepth >= srcLoopIVs.size()
: loopDepth >= dstLoopIVs.size());
};
llvm::SmallDenseMap<Operation *, uint64_t, 8> sliceTripCountMap;
auto srcIsUnitSlice = [&]() {
return (buildSliceTripCountMap(*sliceState, &sliceTripCountMap) &&
(getSliceIterationCount(sliceTripCountMap) == 1));
};
// Clear all sliced loop bounds beginning at the first sequential loop, or
// first loop with a slice fusion barrier attribute..
for (unsigned i = 0; i < numSliceLoopIVs; ++i) {
Value iv = getSliceLoop(i).getInductionVar();
if (sequentialLoops.count(iv) == 0 &&
getSliceLoop(i)->getAttr(kSliceFusionBarrierAttrName) == nullptr)
continue;
// Skip reset of bounds of reduction loop inserted in the destination loop
// that meets the following conditions:
// 1. Slice is single trip count.
// 2. Loop bounds of the source and destination match.
// 3. Is being inserted at the innermost insertion point.
std::optional<bool> isMaximal = sliceState->isMaximal();
if (isLoopParallelAndContainsReduction(getSliceLoop(i)) &&
isInnermostInsertion() && srcIsUnitSlice() && isMaximal && *isMaximal)
continue;
for (unsigned j = i; j < numSliceLoopIVs; ++j) {
sliceState->lbs[j] = AffineMap();
sliceState->ubs[j] = AffineMap();
}
break;
}
}
/// Creates a computation slice of the loop nest surrounding 'srcOpInst',
/// updates the slice loop bounds with any non-null bound maps specified in
/// 'sliceState', and inserts this slice into the loop nest surrounding
/// 'dstOpInst' at loop depth 'dstLoopDepth'.
// TODO: extend the slicing utility to compute slices that
// aren't necessarily a one-to-one relation b/w the source and destination. The
// relation between the source and destination could be many-to-many in general.
// TODO: the slice computation is incorrect in the cases
// where the dependence from the source to the destination does not cover the
// entire destination index set. Subtract out the dependent destination
// iterations from destination index set and check for emptiness --- this is one
// solution.
AffineForOp mlir::affine::insertBackwardComputationSlice(
Operation *srcOpInst, Operation *dstOpInst, unsigned dstLoopDepth,
ComputationSliceState *sliceState) {
// Get loop nest surrounding src operation.
SmallVector<AffineForOp, 4> srcLoopIVs;
getAffineForIVs(*srcOpInst, &srcLoopIVs);
unsigned numSrcLoopIVs = srcLoopIVs.size();
// Get loop nest surrounding dst operation.
SmallVector<AffineForOp, 4> dstLoopIVs;
getAffineForIVs(*dstOpInst, &dstLoopIVs);
unsigned dstLoopIVsSize = dstLoopIVs.size();
if (dstLoopDepth > dstLoopIVsSize) {
dstOpInst->emitError("invalid destination loop depth");
return AffineForOp();
}
// Find the op block positions of 'srcOpInst' within 'srcLoopIVs'.
SmallVector<unsigned, 4> positions;
// TODO: This code is incorrect since srcLoopIVs can be 0-d.
findInstPosition(srcOpInst, srcLoopIVs[0]->getBlock(), &positions);
// Clone src loop nest and insert it a the beginning of the operation block
// of the loop at 'dstLoopDepth' in 'dstLoopIVs'.
auto dstAffineForOp = dstLoopIVs[dstLoopDepth - 1];
OpBuilder b(dstAffineForOp.getBody(), dstAffineForOp.getBody()->begin());
auto sliceLoopNest =
cast<AffineForOp>(b.clone(*srcLoopIVs[0].getOperation()));
Operation *sliceInst =
getInstAtPosition(positions, /*level=*/0, sliceLoopNest.getBody());
// Get loop nest surrounding 'sliceInst'.
SmallVector<AffineForOp, 4> sliceSurroundingLoops;
getAffineForIVs(*sliceInst, &sliceSurroundingLoops);
// Sanity check.
unsigned sliceSurroundingLoopsSize = sliceSurroundingLoops.size();
(void)sliceSurroundingLoopsSize;
assert(dstLoopDepth + numSrcLoopIVs >= sliceSurroundingLoopsSize);
unsigned sliceLoopLimit = dstLoopDepth + numSrcLoopIVs;
(void)sliceLoopLimit;
assert(sliceLoopLimit >= sliceSurroundingLoopsSize);
// Update loop bounds for loops in 'sliceLoopNest'.
for (unsigned i = 0; i < numSrcLoopIVs; ++i) {
auto forOp = sliceSurroundingLoops[dstLoopDepth + i];
if (AffineMap lbMap = sliceState->lbs[i])
forOp.setLowerBound(sliceState->lbOperands[i], lbMap);
if (AffineMap ubMap = sliceState->ubs[i])
forOp.setUpperBound(sliceState->ubOperands[i], ubMap);
}
return sliceLoopNest;
}
// Constructs MemRefAccess populating it with the memref, its indices and
// opinst from 'loadOrStoreOpInst'.
MemRefAccess::MemRefAccess(Operation *loadOrStoreOpInst) {
if (auto loadOp = dyn_cast<AffineReadOpInterface>(loadOrStoreOpInst)) {
memref = loadOp.getMemRef();
opInst = loadOrStoreOpInst;
llvm::append_range(indices, loadOp.getMapOperands());
} else {
assert(isa<AffineWriteOpInterface>(loadOrStoreOpInst) &&
"Affine read/write op expected");
auto storeOp = cast<AffineWriteOpInterface>(loadOrStoreOpInst);
opInst = loadOrStoreOpInst;
memref = storeOp.getMemRef();
llvm::append_range(indices, storeOp.getMapOperands());
}
}
unsigned MemRefAccess::getRank() const {
return cast<MemRefType>(memref.getType()).getRank();
}
bool MemRefAccess::isStore() const {
return isa<AffineWriteOpInterface>(opInst);
}
/// Returns the nesting depth of this statement, i.e., the number of loops
/// surrounding this statement.
unsigned mlir::affine::getNestingDepth(Operation *op) {
Operation *currOp = op;
unsigned depth = 0;
while ((currOp = currOp->getParentOp())) {
if (isa<AffineForOp>(currOp))
depth++;
}
return depth;
}
/// Equal if both affine accesses are provably equivalent (at compile
/// time) when considering the memref, the affine maps and their respective
/// operands. The equality of access functions + operands is checked by
/// subtracting fully composed value maps, and then simplifying the difference
/// using the expression flattener.
/// TODO: this does not account for aliasing of memrefs.
bool MemRefAccess::operator==(const MemRefAccess &rhs) const {
if (memref != rhs.memref)
return false;
AffineValueMap diff, thisMap, rhsMap;
getAccessMap(&thisMap);
rhs.getAccessMap(&rhsMap);
AffineValueMap::difference(thisMap, rhsMap, &diff);
return llvm::all_of(diff.getAffineMap().getResults(),
[](AffineExpr e) { return e == 0; });
}
void mlir::affine::getAffineIVs(Operation &op, SmallVectorImpl<Value> &ivs) {
auto *currOp = op.getParentOp();
AffineForOp currAffineForOp;
// Traverse up the hierarchy collecting all 'affine.for' and affine.parallel
// operation while skipping over 'affine.if' operations.
while (currOp) {
if (AffineForOp currAffineForOp = dyn_cast<AffineForOp>(currOp))
ivs.push_back(currAffineForOp.getInductionVar());
else if (auto parOp = dyn_cast<AffineParallelOp>(currOp))
llvm::append_range(ivs, parOp.getIVs());
currOp = currOp->getParentOp();
}
std::reverse(ivs.begin(), ivs.end());
}
/// Returns the number of surrounding loops common to 'loopsA' and 'loopsB',
/// where each lists loops from outer-most to inner-most in loop nest.
unsigned mlir::affine::getNumCommonSurroundingLoops(Operation &a,
Operation &b) {
SmallVector<Value, 4> loopsA, loopsB;
getAffineIVs(a, loopsA);
getAffineIVs(b, loopsB);
unsigned minNumLoops = std::min(loopsA.size(), loopsB.size());
unsigned numCommonLoops = 0;
for (unsigned i = 0; i < minNumLoops; ++i) {
if (loopsA[i] != loopsB[i])
break;
++numCommonLoops;
}
return numCommonLoops;
}
static std::optional<int64_t> getMemoryFootprintBytes(Block &block,
Block::iterator start,
Block::iterator end,
int memorySpace) {
SmallDenseMap<Value, std::unique_ptr<MemRefRegion>, 4> regions;
// Walk this 'affine.for' operation to gather all memory regions.
auto result = block.walk(start, end, [&](Operation *opInst) -> WalkResult {
if (!isa<AffineReadOpInterface, AffineWriteOpInterface>(opInst)) {
// Neither load nor a store op.
return WalkResult::advance();
}
// Compute the memref region symbolic in any IVs enclosing this block.
auto region = std::make_unique<MemRefRegion>(opInst->getLoc());
if (failed(
region->compute(opInst,
/*loopDepth=*/getNestingDepth(&*block.begin())))) {
return opInst->emitError("error obtaining memory region\n");
}
auto it = regions.find(region->memref);
if (it == regions.end()) {
regions[region->memref] = std::move(region);
} else if (failed(it->second->unionBoundingBox(*region))) {
return opInst->emitWarning(
"getMemoryFootprintBytes: unable to perform a union on a memory "
"region");
}
return WalkResult::advance();
});
if (result.wasInterrupted())
return std::nullopt;
int64_t totalSizeInBytes = 0;
for (const auto &region : regions) {
std::optional<int64_t> size = region.second->getRegionSize();
if (!size.has_value())
return std::nullopt;
totalSizeInBytes += *size;
}
return totalSizeInBytes;
}
std::optional<int64_t> mlir::affine::getMemoryFootprintBytes(AffineForOp forOp,
int memorySpace) {
auto *forInst = forOp.getOperation();
return ::getMemoryFootprintBytes(
*forInst->getBlock(), Block::iterator(forInst),
std::next(Block::iterator(forInst)), memorySpace);
}
/// Returns whether a loop is parallel and contains a reduction loop.
bool mlir::affine::isLoopParallelAndContainsReduction(AffineForOp forOp) {
SmallVector<LoopReduction> reductions;
if (!isLoopParallel(forOp, &reductions))
return false;
return !reductions.empty();
}
/// Returns in 'sequentialLoops' all sequential loops in loop nest rooted
/// at 'forOp'.
void mlir::affine::getSequentialLoops(
AffineForOp forOp, llvm::SmallDenseSet<Value, 8> *sequentialLoops) {
forOp->walk([&](Operation *op) {
if (auto innerFor = dyn_cast<AffineForOp>(op))
if (!isLoopParallel(innerFor))
sequentialLoops->insert(innerFor.getInductionVar());
});
}
IntegerSet mlir::affine::simplifyIntegerSet(IntegerSet set) {
FlatAffineValueConstraints fac(set);
if (fac.isEmpty())
return IntegerSet::getEmptySet(set.getNumDims(), set.getNumSymbols(),
set.getContext());
fac.removeTrivialRedundancy();
auto simplifiedSet = fac.getAsIntegerSet(set.getContext());
assert(simplifiedSet && "guaranteed to succeed while roundtripping");
return simplifiedSet;
}
static void unpackOptionalValues(ArrayRef<std::optional<Value>> source,
SmallVector<Value> &target) {
target =
llvm::to_vector<4>(llvm::map_range(source, [](std::optional<Value> val) {
return val.has_value() ? *val : Value();
}));
}
/// Bound an identifier `pos` in a given FlatAffineValueConstraints with
/// constraints drawn from an affine map. Before adding the constraint, the
/// dimensions/symbols of the affine map are aligned with `constraints`.
/// `operands` are the SSA Value operands used with the affine map.
/// Note: This function adds a new symbol column to the `constraints` for each
/// dimension/symbol that exists in the affine map but not in `constraints`.
static LogicalResult alignAndAddBound(FlatAffineValueConstraints &constraints,
BoundType type, unsigned pos,
AffineMap map, ValueRange operands) {
SmallVector<Value> dims, syms, newSyms;
unpackOptionalValues(constraints.getMaybeValues(VarKind::SetDim), dims);
unpackOptionalValues(constraints.getMaybeValues(VarKind::Symbol), syms);
AffineMap alignedMap =
alignAffineMapWithValues(map, operands, dims, syms, &newSyms);
for (unsigned i = syms.size(); i < newSyms.size(); ++i)
constraints.appendSymbolVar(newSyms[i]);
return constraints.addBound(type, pos, alignedMap);
}
/// Add `val` to each result of `map`.
static AffineMap addConstToResults(AffineMap map, int64_t val) {
SmallVector<AffineExpr> newResults;
for (AffineExpr r : map.getResults())
newResults.push_back(r + val);
return AffineMap::get(map.getNumDims(), map.getNumSymbols(), newResults,
map.getContext());
}
// Attempt to simplify the given min/max operation by proving that its value is
// bounded by the same lower and upper bound.
//
// Bounds are computed by FlatAffineValueConstraints. Invariants required for
// finding/proving bounds should be supplied via `constraints`.
//
// 1. Add dimensions for `op` and `opBound` (lower or upper bound of `op`).
// 2. Compute an upper bound of `op` (in case of `isMin`) or a lower bound (in
// case of `!isMin`) and bind it to `opBound`. SSA values that are used in
// `op` but are not part of `constraints`, are added as extra symbols.
// 3. For each result of `op`: Add result as a dimension `r_i`. Prove that:
// * If `isMin`: r_i >= opBound
// * If `isMax`: r_i <= opBound
// If this is the case, ub(op) == lb(op).
// 4. Replace `op` with `opBound`.
//
// In summary, the following constraints are added throughout this function.
// Note: `invar` are dimensions added by the caller to express the invariants.
// (Showing only the case where `isMin`.)
//
// invar | op | opBound | r_i | extra syms... | const | eq/ineq
// ------+-------+---------+-----+---------------+-------+-------------------
// (various eq./ineq. constraining `invar`, added by the caller)
// ... | 0 | 0 | 0 | 0 | ... | ...
// ------+-------+---------+-----+---------------+-------+-------------------
// (various ineq. constraining `op` in terms of `op` operands (`invar` and
// extra `op` operands "extra syms" that are not in `invar`)).
// ... | -1 | 0 | 0 | ... | ... | >= 0
// ------+-------+---------+-----+---------------+-------+-------------------
// (set `opBound` to `op` upper bound in terms of `invar` and "extra syms")
// ... | 0 | -1 | 0 | ... | ... | = 0
// ------+-------+---------+-----+---------------+-------+-------------------
// (for each `op` map result r_i: set r_i to corresponding map result,
// prove that r_i >= minOpUb via contradiction)
// ... | 0 | 0 | -1 | ... | ... | = 0
// 0 | 0 | 1 | -1 | 0 | -1 | >= 0
//
FailureOr<AffineValueMap> mlir::affine::simplifyConstrainedMinMaxOp(
Operation *op, FlatAffineValueConstraints constraints) {
bool isMin = isa<AffineMinOp>(op);
assert((isMin || isa<AffineMaxOp>(op)) && "expect AffineMin/MaxOp");
MLIRContext *ctx = op->getContext();
Builder builder(ctx);
AffineMap map =
isMin ? cast<AffineMinOp>(op).getMap() : cast<AffineMaxOp>(op).getMap();
ValueRange operands = op->getOperands();
unsigned numResults = map.getNumResults();
// Add a few extra dimensions.
unsigned dimOp = constraints.appendDimVar(); // `op`
unsigned dimOpBound = constraints.appendDimVar(); // `op` lower/upper bound
unsigned resultDimStart = constraints.appendDimVar(/*num=*/numResults);
// Add an inequality for each result expr_i of map:
// isMin: op <= expr_i, !isMin: op >= expr_i
auto boundType = isMin ? BoundType::UB : BoundType::LB;
// Upper bounds are exclusive, so add 1. (`affine.min` ops are inclusive.)
AffineMap mapLbUb = isMin ? addConstToResults(map, 1) : map;
if (failed(
alignAndAddBound(constraints, boundType, dimOp, mapLbUb, operands)))
return failure();
// Try to compute a lower/upper bound for op, expressed in terms of the other
// `dims` and extra symbols.
SmallVector<AffineMap> opLb(1), opUb(1);
constraints.getSliceBounds(dimOp, 1, ctx, &opLb, &opUb);
AffineMap sliceBound = isMin ? opUb[0] : opLb[0];
// TODO: `getSliceBounds` may return multiple bounds at the moment. This is
// a TODO of `getSliceBounds` and not handled here.
if (!sliceBound || sliceBound.getNumResults() != 1)
return failure(); // No or multiple bounds found.
// Recover the inclusive UB in the case of an `affine.min`.
AffineMap boundMap = isMin ? addConstToResults(sliceBound, -1) : sliceBound;
// Add an equality: Set dimOpBound to computed bound.
// Add back dimension for op. (Was removed by `getSliceBounds`.)
AffineMap alignedBoundMap = boundMap.shiftDims(/*shift=*/1, /*offset=*/dimOp);
if (failed(constraints.addBound(BoundType::EQ, dimOpBound, alignedBoundMap)))
return failure();
// If the constraint system is empty, there is an inconsistency. (E.g., this
// can happen if loop lb > ub.)
if (constraints.isEmpty())
return failure();
// In the case of `isMin` (`!isMin` is inversed):
// Prove that each result of `map` has a lower bound that is equal to (or
// greater than) the upper bound of `op` (`dimOpBound`). In that case, `op`
// can be replaced with the bound. I.e., prove that for each result
// expr_i (represented by dimension r_i):
//
// r_i >= opBound
//
// To prove this inequality, add its negation to the constraint set and prove
// that the constraint set is empty.
for (unsigned i = resultDimStart; i < resultDimStart + numResults; ++i) {
FlatAffineValueConstraints newConstr(constraints);
// Add an equality: r_i = expr_i
// Note: These equalities could have been added earlier and used to express
// minOp <= expr_i. However, then we run the risk that `getSliceBounds`
// computes minOpUb in terms of r_i dims, which is not desired.
if (failed(alignAndAddBound(newConstr, BoundType::EQ, i,
map.getSubMap({i - resultDimStart}), operands)))
return failure();
// If `isMin`: Add inequality: r_i < opBound
// equiv.: opBound - r_i - 1 >= 0
// If `!isMin`: Add inequality: r_i > opBound
// equiv.: -opBound + r_i - 1 >= 0
SmallVector<int64_t> ineq(newConstr.getNumCols(), 0);
ineq[dimOpBound] = isMin ? 1 : -1;
ineq[i] = isMin ? -1 : 1;
ineq[newConstr.getNumCols() - 1] = -1;
newConstr.addInequality(ineq);
if (!newConstr.isEmpty())
return failure();
}
// Lower and upper bound of `op` are equal. Replace `minOp` with its bound.
AffineMap newMap = alignedBoundMap;
SmallVector<Value> newOperands;
unpackOptionalValues(constraints.getMaybeValues(), newOperands);
// If dims/symbols have known constant values, use those in order to simplify
// the affine map further.
for (int64_t i = 0, e = constraints.getNumDimAndSymbolVars(); i < e; ++i) {
// Skip unused operands and operands that are already constants.
if (!newOperands[i] || getConstantIntValue(newOperands[i]))
continue;
if (auto bound = constraints.getConstantBound64(BoundType::EQ, i)) {
AffineExpr expr =
i < newMap.getNumDims()
? builder.getAffineDimExpr(i)
: builder.getAffineSymbolExpr(i - newMap.getNumDims());
newMap = newMap.replace(expr, builder.getAffineConstantExpr(*bound),
newMap.getNumDims(), newMap.getNumSymbols());
}
}
affine::canonicalizeMapAndOperands(&newMap, &newOperands);
return AffineValueMap(newMap, newOperands);
}