Files
clang-p2996/mlir/lib/Dialect/Tosa/Transforms/TosaFolders.cpp
Spenser Bauman fa6e433836 [mlir][tosa] Fix assertion failure in tosa-layerwise-constant-fold (#85670)
The existing implementation of tosa-layerwise-constant-fold only works
for constant values backed by DenseElementsAttr. For constants which
hold DenseResourceAttrs, the folder will end up asserting at runtime, as
it assumes that the backing data can always be accessed through
ElementsAttr::getValues.

This change reworks the logic so that types types used to perform
folding are based on whether the ElementsAttr can be converted to a
range of that particular type.

---------

Co-authored-by: Spenser Bauman <sabauma@mathworks.com>
Co-authored-by: Tina Jung <tinamaria.jung@amd.com>
2024-03-21 09:02:21 -04:00

432 lines
16 KiB
C++

//===- TosaFolders.cpp ----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Fold TOSA operations
//
//===----------------------------------------------------------------------===//
#include <functional>
#include <numeric>
#include "mlir/Dialect/Tosa/IR/TosaOps.h"
#include "mlir/Dialect/Tosa/Transforms/Passes.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Matchers.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Support/LogicalResult.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/FloatingPointMode.h"
#include "llvm/ADT/SmallVector.h"
using namespace mlir;
using namespace mlir::tosa;
namespace {
/// Apply the given transformation \p toApply to every element of the tensor to
/// be transformed \p toTransform.
///
/// Elements of \p toTransform are extracted as \p SrcValueType.
///
/// \returns A tensor with the same size as \p toTransform, containing
/// \p TargetValueType values of type \p TargetType.
template <class SrcValType, class TargetValType, class TargetType>
DenseElementsAttr applyElementWise(
const DenseElementsAttr &toTransform,
const std::function<TargetValType(const SrcValType &)> &toApply,
TargetType targetType) {
SmallVector<TargetValType> transformedValues;
// We already know the amount of values we will insert, reserve space for
// all of them to avoid dynamic resizing
transformedValues.reserve(toTransform.getNumElements());
for (auto val : toTransform.getValues<SrcValType>()) {
auto transformedVal = toApply(val);
transformedValues.push_back(transformedVal);
}
// Make sure that the output tensor has the expected output type
auto inShape = toTransform.getType();
auto outTy = inShape.cloneWith({}, targetType);
return DenseElementsAttr::get(outTy, transformedValues);
}
template DenseElementsAttr applyElementWise<APFloat, APFloat, FloatType>(
const DenseElementsAttr &toTransform,
const std::function<APFloat(const APFloat &)> &toApply,
FloatType targetType);
/// Function that checks if the type contained in \p toCheck is float.
LogicalResult notifyIfNotFloat(TypedValue<TensorType> toCheck, TosaOp location,
PatternRewriter &rewriter) {
if (isa<FloatType>(toCheck.getType().getElementType())) {
return success();
}
return rewriter.notifyMatchFailure(location,
"Unexpected input tensor type: the "
"TOSA spec only allows floats");
}
/// Function that checks if \p toCheck is a dense TOSA constant tensor.
LogicalResult notifyIfNoTosaDenseConstantTensor(TypedValue<TensorType> toCheck,
TosaOp location,
PatternRewriter &rewriter) {
// Check whether the tensor is constant and dense
// TODO We currently ensure the tensor is dense by using the correct type for
// the bind_value, however we do not actually need this value. It would be
// nicer to only have a check here.
DenseElementsAttr tmp;
if (!matchPattern(toCheck, m_Constant(&tmp))) {
return rewriter.notifyMatchFailure(location,
"Non-const or non-dense input tensor");
}
// Make sure it actually is a TOSA constant (the match allows for other
// constants as well)
if (isa<ConstOp>(toCheck.getDefiningOp())) {
return success();
}
return rewriter.notifyMatchFailure(location,
"The reciprocal can only be folded if "
"it operates on a TOSA constant");
}
/// Function that checks if \p toCheck is a dense TOSA constant float tensor.
LogicalResult notifyIfNotConstantFloatTosaTensor(TypedValue<TensorType> toCheck,
TosaOp location,
PatternRewriter &rewriter) {
auto floatCheck = notifyIfNotFloat(toCheck, location, rewriter);
if (failed(floatCheck)) {
return floatCheck;
}
return notifyIfNoTosaDenseConstantTensor(toCheck, location, rewriter);
}
/// Heuristic to decide when to replace a unary operation on a constant with the
/// folded value.
/// Folding operations on constants can lead to an increased memory usage
/// whenever the input cannot be replaced but a new constant is inserted. Hence,
/// this will currently only suggest folding when the memory impact is
/// negligible.
/// Takes the \p unaryOp and the constant input \p values.
/// \returns Whether folding should be applied.
bool constantUnaryOpShouldBeFolded(TosaOp unaryOp, DenseElementsAttr values) {
assert(unaryOp->getNumOperands() == 1);
auto inputOp = unaryOp->getOperand(0);
// If the input is a splat, we don't care for the number of users
if (isa<SplatElementsAttr>(values)) {
return true;
}
// If this is the only use of the tensor it should be replaced as no
// additional memory is required
return inputOp.hasOneUse();
}
template <typename RangeType>
DenseElementsAttr transposeType(const RangeType &data, ShapedType inputType,
ShapedType outputType,
llvm::ArrayRef<int64_t> permValues) {
using ElementType = std::decay_t<decltype(*std::begin(data))>;
assert(inputType.getElementType() == outputType.getElementType());
if (inputType.getNumElements() == 0)
return DenseElementsAttr::get(outputType, llvm::ArrayRef<ElementType>{});
auto inputShape = inputType.getShape();
// The inverted permutation map and strides of the output are used to compute
// the contribution of a given dimension to the destination linear index in
// an order-independent way.
auto outputStrides = computeStrides(outputType.getShape());
auto invertedPermValues = invertPermutationVector(permValues);
auto initialValue = *std::begin(data);
SmallVector<ElementType> outputValues(inputType.getNumElements(),
initialValue);
for (const auto &it : llvm::enumerate(data)) {
auto srcLinearIndex = it.index();
uint64_t dstLinearIndex = 0;
for (int64_t dim = inputShape.size() - 1; dim >= 0; --dim) {
// Compute the index into the current dimension of the source vector.
auto sourceIndexForDim = srcLinearIndex % inputShape[dim];
srcLinearIndex /= inputShape[dim];
// Add the contribution of the current dimension to the output using the
// permutation map.
dstLinearIndex +=
outputStrides[invertedPermValues[dim]] * sourceIndexForDim;
}
outputValues[dstLinearIndex] = it.value();
}
return DenseElementsAttr::get(outputType,
llvm::ArrayRef<ElementType>(outputValues));
}
// A type specialized transposition of an ElementsAttr.
// This implementation tries to operate on the underlying data in its raw
// representation when possible to avoid allocating a large number of Attribute
// objects.
DenseElementsAttr transpose(ElementsAttr attr, ShapedType inputType,
ShapedType outputType,
llvm::ArrayRef<int64_t> permValues) {
if (auto data = attr.tryGetValues<bool>())
return transposeType(*data, inputType, outputType, permValues);
if (auto data = attr.tryGetValues<int8_t>())
return transposeType(*data, inputType, outputType, permValues);
if (auto data = attr.tryGetValues<int16_t>())
return transposeType(*data, inputType, outputType, permValues);
if (auto data = attr.tryGetValues<int32_t>())
return transposeType(*data, inputType, outputType, permValues);
if (auto data = attr.tryGetValues<int64_t>())
return transposeType(*data, inputType, outputType, permValues);
if (auto data = attr.tryGetValues<float>())
return transposeType(*data, inputType, outputType, permValues);
if (auto data = attr.tryGetValues<APFloat>())
return transposeType(*data, inputType, outputType, permValues);
return nullptr;
}
struct TosaFoldConstantTranspose : public OpRewritePattern<tosa::TransposeOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(tosa::TransposeOp op,
PatternRewriter &rewriter) const override {
auto outputType = cast<ShapedType>(op.getType());
// TOSA supports quantized types.
if (!outputType.getElementType().isIntOrIndexOrFloat())
return failure();
ElementsAttr inputValues;
if (!matchPattern(op.getInput1(), m_Constant(&inputValues)))
return failure();
// Make sure the input is a constant that has a single user.
if (!llvm::hasSingleElement(op.getInput1().getDefiningOp()->getUsers()))
return failure();
DenseIntElementsAttr permAttr;
if (!matchPattern(op.getPerms(), m_Constant(&permAttr)))
return failure();
auto permValues = llvm::map_to_vector(
// TOSA allows both 32- and 64-bit integer tensors here.
permAttr.getValues<APInt>(),
[](const APInt &val) { return val.getSExtValue(); });
auto inputType = cast<ShapedType>(op.getInput1().getType());
auto resultAttr = transpose(inputValues, inputType, outputType, permValues);
if (!resultAttr) {
return rewriter.notifyMatchFailure(
op, "unsupported attribute or element type");
}
rewriter.replaceOpWithNewOp<tosa::ConstOp>(op, outputType, resultAttr);
return success();
}
};
struct TosaFoldConstantReciprocal : public OpRewritePattern<ReciprocalOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(ReciprocalOp recip,
PatternRewriter &rewriter) const override {
auto inputTensor = recip.getInput1();
// Check that we can apply folding
auto preCondCheck =
notifyIfNotConstantFloatTosaTensor(inputTensor, recip, rewriter);
if (failed(preCondCheck)) {
return preCondCheck;
}
// Extract the tensor values
DenseElementsAttr inputValues;
matchPattern(inputTensor, m_Constant(&inputValues));
// Check whether this should be folded.
if (!constantUnaryOpShouldBeFolded(recip, inputValues)) {
return rewriter.notifyMatchFailure(
recip, "Currently, reciprocals will only be folded if the input "
"tensor has a single user");
}
// Create a new tensor with the updated values
auto newTensor = applyElementWise<APFloat, APFloat, FloatType>(
inputValues, &ReciprocalOp::calcOneElement,
cast<FloatType>(inputValues.getElementType()));
// Replace the use of the reciprocal with the transformed tensor
rewriter.replaceOpWithNewOp<ConstOp>(recip, newTensor.getType(), newTensor);
return success();
}
};
/// Getting the axes position of the element which is located
/// in the tensor at the counter index
llvm::SmallVector<int64_t>
getPositionFromIndex(int64_t index, llvm::ArrayRef<int64_t> tensorShape) {
int64_t remaining = index;
llvm::SmallVector<int64_t> position(tensorShape.size(), 0);
for (int64_t i = tensorShape.size() - 1; i >= 0; --i) {
position[i] = remaining % tensorShape[i];
remaining /= tensorShape[i];
}
return position;
}
/// Getting the index of the element which is located at the
/// axes position in the tensor
int64_t getIndexFromPosition(llvm::ArrayRef<int64_t> position,
llvm::ArrayRef<int64_t> tensorShape) {
int64_t index = 0;
int64_t multiplierTmp = 1;
for (int64_t i = position.size() - 1; i >= 0; --i) {
index += position[i] * multiplierTmp;
multiplierTmp *= tensorShape[i];
}
return index;
}
template <typename OperationType>
llvm::APInt calculateReducedValue(const mlir::ElementsAttr &oldTensorAttr,
llvm::ArrayRef<int64_t> oldShape,
int64_t reductionAxis,
int64_t reductionIndex) {
llvm::SmallVector<int64_t> newShape(oldShape);
newShape[reductionAxis] = 1;
/// Let's calculate the position of the index
llvm::SmallVector<int64_t> position =
getPositionFromIndex(reductionIndex, newShape);
auto oldTensor = oldTensorAttr.getValues<llvm::APInt>();
/// Starting from the first positon along the reduction axis
position[reductionAxis] = 0;
int64_t indexAtOldTensor = getIndexFromPosition(position, oldShape);
llvm::APInt reducedValue = oldTensor[indexAtOldTensor];
for (int64_t reductionAxisVal = 1; reductionAxisVal < oldShape[reductionAxis];
++reductionAxisVal) {
int64_t stride = std::accumulate(oldShape.begin() + reductionAxis + 1,
oldShape.end(), 1, std::multiplies<int>());
int64_t index = indexAtOldTensor + stride * reductionAxisVal;
reducedValue =
OperationType::calcOneElement(reducedValue, oldTensor[index]);
}
return reducedValue;
}
template <typename OperationType>
struct ReduceConstantOptimization : public OpRewritePattern<OperationType> {
ReduceConstantOptimization(MLIRContext *context,
bool aggressiveReduceConstant)
: OpRewritePattern<OperationType>(context),
aggressiveReduceConstant(aggressiveReduceConstant) {}
using OpRewritePattern<OperationType>::OpRewritePattern;
LogicalResult matchAndRewrite(OperationType op,
PatternRewriter &rewriter) const override {
Value inputOp = op.getInput();
auto constOp = inputOp.getDefiningOp<tosa::ConstOp>();
if (!constOp)
return rewriter.notifyMatchFailure(
op, "reduce input must be const operation");
if (!inputOp.hasOneUse() && !this->aggressiveReduceConstant)
return rewriter.notifyMatchFailure(
op, "input operation has more than one user");
auto resultType = cast<ShapedType>(op.getOutput().getType());
if (!resultType.hasStaticShape())
return rewriter.notifyMatchFailure(op, "result type shape is not static");
auto reductionAxis = op.getAxis();
const auto denseElementsAttr = constOp.getValue();
const auto shapedOldElementsValues =
denseElementsAttr.getType().cast<ShapedType>();
if (!llvm::isa<IntegerType>(shapedOldElementsValues.getElementType()))
return rewriter.notifyMatchFailure(
op, "reduce input currently supported with integer type");
auto oldShape = shapedOldElementsValues.getShape();
auto newShape = resultType.getShape();
auto newNumOfElements = std::accumulate(newShape.begin(), newShape.end(), 1,
std::multiplies<int>());
llvm::SmallVector<APInt> newReducedTensor(newNumOfElements);
for (int64_t reductionIndex = 0; reductionIndex < newNumOfElements;
++reductionIndex) {
/// Let's reduce all the elements along this reduction axis
newReducedTensor[reductionIndex] = calculateReducedValue<OperationType>(
denseElementsAttr, oldShape, reductionAxis, reductionIndex);
}
auto rankedTensorType = cast<RankedTensorType>(resultType);
auto denseAttr =
mlir::DenseElementsAttr::get(rankedTensorType, newReducedTensor);
rewriter.replaceOpWithNewOp<tosa::ConstOp>(op, rankedTensorType, denseAttr);
return success();
}
const bool aggressiveReduceConstant;
};
} // namespace
void mlir::tosa::populateTosaConstantReduction(MLIRContext *ctx,
RewritePatternSet &patterns,
bool aggressiveReduceConstant) {
patterns.add<ReduceConstantOptimization<ReduceAllOp>>(
ctx, aggressiveReduceConstant);
patterns.add<ReduceConstantOptimization<ReduceAnyOp>>(
ctx, aggressiveReduceConstant);
patterns.add<ReduceConstantOptimization<ReduceMaxOp>>(
ctx, aggressiveReduceConstant);
patterns.add<ReduceConstantOptimization<ReduceMinOp>>(
ctx, aggressiveReduceConstant);
patterns.add<ReduceConstantOptimization<ReduceProdOp>>(
ctx, aggressiveReduceConstant);
patterns.add<ReduceConstantOptimization<ReduceSumOp>>(
ctx, aggressiveReduceConstant);
}
void mlir::tosa::populateTosaFoldConstantTransposePatterns(
MLIRContext *ctx, RewritePatternSet &patterns) {
patterns.add<TosaFoldConstantTranspose>(ctx);
}
void mlir::tosa::populateTosaFoldConstantReciprocalPatterns(
MLIRContext *ctx, RewritePatternSet &patterns) {
patterns.add<TosaFoldConstantReciprocal>(ctx);
}