Files
clang-p2996/mlir/lib/Dialect/Vector/IR/ScalableValueBoundsConstraintSet.cpp
Matthias Springer 76435f2dca [mlir][SCF] ValueBoundsConstraintSet: Support scf.if (branches) (#87860)
This commit adds support for `scf.if` to `ValueBoundsConstraintSet`.

Example:
```
%0 = scf.if ... -> index {
  scf.yield %a : index
} else {
  scf.yield %b : index
}
```

The following constraints hold for %0:
* %0 >= min(%a, %b)
* %0 <= max(%a, %b)

Such constraints cannot be added to the constraint set; min/max is not
supported by `IntegerRelation`. However, if we know which one of %a and
%b is larger, we can add constraints for %0. E.g., if %a <= %b:
* %0 >= %a
* %0 <= %b

This commit required a few minor changes to the
`ValueBoundsConstraintSet` infrastructure, so that values can be
compared while we are still in the process of traversing the IR/adding
constraints.

Note: This is a re-upload of #85895, which was reverted. The bug that
caused the failure was fixed in #87859.
2024-04-06 13:04:49 +09:00

117 lines
4.0 KiB
C++

//===- ScalableValueBoundsConstraintSet.cpp - Scalable Value Bounds -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Vector/IR/ScalableValueBoundsConstraintSet.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
namespace mlir::vector {
FailureOr<ConstantOrScalableBound::BoundSize>
ConstantOrScalableBound::getSize() const {
if (map.isSingleConstant())
return BoundSize{map.getSingleConstantResult(), /*scalable=*/false};
if (map.getNumResults() != 1 || map.getNumInputs() != 1)
return failure();
auto binop = dyn_cast<AffineBinaryOpExpr>(map.getResult(0));
if (!binop || binop.getKind() != AffineExprKind::Mul)
return failure();
auto matchConstant = [&](AffineExpr expr, int64_t &constant) -> bool {
if (auto cst = dyn_cast<AffineConstantExpr>(expr)) {
constant = cst.getValue();
return true;
}
return false;
};
// Match `s0 * cst` or `cst * s0`:
int64_t cst = 0;
auto lhs = binop.getLHS();
auto rhs = binop.getRHS();
if ((matchConstant(lhs, cst) && isa<AffineSymbolExpr>(rhs)) ||
(matchConstant(rhs, cst) && isa<AffineSymbolExpr>(lhs))) {
return BoundSize{cst, /*scalable=*/true};
}
return failure();
}
char ScalableValueBoundsConstraintSet::ID = 0;
FailureOr<ConstantOrScalableBound>
ScalableValueBoundsConstraintSet::computeScalableBound(
Value value, std::optional<int64_t> dim, unsigned vscaleMin,
unsigned vscaleMax, presburger::BoundType boundType, bool closedUB,
StopConditionFn stopCondition) {
using namespace presburger;
assert(vscaleMin <= vscaleMax);
// No stop condition specified: Keep adding constraints until the worklist
// is empty.
auto defaultStopCondition = [&](Value v, std::optional<int64_t> dim,
mlir::ValueBoundsConstraintSet &cstr) {
return false;
};
ScalableValueBoundsConstraintSet scalableCstr(
value.getContext(), stopCondition ? stopCondition : defaultStopCondition,
vscaleMin, vscaleMax);
int64_t pos = scalableCstr.insert(value, dim, /*isSymbol=*/false);
scalableCstr.processWorklist();
// Project out all columns apart from vscale and the starting point
// (value/dim). This should result in constraints in terms of vscale only.
auto projectOutFn = [&](ValueDim p) {
bool isStartingPoint =
p.first == value &&
p.second == dim.value_or(ValueBoundsConstraintSet::kIndexValue);
return p.first != scalableCstr.getVscaleValue() && !isStartingPoint;
};
scalableCstr.projectOut(projectOutFn);
assert(scalableCstr.cstr.getNumDimAndSymbolVars() ==
scalableCstr.positionToValueDim.size() &&
"inconsistent mapping state");
// Check that the only columns left are vscale and the starting point.
for (int64_t i = 0; i < scalableCstr.cstr.getNumDimAndSymbolVars(); ++i) {
if (i == pos)
continue;
if (scalableCstr.positionToValueDim[i] !=
ValueDim(scalableCstr.getVscaleValue(),
ValueBoundsConstraintSet::kIndexValue)) {
return failure();
}
}
SmallVector<AffineMap, 1> lowerBound(1), upperBound(1);
scalableCstr.cstr.getSliceBounds(pos, 1, value.getContext(), &lowerBound,
&upperBound, closedUB);
auto invalidBound = [](auto &bound) {
return !bound[0] || bound[0].getNumResults() != 1;
};
AffineMap bound = [&] {
if (boundType == BoundType::EQ && !invalidBound(lowerBound) &&
lowerBound[0] == lowerBound[0]) {
return lowerBound[0];
} else if (boundType == BoundType::LB && !invalidBound(lowerBound)) {
return lowerBound[0];
} else if (boundType == BoundType::UB && !invalidBound(upperBound)) {
return upperBound[0];
}
return AffineMap{};
}();
if (!bound)
return failure();
return ConstantOrScalableBound{bound};
}
} // namespace mlir::vector