Files
clang-p2996/mlir/lib/Dialect/Vector/Transforms/LowerVectorInterleave.cpp
Benjamin Maxwell a1a6860314 [mlir][VectorOps] Add unrolling for n-D vector.interleave ops (#80967)
This unrolls n-D vector.interleave ops like:

```mlir
vector.interleave %i, %j : vector<6x3xf32>
```

To a sequence of 1-D operations:
```mlir
%i_0 = vector.extract %i[0] 
%j_0 = vector.extract %j[0] 
%res_0 = vector.interleave %i_0, %j_0 : vector<3xf32>
vector.insert %res_0, %result[0] :
// ... repeated x6
```

The 1-D operations can then be directly lowered to LLVM.

Depends on: #80966
2024-02-20 14:33:33 +00:00

86 lines
3.1 KiB
C++

//===- LowerVectorInterleave.cpp - Lower 'vector.interleave' operation ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements target-independent rewrites and utilities to lower the
// 'vector.interleave' operation.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h"
#include "mlir/Dialect/Vector/Utils/VectorUtils.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/PatternMatch.h"
#define DEBUG_TYPE "vector-interleave-lowering"
using namespace mlir;
using namespace mlir::vector;
namespace {
/// A one-shot unrolling of vector.interleave to the `targetRank`.
///
/// Example:
///
/// ```mlir
/// vector.interleave %a, %b : vector<1x2x3x4xi64>
/// ```
/// Would be unrolled to:
/// ```mlir
/// %result = arith.constant dense<0> : vector<1x2x3x8xi64>
/// %0 = vector.extract %a[0, 0, 0] ─┐
/// : vector<4xi64> from vector<1x2x3x4xi64> |
/// %1 = vector.extract %b[0, 0, 0] |
/// : vector<4xi64> from vector<1x2x3x4xi64> | - Repeated 6x for
/// %2 = vector.interleave %0, %1 : vector<4xi64> | all leading positions
/// %3 = vector.insert %2, %result [0, 0, 0] |
/// : vector<8xi64> into vector<1x2x3x8xi64> ┘
/// ```
///
/// Note: If any leading dimension before the `targetRank` is scalable the
/// unrolling will stop before the scalable dimension.
class UnrollInterleaveOp : public OpRewritePattern<vector::InterleaveOp> {
public:
UnrollInterleaveOp(int64_t targetRank, MLIRContext *context,
PatternBenefit benefit = 1)
: OpRewritePattern(context, benefit), targetRank(targetRank){};
LogicalResult matchAndRewrite(vector::InterleaveOp op,
PatternRewriter &rewriter) const override {
VectorType resultType = op.getResultVectorType();
auto unrollIterator = vector::createUnrollIterator(resultType, targetRank);
if (!unrollIterator)
return failure();
auto loc = op.getLoc();
Value result = rewriter.create<arith::ConstantOp>(
loc, resultType, rewriter.getZeroAttr(resultType));
for (auto position : *unrollIterator) {
Value extractLhs = rewriter.create<ExtractOp>(loc, op.getLhs(), position);
Value extractRhs = rewriter.create<ExtractOp>(loc, op.getRhs(), position);
Value interleave =
rewriter.create<InterleaveOp>(loc, extractLhs, extractRhs);
result = rewriter.create<InsertOp>(loc, interleave, result, position);
}
rewriter.replaceOp(op, result);
return success();
}
private:
int64_t targetRank = 1;
};
} // namespace
void mlir::vector::populateVectorInterleaveLoweringPatterns(
RewritePatternSet &patterns, int64_t targetRank, PatternBenefit benefit) {
patterns.add<UnrollInterleaveOp>(targetRank, patterns.getContext(), benefit);
}