This change allows analyzing ops from different block, in particular when used in programs that have `cf` branches. Differential Revision: https://reviews.llvm.org/D135644
149 lines
5.1 KiB
C++
149 lines
5.1 KiB
C++
//===- TopologicalSortUtils.h - Topological sort utilities ------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Transforms/TopologicalSortUtils.h"
|
|
#include "mlir/IR/OpDefinition.h"
|
|
|
|
using namespace mlir;
|
|
|
|
/// Return `true` if the given operation is ready to be scheduled.
|
|
static bool isOpReady(Operation *op, DenseSet<Operation *> &unscheduledOps,
|
|
function_ref<bool(Value, Operation *)> isOperandReady) {
|
|
// An operation is ready to be scheduled if all its operands are ready. An
|
|
// operation is ready if:
|
|
const auto isReady = [&](Value value) {
|
|
// - the user-provided callback marks it as ready,
|
|
if (isOperandReady && isOperandReady(value, op))
|
|
return true;
|
|
Operation *parent = value.getDefiningOp();
|
|
// - it is a block argument,
|
|
if (!parent)
|
|
return true;
|
|
// - or it is not defined by an unscheduled op (and also not nested within
|
|
// an unscheduled op).
|
|
do {
|
|
// Stop traversal when op under examination is reached.
|
|
if (parent == op)
|
|
return true;
|
|
if (unscheduledOps.contains(parent))
|
|
return false;
|
|
} while ((parent = parent->getParentOp()));
|
|
// No unscheduled op found.
|
|
return true;
|
|
};
|
|
|
|
// An operation is recursively ready to be scheduled of it and its nested
|
|
// operations are ready.
|
|
WalkResult readyToSchedule = op->walk([&](Operation *nestedOp) {
|
|
return llvm::all_of(nestedOp->getOperands(),
|
|
[&](Value operand) { return isReady(operand); })
|
|
? WalkResult::advance()
|
|
: WalkResult::interrupt();
|
|
});
|
|
return !readyToSchedule.wasInterrupted();
|
|
}
|
|
|
|
bool mlir::sortTopologically(
|
|
Block *block, llvm::iterator_range<Block::iterator> ops,
|
|
function_ref<bool(Value, Operation *)> isOperandReady) {
|
|
if (ops.empty())
|
|
return true;
|
|
|
|
// The set of operations that have not yet been scheduled.
|
|
DenseSet<Operation *> unscheduledOps;
|
|
// Mark all operations as unscheduled.
|
|
for (Operation &op : ops)
|
|
unscheduledOps.insert(&op);
|
|
|
|
Block::iterator nextScheduledOp = ops.begin();
|
|
Block::iterator end = ops.end();
|
|
|
|
bool allOpsScheduled = true;
|
|
while (!unscheduledOps.empty()) {
|
|
bool scheduledAtLeastOnce = false;
|
|
|
|
// Loop over the ops that are not sorted yet, try to find the ones "ready",
|
|
// i.e. the ones for which there aren't any operand produced by an op in the
|
|
// set, and "schedule" it (move it before the `nextScheduledOp`).
|
|
for (Operation &op :
|
|
llvm::make_early_inc_range(llvm::make_range(nextScheduledOp, end))) {
|
|
if (!isOpReady(&op, unscheduledOps, isOperandReady))
|
|
continue;
|
|
|
|
// Schedule the operation by moving it to the start.
|
|
unscheduledOps.erase(&op);
|
|
op.moveBefore(block, nextScheduledOp);
|
|
scheduledAtLeastOnce = true;
|
|
// Move the iterator forward if we schedule the operation at the front.
|
|
if (&op == &*nextScheduledOp)
|
|
++nextScheduledOp;
|
|
}
|
|
// If no operations were scheduled, give up and advance the iterator.
|
|
if (!scheduledAtLeastOnce) {
|
|
allOpsScheduled = false;
|
|
unscheduledOps.erase(&*nextScheduledOp);
|
|
++nextScheduledOp;
|
|
}
|
|
}
|
|
|
|
return allOpsScheduled;
|
|
}
|
|
|
|
bool mlir::sortTopologically(
|
|
Block *block, function_ref<bool(Value, Operation *)> isOperandReady) {
|
|
if (block->empty())
|
|
return true;
|
|
if (block->back().hasTrait<OpTrait::IsTerminator>())
|
|
return sortTopologically(block, block->without_terminator(),
|
|
isOperandReady);
|
|
return sortTopologically(block, *block, isOperandReady);
|
|
}
|
|
|
|
bool mlir::computeTopologicalSorting(
|
|
MutableArrayRef<Operation *> ops,
|
|
function_ref<bool(Value, Operation *)> isOperandReady) {
|
|
if (ops.empty())
|
|
return true;
|
|
|
|
// The set of operations that have not yet been scheduled.
|
|
DenseSet<Operation *> unscheduledOps;
|
|
|
|
// Mark all operations as unscheduled.
|
|
for (Operation *op : ops)
|
|
unscheduledOps.insert(op);
|
|
|
|
unsigned nextScheduledOp = 0;
|
|
|
|
bool allOpsScheduled = true;
|
|
while (!unscheduledOps.empty()) {
|
|
bool scheduledAtLeastOnce = false;
|
|
|
|
// Loop over the ops that are not sorted yet, try to find the ones "ready",
|
|
// i.e. the ones for which there aren't any operand produced by an op in the
|
|
// set, and "schedule" it (swap it with the op at `nextScheduledOp`).
|
|
for (unsigned i = nextScheduledOp; i < ops.size(); ++i) {
|
|
if (!isOpReady(ops[i], unscheduledOps, isOperandReady))
|
|
continue;
|
|
|
|
// Schedule the operation by moving it to the start.
|
|
unscheduledOps.erase(ops[i]);
|
|
std::swap(ops[i], ops[nextScheduledOp]);
|
|
scheduledAtLeastOnce = true;
|
|
++nextScheduledOp;
|
|
}
|
|
|
|
// If no operations were scheduled, just schedule the first op and continue.
|
|
if (!scheduledAtLeastOnce) {
|
|
allOpsScheduled = false;
|
|
unscheduledOps.erase(ops[nextScheduledOp++]);
|
|
}
|
|
}
|
|
|
|
return allOpsScheduled;
|
|
}
|