Update most test passes to use the transform-interpreter pass instead of the test-transform-dialect-interpreter-pass. The new "main" interpreter pass has a named entry point instead of looking up the top-level op with `PossibleTopLevelOpTrait`, which is arguably a more understandable interface. The change is mechanical, rewriting an unnamed sequence into a named one and wrapping the transform IR in to a module when necessary. Add an option to the transform-interpreter pass to target a tagged payload op instead of the root anchor op, which is also useful for repro generation. Only the test in the transform dialect proper and the examples have not been updated yet. These will be updated separately after a more careful consideration of testing coverage of the transform interpreter logic.
193 lines
9.0 KiB
MLIR
193 lines
9.0 KiB
MLIR
// RUN: mlir-opt %s -transform-interpreter -split-input-file -verify-diagnostics | FileCheck %s
|
|
|
|
// CHECK-LABEL: @vectorize_matmul
|
|
// CHECK-SAME: %[[A:.*]]: tensor<24x12xf32>
|
|
// CHECK-SAME: %[[B:.*]]: tensor<12x25xf32>
|
|
// CHECK-SAME: %[[C:.*]]: tensor<24x25xf32>
|
|
func.func @vectorize_matmul(%arg0: tensor<24x12xf32>,
|
|
%arg1: tensor<12x25xf32>,
|
|
%arg2: tensor<24x25xf32>) -> tensor<24x25xf32> {
|
|
// CHECK: %[[vA:.+]] = vector.transfer_read %[[A]]
|
|
// CHECK: %[[vB:.+]] = vector.transfer_read %[[B]]
|
|
// CHECK: %[[vC:.+]] = vector.transfer_read %[[C]]
|
|
// CHECK: %[[vR:.+]] = vector.contract {{.*}} %[[vA]], %[[vB]], %[[vC]]
|
|
// CHECK: vector.transfer_write %[[vR]], %[[C]]
|
|
%0 = linalg.matmul ins(%arg0, %arg1 : tensor<24x12xf32>, tensor<12x25xf32>) outs(%arg2 : tensor<24x25xf32>) -> tensor<24x25xf32>
|
|
func.return %0 : tensor<24x25xf32>
|
|
}
|
|
|
|
module attributes {transform.with_named_sequence} {
|
|
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
|
|
%0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
|
|
%1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
|
|
%2 = transform.structured.vectorize_children_and_apply_patterns %1 : (!transform.any_op) -> !transform.any_op
|
|
transform.yield
|
|
}
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK-LABEL: @vectorize_matmul_memref
|
|
// CHECK-SAME: %[[A:.*]]: memref<24x12xf32>
|
|
// CHECK-SAME: %[[B:.*]]: memref<12x25xf32>
|
|
// CHECK-SAME: %[[C:.*]]: memref<24x25xf32>
|
|
func.func @vectorize_matmul_memref(%arg0: memref<24x12xf32>,
|
|
%arg1: memref<12x25xf32>,
|
|
%arg2: memref<24x25xf32>) {
|
|
// CHECK: %[[vA:.+]] = vector.transfer_read %[[A]]
|
|
// CHECK: %[[vB:.+]] = vector.transfer_read %[[B]]
|
|
// CHECK: %[[vC:.+]] = vector.transfer_read %[[C]]
|
|
// CHECK: %[[vR:.+]] = vector.contract {{.*}} %[[vA]], %[[vB]], %[[vC]]
|
|
// CHECK: vector.transfer_write %[[vR]], %[[C]]
|
|
linalg.matmul ins(%arg0, %arg1 : memref<24x12xf32>, memref<12x25xf32>) outs(%arg2 : memref<24x25xf32>)
|
|
return
|
|
}
|
|
|
|
module attributes {transform.with_named_sequence} {
|
|
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
|
|
%0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
|
|
%1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
|
|
%2 = transform.structured.vectorize_children_and_apply_patterns %1 : (!transform.any_op) -> !transform.any_op
|
|
transform.yield
|
|
}
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK-LABEL: @vectorize_copy_memref
|
|
// CHECK-SAME: %[[A:.*]]: memref<100x100xf32>,
|
|
// CHECK-SAME: %[[B:.*]]: memref<100x100xf32>
|
|
func.func @vectorize_copy_memref(%arg0: memref<100x100xf32>,
|
|
%arg1: memref<100x100xf32>) {
|
|
// CHECK: %[[vA:.+]] = vector.transfer_read %[[A]]
|
|
// CHECK: vector.transfer_write %[[vA]], %[[B]]
|
|
linalg.copy ins(%arg0 : memref<100x100xf32>) outs(%arg1 : memref<100x100xf32>)
|
|
return
|
|
}
|
|
|
|
module attributes {transform.with_named_sequence} {
|
|
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
|
|
%0 = transform.structured.match ops{["linalg.copy"]} in %arg1 : (!transform.any_op) -> !transform.any_op
|
|
%1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
|
|
%2 = transform.structured.vectorize_children_and_apply_patterns %1 : (!transform.any_op) -> !transform.any_op
|
|
transform.yield
|
|
}
|
|
}
|
|
|
|
// -----
|
|
|
|
#map0 = affine_map<()[s0] -> (-s0 + 12, 7)>
|
|
#map1 = affine_map<()[s0] -> (-s0 + 7)>
|
|
|
|
// CHECK-LABEL: @vectorize_keep_pad
|
|
// CHECK-SAME: %[[C:[a-zA-Z0-9_]+]]: tensor<24x25xf32>
|
|
func.func @vectorize_keep_pad(
|
|
%arg0: tensor<24x12xf32>, %arg1: tensor<12x25xf32>,
|
|
%arg2: tensor<24x25xf32>, %arg3: index, %arg4: index,
|
|
%arg5: index) -> tensor<24x25xf32> {
|
|
%c0 = arith.constant 0 : index
|
|
%cst = arith.constant 0.000000e+00 : f32
|
|
%0 = affine.min #map0()[%arg5]
|
|
%1 = tensor.extract_slice %arg0[%arg3, %arg5] [4, %0] [1, 1] : tensor<24x12xf32> to tensor<4x?xf32>
|
|
%2 = tensor.extract_slice %arg1[%arg5, %arg4] [%0, 5] [1, 1] : tensor<12x25xf32> to tensor<?x5xf32>
|
|
%3 = tensor.extract_slice %arg2[%arg3, %arg4] [4, 5] [1, 1] : tensor<24x25xf32> to tensor<4x5xf32>
|
|
%4 = affine.apply #map1()[%0]
|
|
// CHECK: %[[pA:.*]] = tensor.pad
|
|
%5 = tensor.pad %1 nofold low[%c0, %c0] high[%c0, %4] {
|
|
^bb0(%arg6: index, %arg7: index):
|
|
tensor.yield %cst : f32
|
|
} : tensor<4x?xf32> to tensor<4x7xf32>
|
|
%6 = affine.apply #map1()[%0]
|
|
// CHECK: %[[pB:.*]] = tensor.pad
|
|
%7 = tensor.pad %2 nofold low[%c0, %c0] high[%6, %c0] {
|
|
^bb0(%arg6: index, %arg7: index):
|
|
tensor.yield %cst : f32
|
|
} : tensor<?x5xf32> to tensor<7x5xf32>
|
|
// CHECK: %[[vA:.+]] = vector.transfer_read %[[pA]]
|
|
// CHECK: %[[vB:.+]] = vector.transfer_read %[[pB]]
|
|
// CHECK: %[[vC:.+]] = vector.transfer_read %[[C]]
|
|
// CHECK: %[[vR:.+]] = vector.contract {{.*}} %[[vA]], %[[vB]], %[[vC]]
|
|
// CHECK: vector.transfer_write %[[vR]], %[[C]]
|
|
%8 = linalg.matmul ins(%5, %7 : tensor<4x7xf32>, tensor<7x5xf32>) outs(%3 : tensor<4x5xf32>) -> tensor<4x5xf32>
|
|
%9 = tensor.insert_slice %8 into %arg2[%arg3, %arg4] [4, 5] [1, 1] : tensor<4x5xf32> into tensor<24x25xf32>
|
|
return %9 : tensor<24x25xf32>
|
|
}
|
|
|
|
module attributes {transform.with_named_sequence} {
|
|
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
|
|
%0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
|
|
%1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
|
|
%2 = transform.structured.vectorize_children_and_apply_patterns %1 : (!transform.any_op) -> !transform.any_op
|
|
transform.yield
|
|
}
|
|
}
|
|
|
|
// -----
|
|
|
|
#map0 = affine_map<()[s0] -> (-s0 + 12, 7)>
|
|
#map1 = affine_map<()[s0] -> (-s0 + 7)>
|
|
|
|
// CHECK-LABEL: @vectorize_pad
|
|
// CHECK-SAME: %[[A:.+]]: tensor<24x12xf32>
|
|
// CHECK-SAME: %[[B:.+]]: tensor<12x25xf32>
|
|
// CHECK-SAME: %[[C:.+]]: tensor<24x25xf32>
|
|
func.func @vectorize_pad(
|
|
%arg0: tensor<24x12xf32>, %arg1: tensor<12x25xf32>,
|
|
%arg2: tensor<24x25xf32>, %arg3: index, %arg4: index,
|
|
%arg5: index) -> tensor<24x25xf32> {
|
|
%c0 = arith.constant 0 : index
|
|
%cst = arith.constant 0.000000e+00 : f32
|
|
%0 = affine.min #map0()[%arg5]
|
|
// CHECK: %[[sA:.+]] = tensor.extract_slice %[[A]]
|
|
// CHECK: %[[sB:.+]] = tensor.extract_slice %[[B]]
|
|
%1 = tensor.extract_slice %arg0[%arg3, %arg5] [4, %0] [1, 1] : tensor<24x12xf32> to tensor<4x?xf32>
|
|
%2 = tensor.extract_slice %arg1[%arg5, %arg4] [%0, 5] [1, 1] : tensor<12x25xf32> to tensor<?x5xf32>
|
|
%3 = tensor.extract_slice %arg2[%arg3, %arg4] [4, 5] [1, 1] : tensor<24x25xf32> to tensor<4x5xf32>
|
|
// CHECK: %[[vA:.+]] = vector.transfer_read %[[sA]]
|
|
%4 = affine.apply #map1()[%0]
|
|
%5 = tensor.pad %1 nofold low[%c0, %c0] high[%c0, %4] {
|
|
^bb0(%arg6: index, %arg7: index):
|
|
tensor.yield %cst : f32
|
|
} : tensor<4x?xf32> to tensor<4x7xf32>
|
|
%6 = affine.apply #map1()[%0]
|
|
// CHECK: %[[vB:.+]] = vector.transfer_read %[[sB]]
|
|
%7 = tensor.pad %2 nofold low[%c0, %c0] high[%6, %c0] {
|
|
^bb0(%arg6: index, %arg7: index):
|
|
tensor.yield %cst : f32
|
|
} : tensor<?x5xf32> to tensor<7x5xf32>
|
|
// CHECK: %[[vC:.+]] = vector.transfer_read %[[C]]
|
|
// CHECK: %[[vR:.+]] = vector.contract {{.*}} %[[vA]], %[[vB]], %[[vC]]
|
|
// CHECK: vector.transfer_write %[[vR]], %[[C]]
|
|
%8 = linalg.matmul ins(%5, %7 : tensor<4x7xf32>, tensor<7x5xf32>) outs(%3 : tensor<4x5xf32>) -> tensor<4x5xf32>
|
|
%9 = tensor.insert_slice %8 into %arg2[%arg3, %arg4] [4, 5] [1, 1] : tensor<4x5xf32> into tensor<24x25xf32>
|
|
return %9 : tensor<24x25xf32>
|
|
}
|
|
|
|
module attributes {transform.with_named_sequence} {
|
|
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
|
|
%0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
|
|
%1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
|
|
%2 = transform.structured.vectorize_children_and_apply_patterns %1 {vectorize_padding} : (!transform.any_op) -> !transform.any_op
|
|
transform.yield
|
|
}
|
|
}
|
|
|
|
// -----
|
|
|
|
func.func @vectorize(%arg0: tensor<24x12xf32>,
|
|
%arg1: tensor<12x25xf32>,
|
|
%arg2: tensor<24x25xf32>) -> tensor<24x25xf32> {
|
|
// expected-note @below {{non-isolated target}}
|
|
%0 = linalg.matmul ins(%arg0, %arg1 : tensor<24x12xf32>, tensor<12x25xf32>) outs(%arg2 : tensor<24x25xf32>) -> tensor<24x25xf32>
|
|
func.return %0 : tensor<24x25xf32>
|
|
}
|
|
|
|
module attributes {transform.with_named_sequence} {
|
|
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
|
|
%0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
|
|
// expected-error @below {{op requires isolated-from-above targets}}
|
|
%2 = transform.structured.vectorize_children_and_apply_patterns %0 : (!transform.any_op) -> !transform.any_op
|
|
transform.yield
|
|
}
|
|
}
|