Files
clang-p2996/mlir/test/Dialect/MLProgram/one-shot-bufferize.mlir
Ryan Holt fa10121415 [mlir][MLProgram] Add MLProgram to MemRef bufferization pass (#75103)
There is currently no lowering out of `ml_program` in the LLVM
repository. This change adds a lowering to `memref` so that it can be
lowered all the way to LLVM. This lowering was taken from the [reference
backend in
torch-mlir](f416953600
).

I had tried implementing the `BufferizableOpInterface` for `ml_program`
instead of adding a new pass but that did not work because
`OneShotBufferize` does not visit module-level ops like
`ml_program.global`.
2024-01-30 16:34:33 +01:00

53 lines
2.2 KiB
MLIR

// RUN: mlir-opt %s -one-shot-bufferize -split-input-file | FileCheck %s
// CHECK-LABEL: memref.global "private" @global
ml_program.global private mutable @global(dense<0> : tensor<i64>) : tensor<i64>
// CHECK-LABEL: func.func @global_load_store
func.func @global_load_store() -> i64 {
// CHECK-DAG: %[[CST127:.*]] = arith.constant 127
// CHECK-DAG: %[[GLOBAL_1:.*]] = memref.get_global @global
// CHECK: %[[VALUE:.*]] = memref.load %[[GLOBAL_1]][]
// CHECK: %[[NEW_VALUE:.*]] = arith.muli %[[VALUE]], %[[CST127]]
// CHECK: %[[ALLOC:.*]] = memref.alloc()
// CHECK: memref.copy %[[GLOBAL_1]], %[[ALLOC]]
// CHECK: memref.store %[[NEW_VALUE]], %[[ALLOC]][]
// CHECK: %[[GLOBAL_2:.*]] = memref.get_global @global
// CHECK: memref.copy %[[ALLOC]], %[[GLOBAL_2]]
// CHECK: return %[[NEW_VALUE]]
%c127 = arith.constant 127 : i64
%0 = ml_program.global_load @global : tensor<i64>
%extracted = tensor.extract %0[] : tensor<i64>
%1 = arith.muli %extracted, %c127 : i64
%inserted = tensor.insert %1 into %0[] : tensor<i64>
ml_program.global_store @global = %inserted : tensor<i64>
return %1 : i64
}
// -----
// CHECK-LABEL: memref.global "private" @global
ml_program.global private mutable @global(dense<0> : tensor<i64>) : tensor<i64>
// CHECK-LABEL: func.func @raw_hazard
func.func @raw_hazard() -> i64 {
// CHECK-DAG: %[[CST127:.*]] = arith.constant 127
// CHECK-DAG: %[[GLOBAL_1:.*]] = memref.get_global @global
// CHECK-DAG: %[[GLOBAL_2:.*]] = memref.get_global @global
// CHECK-DAG: %[[ALLOC:.*]] = memref.alloc()
// CHECK: memref.copy %[[GLOBAL_1]], %[[ALLOC]]
// CHECK: memref.store %[[CST127]], %[[ALLOC]][]
// CHECK: %[[VAL:.*]] = memref.load %[[GLOBAL_2]][]
// CHECK: %[[GLOBAL_3:.*]] = memref.get_global @global
// CHECK: memref.copy %[[ALLOC]], %[[GLOBAL_3]]
// CHECK: return %[[VAL]]
%c127 = arith.constant 127 : i64
%0 = ml_program.global_load @global : tensor<i64>
%1 = ml_program.global_load @global : tensor<i64>
%inserted = tensor.insert %c127 into %0[] : tensor<i64>
%extracted = tensor.extract %1[] : tensor<i64>
ml_program.global_store @global = %inserted : tensor<i64>
return %extracted : i64
}