Files
clang-p2996/mlir/test/IR/memory-ops.mlir
River Riddle 38c219b4a8 [mlir] Infer SubElementInterface implementations using the storage KeyTy
The KeyTy of attribute/type storage classes provide enough information for
automatically implementing the necessary sub element interface methods. This
removes the need for derived classes to do it themselves, which is both much
nicer and easier to handle certain invariants (e.g. null handling). In cases where
explicitly handling for parameter types is necessary, they can provide an implementation
of `AttrTypeSubElementHandler` to opt-in to support.

This tickles a few things alias wise, which annoyingly messes with tests that hard
code specific affine map numbers.

Differential Revision: https://reviews.llvm.org/D137374
2022-11-04 18:15:03 -07:00

119 lines
4.7 KiB
MLIR

// RUN: mlir-opt %s | FileCheck %s
// CHECK: #[[$MAP:.*]] = affine_map<(d0, d1)[s0] -> (d0 + s0, d1)>
// CHECK-LABEL: func @alloc() {
func.func @alloc() {
^bb0:
// Test simple alloc.
// CHECK: %{{.*}} = memref.alloc() : memref<1024x64xf32, 1>
%0 = memref.alloc() : memref<1024x64xf32, affine_map<(d0, d1) -> (d0, d1)>, 1>
%c0 = "arith.constant"() {value = 0: index} : () -> index
%c1 = "arith.constant"() {value = 1: index} : () -> index
// Test alloc with dynamic dimensions.
// CHECK: %{{.*}} = memref.alloc(%{{.*}}, %{{.*}}) : memref<?x?xf32, 1>
%1 = memref.alloc(%c0, %c1) : memref<?x?xf32, affine_map<(d0, d1) -> (d0, d1)>, 1>
// Test alloc with no dynamic dimensions and one symbol.
// CHECK: %{{.*}} = memref.alloc()[%{{.*}}] : memref<2x4xf32, #[[$MAP]], 1>
%2 = memref.alloc()[%c0] : memref<2x4xf32, affine_map<(d0, d1)[s0] -> ((d0 + s0), d1)>, 1>
// Test alloc with dynamic dimensions and one symbol.
// CHECK: %{{.*}} = memref.alloc(%{{.*}})[%{{.*}}] : memref<2x?xf32, #[[$MAP]], 1>
%3 = memref.alloc(%c1)[%c0] : memref<2x?xf32, affine_map<(d0, d1)[s0] -> (d0 + s0, d1)>, 1>
// Alloc with no mappings.
// b/116054838 Parser crash while parsing ill-formed AllocOp
// CHECK: %{{.*}} = memref.alloc() : memref<2xi32>
%4 = memref.alloc() : memref<2 x i32>
// CHECK: return
return
}
// CHECK-LABEL: func @alloca() {
func.func @alloca() {
^bb0:
// Test simple alloc.
// CHECK: %{{.*}} = memref.alloca() : memref<1024x64xf32, 1>
%0 = memref.alloca() : memref<1024x64xf32, affine_map<(d0, d1) -> (d0, d1)>, 1>
%c0 = "arith.constant"() {value = 0: index} : () -> index
%c1 = "arith.constant"() {value = 1: index} : () -> index
// Test alloca with dynamic dimensions.
// CHECK: %{{.*}} = memref.alloca(%{{.*}}, %{{.*}}) : memref<?x?xf32, 1>
%1 = memref.alloca(%c0, %c1) : memref<?x?xf32, affine_map<(d0, d1) -> (d0, d1)>, 1>
// Test alloca with no dynamic dimensions and one symbol.
// CHECK: %{{.*}} = memref.alloca()[%{{.*}}] : memref<2x4xf32, #[[$MAP]], 1>
%2 = memref.alloca()[%c0] : memref<2x4xf32, affine_map<(d0, d1)[s0] -> ((d0 + s0), d1)>, 1>
// Test alloca with dynamic dimensions and one symbol.
// CHECK: %{{.*}} = memref.alloca(%{{.*}})[%{{.*}}] : memref<2x?xf32, #[[$MAP]], 1>
%3 = memref.alloca(%c1)[%c0] : memref<2x?xf32, affine_map<(d0, d1)[s0] -> (d0 + s0, d1)>, 1>
// Alloca with no mappings, but with alignment.
// CHECK: %{{.*}} = memref.alloca() {alignment = 64 : i64} : memref<2xi32>
%4 = memref.alloca() {alignment = 64} : memref<2 x i32>
return
}
// CHECK-LABEL: func @dealloc() {
func.func @dealloc() {
^bb0:
// CHECK: %{{.*}} = memref.alloc() : memref<1024x64xf32>
%0 = memref.alloc() : memref<1024x64xf32, affine_map<(d0, d1) -> (d0, d1)>, 0>
// CHECK: memref.dealloc %{{.*}} : memref<1024x64xf32>
memref.dealloc %0 : memref<1024x64xf32, affine_map<(d0, d1) -> (d0, d1)>, 0>
return
}
// CHECK-LABEL: func @load_store
func.func @load_store() {
^bb0:
// CHECK: %{{.*}} = memref.alloc() : memref<1024x64xf32, 1>
%0 = memref.alloc() : memref<1024x64xf32, affine_map<(d0, d1) -> (d0, d1)>, 1>
%1 = arith.constant 0 : index
%2 = arith.constant 1 : index
// CHECK: %{{.*}} = memref.load %{{.*}}[%{{.*}}, %{{.*}}] : memref<1024x64xf32, 1>
%3 = memref.load %0[%1, %2] : memref<1024x64xf32, affine_map<(d0, d1) -> (d0, d1)>, 1>
// CHECK: memref.store %{{.*}}, %{{.*}}[%{{.*}}, %{{.*}}] : memref<1024x64xf32, 1>
memref.store %3, %0[%1, %2] : memref<1024x64xf32, affine_map<(d0, d1) -> (d0, d1)>, 1>
return
}
// CHECK-LABEL: func @dma_ops()
func.func @dma_ops() {
%c0 = arith.constant 0 : index
%stride = arith.constant 32 : index
%elt_per_stride = arith.constant 16 : index
%A = memref.alloc() : memref<256 x f32, affine_map<(d0) -> (d0)>, 0>
%Ah = memref.alloc() : memref<256 x f32, affine_map<(d0) -> (d0)>, 1>
%tag = memref.alloc() : memref<1 x f32>
%num_elements = arith.constant 256 : index
memref.dma_start %A[%c0], %Ah[%c0], %num_elements, %tag[%c0] : memref<256 x f32>, memref<256 x f32, 1>, memref<1 x f32>
memref.dma_wait %tag[%c0], %num_elements : memref<1 x f32>
// CHECK: dma_start %{{.*}}[%{{.*}}], %{{.*}}[%{{.*}}], %{{.*}}, %{{.*}}[%{{.*}}] : memref<256xf32>, memref<256xf32, 1>, memref<1xf32>
// CHECK-NEXT: dma_wait %{{.*}}[%{{.*}}], %{{.*}} : memref<1xf32>
// DMA with strides
memref.dma_start %A[%c0], %Ah[%c0], %num_elements, %tag[%c0], %stride, %elt_per_stride : memref<256 x f32>, memref<256 x f32, 1>, memref<1 x f32>
memref.dma_wait %tag[%c0], %num_elements : memref<1 x f32>
// CHECK-NEXT: dma_start %{{.*}}[%{{.*}}], %{{.*}}[%{{.*}}], %{{.*}}, %{{.*}}[%{{.*}}], %{{.*}}, %{{.*}} : memref<256xf32>, memref<256xf32, 1>, memref<1xf32>
// CHECK-NEXT: dma_wait %{{.*}}[%{{.*}}], %{{.*}} : memref<1xf32>
return
}