129 lines
5.6 KiB
MLIR
129 lines
5.6 KiB
MLIR
//--------------------------------------------------------------------------------------------------
|
|
// WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS.
|
|
//
|
|
// Set-up that's shared across all tests in this directory. In principle, this
|
|
// config could be moved to lit.local.cfg. However, there are downstream users that
|
|
// do not use these LIT config files. Hence why this is kept inline.
|
|
//
|
|
// DEFINE: %{sparsifier_opts} = enable-runtime-library=true
|
|
// DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts}
|
|
// DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}"
|
|
// DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}"
|
|
// DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils
|
|
// DEFINE: %{run_opts} = -e main -entry-point-result=void
|
|
// DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs}
|
|
// DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs}
|
|
//
|
|
// DEFINE: %{env} =
|
|
//--------------------------------------------------------------------------------------------------
|
|
|
|
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false
|
|
// RUN: %{compile} | %{run} | FileCheck %s
|
|
//
|
|
// Do the same run, but now with direct IR generation and vectorization.
|
|
// REDEFINE: %{sparsifier_opts} = enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true
|
|
// RUN: %{compile} | %{run} | FileCheck %s
|
|
//
|
|
// Do the same run, but now with direct IR generation and VLA vectorization.
|
|
// RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %}
|
|
|
|
#SparseVector = #sparse_tensor.encoding<{map = (d0) -> (d0 : compressed)}>
|
|
|
|
#trait_op = {
|
|
indexing_maps = [
|
|
affine_map<(i) -> (i)>, // a (in)
|
|
affine_map<(i) -> (i)>, // b (in)
|
|
affine_map<(i) -> (i)> // x (out)
|
|
],
|
|
iterator_types = ["parallel"],
|
|
doc = "x(i) = a(i) OP b(i)"
|
|
}
|
|
|
|
module {
|
|
func.func @cadd(%arga: tensor<?xcomplex<f64>, #SparseVector>,
|
|
%argb: tensor<?xcomplex<f64>, #SparseVector>)
|
|
-> tensor<?xcomplex<f64>, #SparseVector> {
|
|
%c = arith.constant 0 : index
|
|
%d = tensor.dim %arga, %c : tensor<?xcomplex<f64>, #SparseVector>
|
|
%xv = tensor.empty(%d) : tensor<?xcomplex<f64>, #SparseVector>
|
|
%0 = linalg.generic #trait_op
|
|
ins(%arga, %argb: tensor<?xcomplex<f64>, #SparseVector>,
|
|
tensor<?xcomplex<f64>, #SparseVector>)
|
|
outs(%xv: tensor<?xcomplex<f64>, #SparseVector>) {
|
|
^bb(%a: complex<f64>, %b: complex<f64>, %x: complex<f64>):
|
|
%1 = complex.add %a, %b : complex<f64>
|
|
linalg.yield %1 : complex<f64>
|
|
} -> tensor<?xcomplex<f64>, #SparseVector>
|
|
return %0 : tensor<?xcomplex<f64>, #SparseVector>
|
|
}
|
|
|
|
func.func @cmul(%arga: tensor<?xcomplex<f64>, #SparseVector>,
|
|
%argb: tensor<?xcomplex<f64>, #SparseVector>)
|
|
-> tensor<?xcomplex<f64>, #SparseVector> {
|
|
%c = arith.constant 0 : index
|
|
%d = tensor.dim %arga, %c : tensor<?xcomplex<f64>, #SparseVector>
|
|
%xv = tensor.empty(%d) : tensor<?xcomplex<f64>, #SparseVector>
|
|
%0 = linalg.generic #trait_op
|
|
ins(%arga, %argb: tensor<?xcomplex<f64>, #SparseVector>,
|
|
tensor<?xcomplex<f64>, #SparseVector>)
|
|
outs(%xv: tensor<?xcomplex<f64>, #SparseVector>) {
|
|
^bb(%a: complex<f64>, %b: complex<f64>, %x: complex<f64>):
|
|
%1 = complex.mul %a, %b : complex<f64>
|
|
linalg.yield %1 : complex<f64>
|
|
} -> tensor<?xcomplex<f64>, #SparseVector>
|
|
return %0 : tensor<?xcomplex<f64>, #SparseVector>
|
|
}
|
|
|
|
// Driver method to call and verify complex kernels.
|
|
func.func @main() {
|
|
// Setup sparse vectors.
|
|
%v1 = arith.constant sparse<
|
|
[ [0], [28], [31] ],
|
|
[ (511.13, 2.0), (3.0, 4.0), (5.0, 6.0) ] > : tensor<32xcomplex<f64>>
|
|
%v2 = arith.constant sparse<
|
|
[ [1], [28], [31] ],
|
|
[ (1.0, 0.0), (2.0, 0.0), (3.0, 0.0) ] > : tensor<32xcomplex<f64>>
|
|
%sv1 = sparse_tensor.convert %v1 : tensor<32xcomplex<f64>> to tensor<?xcomplex<f64>, #SparseVector>
|
|
%sv2 = sparse_tensor.convert %v2 : tensor<32xcomplex<f64>> to tensor<?xcomplex<f64>, #SparseVector>
|
|
|
|
// Call sparse vector kernels.
|
|
%0 = call @cadd(%sv1, %sv2)
|
|
: (tensor<?xcomplex<f64>, #SparseVector>,
|
|
tensor<?xcomplex<f64>, #SparseVector>) -> tensor<?xcomplex<f64>, #SparseVector>
|
|
%1 = call @cmul(%sv1, %sv2)
|
|
: (tensor<?xcomplex<f64>, #SparseVector>,
|
|
tensor<?xcomplex<f64>, #SparseVector>) -> tensor<?xcomplex<f64>, #SparseVector>
|
|
|
|
//
|
|
// Verify the results.
|
|
//
|
|
// CHECK: ---- Sparse Tensor ----
|
|
// CHECK-NEXT: nse = 4
|
|
// CHECK-NEXT: dim = ( 32 )
|
|
// CHECK-NEXT: lvl = ( 32 )
|
|
// CHECK-NEXT: pos[0] : ( 0, 4,
|
|
// CHECK-NEXT: crd[0] : ( 0, 1, 28, 31,
|
|
// CHECK-NEXT: values : ( ( 511.13, 2 ), ( 1, 0 ), ( 5, 4 ), ( 8, 6 ),
|
|
// CHECK-NEXT: ----
|
|
//
|
|
// CHECK-NEXT: ---- Sparse Tensor ----
|
|
// CHECK-NEXT: nse = 2
|
|
// CHECK-NEXT: dim = ( 32 )
|
|
// CHECK-NEXT: lvl = ( 32 )
|
|
// CHECK-NEXT: pos[0] : ( 0, 2,
|
|
// CHECK-NEXT: crd[0] : ( 28, 31,
|
|
// CHECK-NEXT: values : ( ( 6, 8 ), ( 15, 18 ),
|
|
// CHECK-NEXT: ----
|
|
//
|
|
sparse_tensor.print %0 : tensor<?xcomplex<f64>, #SparseVector>
|
|
sparse_tensor.print %1 : tensor<?xcomplex<f64>, #SparseVector>
|
|
|
|
// Release the resources.
|
|
bufferization.dealloc_tensor %sv1 : tensor<?xcomplex<f64>, #SparseVector>
|
|
bufferization.dealloc_tensor %sv2 : tensor<?xcomplex<f64>, #SparseVector>
|
|
bufferization.dealloc_tensor %0 : tensor<?xcomplex<f64>, #SparseVector>
|
|
bufferization.dealloc_tensor %1 : tensor<?xcomplex<f64>, #SparseVector>
|
|
return
|
|
}
|
|
}
|