Files
clang-p2996/mlir/test/Integration/Dialect/Vector/CPU/test-transpose.mlir
Benjamin Maxwell f36e909da0 [mlir][VectorOps] Use SCF for vector.print and allow scalable vectors
Reland of the original patch after updating the Python binding tests,
a few CUDA/GPU MLIR tests, and ensuring the assembly format is
round-trippable.

This patch splits the lowering of vector.print into first converting
an n-D print into a loop of scalar prints of the elements, then a second
pass that converts those scalar prints into the runtime calls. The
former is done in VectorToSCF and the latter in VectorToLLVM.

The main reason for this is to allow printing scalable vector types,
which are not possible to fully unroll at compile time, though this
also avoids fully unrolling very large vectors.

To allow VectorToSCF to add the necessary punctuation between vectors
and elements, a "punctuation" attribute has been added to vector.print.
This abstracts calling the runtime functions such as printNewline(),
without leaking the LLVM details into the higher abstraction levels.
For example:

  vector.print punctuation <comma>

lowers to

  llvm.call @printComma() : () -> ()

The output format and runtime functions remain the same, which avoids
the need to alter a large number of tests (aside from the pipelines).

Reviewed By: awarzynski, c-rhodes, aartbik

Differential Revision: https://reviews.llvm.org/D156519
2023-08-11 09:29:54 +00:00

121 lines
5.1 KiB
MLIR

// RUN: mlir-opt %s -convert-vector-to-scf -convert-scf-to-cf -convert-vector-to-llvm -convert-func-to-llvm -reconcile-unrealized-casts | \
// RUN: mlir-cpu-runner -e entry -entry-point-result=void \
// RUN: -shared-libs=%mlir_c_runner_utils | \
// RUN: FileCheck %s
func.func @entry() {
%f0 = arith.constant 0.0: f32
%f1 = arith.constant 1.0: f32
%f2 = arith.constant 2.0: f32
%f3 = arith.constant 3.0: f32
%f4 = arith.constant 4.0: f32
%f5 = arith.constant 5.0: f32
%f6 = arith.constant 6.0: f32
%f7 = arith.constant 7.0: f32
%f8 = arith.constant 8.0: f32
// Construct test vectors and matrices.
%0 = vector.broadcast %f1 : f32 to vector<2xf32>
%a = vector.insert %f2, %0[1] : f32 into vector<2xf32>
%1 = vector.broadcast %f3 : f32 to vector<2xf32>
%b = vector.insert %f4, %1[1] : f32 into vector<2xf32>
%2 = vector.broadcast %f5 : f32 to vector<2xf32>
%c = vector.insert %f6, %2[1] : f32 into vector<2xf32>
%3 = vector.broadcast %f7 : f32 to vector<2xf32>
%d = vector.insert %f8, %3[1] : f32 into vector<2xf32>
%4 = vector.broadcast %f0 : f32 to vector<2x2xf32>
%5 = vector.insert %a, %4[0] : vector<2xf32> into vector<2x2xf32>
%A = vector.insert %b, %5[1] : vector<2xf32> into vector<2x2xf32>
%6 = vector.broadcast %f0 : f32 to vector<2x2xf32>
%7 = vector.insert %c, %6[0] : vector<2xf32> into vector<2x2xf32>
%B = vector.insert %d, %7[1] : vector<2xf32> into vector<2x2xf32>
%8 = vector.broadcast %f0 : f32 to vector<3x2xf32>
%9 = vector.insert %a, %8[0] : vector<2xf32> into vector<3x2xf32>
%10 = vector.insert %b, %9[1] : vector<2xf32> into vector<3x2xf32>
%C = vector.insert %c, %10[2] : vector<2xf32> into vector<3x2xf32>
%cst = arith.constant dense<0.000000e+00> : vector<2x4xf32>
%11 = vector.insert_strided_slice %A, %cst {offsets = [0, 0], strides = [1, 1]} : vector<2x2xf32> into vector<2x4xf32>
%D = vector.insert_strided_slice %B, %11 {offsets = [0, 2], strides = [1, 1]} : vector<2x2xf32> into vector<2x4xf32>
vector.print %A : vector<2x2xf32>
vector.print %B : vector<2x2xf32>
vector.print %C : vector<3x2xf32>
vector.print %D : vector<2x4xf32>
//
// test matrices:
//
// CHECK: ( ( 1, 2 ), ( 3, 4 ) )
// CHECK: ( ( 5, 6 ), ( 7, 8 ) )
// CHECK: ( ( 1, 2 ), ( 3, 4 ), ( 5, 6 ) )
// CHECK: ( ( 1, 2, 5, 6 ), ( 3, 4, 7, 8 ) )
%tA = vector.transpose %A, [1, 0] : vector<2x2xf32> to vector<2x2xf32>
%tB = vector.transpose %B, [1, 0] : vector<2x2xf32> to vector<2x2xf32>
%tC = vector.transpose %C, [1, 0] : vector<3x2xf32> to vector<2x3xf32>
%tD = vector.transpose %D, [1, 0] : vector<2x4xf32> to vector<4x2xf32>
vector.print %tA : vector<2x2xf32>
vector.print %tB : vector<2x2xf32>
vector.print %tC : vector<2x3xf32>
vector.print %tD : vector<4x2xf32>
//
// transposed matrices:
//
// CHECK: ( ( 1, 3 ), ( 2, 4 ) )
// CHECK: ( ( 5, 7 ), ( 6, 8 ) )
// CHECK: ( ( 1, 3, 5 ), ( 2, 4, 6 ) )
// CHECK: ( ( 1, 3 ), ( 2, 4 ), ( 5, 7 ), ( 6, 8 ) )
%idD = vector.transpose %D, [0, 1] : vector<2x4xf32> to vector<2x4xf32>
%ttD = vector.transpose %tD, [1, 0] : vector<4x2xf32> to vector<2x4xf32>
vector.print %idD : vector<2x4xf32>
vector.print %ttD : vector<2x4xf32>
//
// back to original after transpose matrices:
//
// CHECK: ( ( 1, 2, 5, 6 ), ( 3, 4, 7, 8 ) )
// CHECK: ( ( 1, 2, 5, 6 ), ( 3, 4, 7, 8 ) )
// Construct test tensor.
%p = vector.broadcast %f1 : f32 to vector<2x2x2xf32>
%q = vector.insert %f2, %p[0, 0, 1] : f32 into vector<2x2x2xf32>
%r = vector.insert %f3, %q[0, 1, 0] : f32 into vector<2x2x2xf32>
%s = vector.insert %f4, %r[0, 1, 1] : f32 into vector<2x2x2xf32>
%t = vector.insert %f5, %s[1, 0, 0] : f32 into vector<2x2x2xf32>
%u = vector.insert %f6, %t[1, 0, 1] : f32 into vector<2x2x2xf32>
%v = vector.insert %f7, %u[1, 1, 0] : f32 into vector<2x2x2xf32>
%w = vector.insert %f8, %v[1, 1, 1] : f32 into vector<2x2x2xf32>
vector.print %w : vector<2x2x2xf32>
//
// test tensors:
//
// CHECK: ( ( ( 1, 2 ), ( 3, 4 ) ), ( ( 5, 6 ), ( 7, 8 ) ) )
%tP = vector.transpose %w, [0, 1, 2] : vector<2x2x2xf32> to vector<2x2x2xf32>
%tQ = vector.transpose %w, [0, 2, 1] : vector<2x2x2xf32> to vector<2x2x2xf32>
%tR = vector.transpose %w, [1, 0, 2] : vector<2x2x2xf32> to vector<2x2x2xf32>
%tS = vector.transpose %w, [2, 0, 1] : vector<2x2x2xf32> to vector<2x2x2xf32>
%tT = vector.transpose %w, [1, 2, 0] : vector<2x2x2xf32> to vector<2x2x2xf32>
%tU = vector.transpose %w, [2, 1, 0] : vector<2x2x2xf32> to vector<2x2x2xf32>
vector.print %tP : vector<2x2x2xf32>
vector.print %tQ : vector<2x2x2xf32>
vector.print %tR : vector<2x2x2xf32>
vector.print %tS : vector<2x2x2xf32>
vector.print %tT : vector<2x2x2xf32>
vector.print %tU : vector<2x2x2xf32>
//
// transposed tensors:
//
// CHECK: ( ( ( 1, 2 ), ( 3, 4 ) ), ( ( 5, 6 ), ( 7, 8 ) ) )
// CHECK: ( ( ( 1, 3 ), ( 2, 4 ) ), ( ( 5, 7 ), ( 6, 8 ) ) )
// CHECK: ( ( ( 1, 2 ), ( 5, 6 ) ), ( ( 3, 4 ), ( 7, 8 ) ) )
// CHECK: ( ( ( 1, 3 ), ( 5, 7 ) ), ( ( 2, 4 ), ( 6, 8 ) ) )
// CHECK: ( ( ( 1, 5 ), ( 2, 6 ) ), ( ( 3, 7 ), ( 4, 8 ) ) )
// CHECK: ( ( ( 1, 5 ), ( 3, 7 ) ), ( ( 2, 6 ), ( 4, 8 ) ) )
return
}