Files
clang-p2996/mlir/test/Target/LLVMIR/Import/constant.ll
Tobias Gysi 9dd0eb9c9c [mlir][llvm] Drop unreachable basic block during import (#78467)
This revision updates the LLVM IR import to support unreachable basic
blocks. An unreachable block may dominate itself and a value defined
inside the block may thus be used before its definition. The import does
not support such dependencies. We thus delete the unreachable basic
blocks before the import. This is possible since MLIR does not have
basic block labels that can be reached using an indirect call and
unreachable blocks can indeed be deleted safely.

Additionally, add a small poison constant import test.
2024-01-19 11:10:57 +01:00

239 lines
9.4 KiB
LLVM

; RUN: mlir-translate -import-llvm -split-input-file %s | FileCheck %s
; CHECK-LABEL: @int_constants
define void @int_constants(i16 %arg0, i32 %arg1, i1 %arg2) {
; CHECK: %[[C0:.+]] = llvm.mlir.constant(42 : i16) : i16
; CHECK: %[[C1:.+]] = llvm.mlir.constant(7 : i32) : i32
; CHECK: %[[C2:.+]] = llvm.mlir.constant(true) : i1
; CHECK: llvm.add %[[C0]], %{{.*}} : i16
%1 = add i16 42, %arg0
; CHECK: llvm.add %[[C1]], %{{.*}} : i32
%2 = add i32 7, %arg1
; CHECK: llvm.or %[[C2]], %{{.*}} : i1
%3 = or i1 1, %arg2
ret void
}
; // -----
; CHECK-LABEL: @float_constants
define void @float_constants(half %arg0, bfloat %arg1, fp128 %arg2, x86_fp80 %arg3) {
; CHECK: %[[C0:.+]] = llvm.mlir.constant(1.000000e+00 : f16) : f16
; CHECK: %[[C1:.+]] = llvm.mlir.constant(1.000000e+00 : bf16) : bf16
; CHECK: %[[C2:.+]] = llvm.mlir.constant(0.000000e+00 : f128) : f128
; CHECK: %[[C3:.+]] = llvm.mlir.constant(7.000000e+00 : f80) : f80
; CHECK: llvm.fadd %[[C0]], %{{.*}} : f16
%1 = fadd half 1.0, %arg0
; CHECK: llvm.fadd %[[C1]], %{{.*}} : bf16
%2 = fadd bfloat 1.0, %arg1
; CHECK: llvm.fadd %[[C2]], %{{.*}} : f128
%3 = fadd fp128 0xL00000000000000000000000000000000, %arg2
; CHECK: llvm.fadd %[[C3]], %{{.*}} : f80
%4 = fadd x86_fp80 0xK4001E000000000000000, %arg3
ret void
}
; // -----
; CHECK-LABEL: @undef_constant
define void @undef_constant(i32 %arg0) {
; CHECK: %[[UNDEF:.+]] = llvm.mlir.undef : i32
; CHECK: llvm.add %[[UNDEF]], %{{.*}} : i32
%1 = add i32 undef, %arg0
ret void
}
; // -----
; CHECK-LABEL: @poison_constant
define void @poison_constant(double %arg0) {
; CHECK: %[[POISON:.+]] = llvm.mlir.poison : f64
; CHECK: llvm.fadd %[[POISON]], %{{.*}} : f64
%1 = fadd double poison, %arg0
ret void
}
; // -----
; CHECK-LABEL: @null_constant
define ptr @null_constant() {
; CHECK: %[[NULL:[0-9]+]] = llvm.mlir.zero : !llvm.ptr
; CHECK: llvm.return %[[NULL]] : !llvm.ptr
ret ptr null
}
; // -----
@global = external global i32, align 8
; CHECK-LABEL: @gep_const_expr
define ptr @gep_const_expr() {
; CHECK-DAG: %[[ADDR:[0-9]+]] = llvm.mlir.addressof @global : !llvm.ptr
; CHECK-DAG: %[[IDX:[0-9]+]] = llvm.mlir.constant(2 : i32) : i32
; CHECK-DAG: %[[GEP:[0-9]+]] = llvm.getelementptr %[[ADDR]][%[[IDX]]] : (!llvm.ptr, i32) -> !llvm.ptr
; CHECK-DAG: llvm.return %[[GEP]] : !llvm.ptr
ret ptr getelementptr (i32, ptr @global, i32 2)
}
; // -----
@global = external global i32, align 8
; CHECK-LABEL: @const_expr_with_duplicate
define i64 @const_expr_with_duplicate() {
; CHECK-DAG: %[[ADDR:[0-9]+]] = llvm.mlir.addressof @global : !llvm.ptr
; CHECK-DAG: %[[IDX:[0-9]+]] = llvm.mlir.constant(7 : i32) : i32
; CHECK-DAG: %[[GEP:[0-9]+]] = llvm.getelementptr %[[ADDR]][%[[IDX]]] : (!llvm.ptr, i32) -> !llvm.ptr
; CHECK-DAG: %[[DUP:[0-9]+]] = llvm.ptrtoint %[[GEP]] : !llvm.ptr to i64
; Verify the duplicate sub expression is converted only once.
; CHECK-DAG: %[[SUM:[0-9]+]] = llvm.add %[[DUP]], %[[DUP]] : i64
; CHECK-DAG: llvm.return %[[SUM]] : i64
ret i64 add (i64 ptrtoint (ptr getelementptr (i32, ptr @global, i32 7) to i64),
i64 ptrtoint (ptr getelementptr (i32, ptr @global, i32 7) to i64))
}
; // -----
@global = external global i32, align 8
; CHECK-LABEL: @const_expr_with_aggregate()
define i64 @const_expr_with_aggregate() {
; Compute the vector elements.
; CHECK-DAG: %[[VAL1:[0-9]+]] = llvm.mlir.constant(33 : i64) : i64
; CHECK-DAG: %[[ADDR:[0-9]+]] = llvm.mlir.addressof @global : !llvm.ptr
; CHECK-DAG: %[[IDX1:[0-9]+]] = llvm.mlir.constant(7 : i32) : i32
; CHECK-DAG: %[[GEP1:[0-9]+]] = llvm.getelementptr %[[ADDR]][%[[IDX1]]] : (!llvm.ptr, i32) -> !llvm.ptr
; CHECK-DAG: %[[VAL2:[0-9]+]] = llvm.ptrtoint %[[GEP1]] : !llvm.ptr to i64
; Fill the vector.
; CHECK-DAG: %[[VEC1:[0-9]+]] = llvm.mlir.undef : vector<2xi64>
; CHECK-DAG: %[[IDX2:[0-9]+]] = llvm.mlir.constant(0 : i32) : i32
; CHECK-DAG: %[[VEC2:[0-9]+]] = llvm.insertelement %[[VAL1]], %[[VEC1]][%[[IDX2]] : i32] : vector<2xi64>
; CHECK-DAG: %[[IDX3:[0-9]+]] = llvm.mlir.constant(1 : i32) : i32
; CHECK-DAG: %[[VEC3:[0-9]+]] = llvm.insertelement %[[VAL2]], %[[VEC2]][%[[IDX3]] : i32] : vector<2xi64>
; CHECK-DAG: %[[IDX4:[0-9]+]] = llvm.mlir.constant(42 : i32) : i32
; Compute the extract index.
; CHECK-DAG: %[[GEP2:[0-9]+]] = llvm.getelementptr %[[ADDR]][%[[IDX4]]] : (!llvm.ptr, i32) -> !llvm.ptr
; CHECK-DAG: %[[IDX5:[0-9]+]] = llvm.ptrtoint %[[GEP2]] : !llvm.ptr to i64
; Extract the vector element.
; CHECK-DAG: %[[ELEM:[0-9]+]] = llvm.extractelement %[[VEC3]][%[[IDX5]] : i64] : vector<2xi64>
; CHECK-DAG: llvm.return %[[ELEM]] : i64
ret i64 extractelement (
<2 x i64> <i64 33, i64 ptrtoint (ptr getelementptr (i32, ptr @global, i32 7) to i64)>,
i64 ptrtoint (ptr getelementptr (i32, ptr @global, i32 42) to i64))
}
; // -----
; Verify the function constant import.
; Calling a function that has not been defined yet.
; CHECK-LABEL: @function_address_before_def
define i32 @function_address_before_def() {
%1 = alloca ptr
; CHECK: %[[FUN:.*]] = llvm.mlir.addressof @callee : !llvm.ptr
; CHECK: llvm.store %[[FUN]], %[[PTR:.*]] : !llvm.ptr, !llvm.ptr
store ptr @callee, ptr %1
; CHECK: %[[INDIR:.*]] = llvm.load %[[PTR]] : !llvm.ptr -> !llvm.ptr
%2 = load ptr, ptr %1
; CHECK: llvm.call %[[INDIR]]() : !llvm.ptr, () -> i32
%3 = call i32 %2()
ret i32 %3
}
define i32 @callee() {
ret i32 42
}
; Calling a function that has been defined.
; CHECK-LABEL: @function_address_after_def
define i32 @function_address_after_def() {
%1 = alloca ptr
; CHECK: %[[FUN:.*]] = llvm.mlir.addressof @callee : !llvm.ptr
; CHECK: llvm.store %[[FUN]], %[[PTR:.*]] : !llvm.ptr, !llvm.ptr
store ptr @callee, ptr %1
; CHECK: %[[INDIR:.*]] = llvm.load %[[PTR]] : !llvm.ptr -> !llvm.ptr
%2 = load ptr, ptr %1
; CHECK: llvm.call %[[INDIR]]() : !llvm.ptr, () -> i32
%3 = call i32 %2()
ret i32 %3
}
; // -----
; Verify the aggregate constant import.
; CHECK-DAG: %[[C0:.+]] = llvm.mlir.constant(9 : i32) : i32
; CHECK-DAG: %[[C1:.+]] = llvm.mlir.constant(4 : i8) : i8
; CHECK-DAG: %[[C2:.+]] = llvm.mlir.constant(8 : i16) : i16
; CHECK-DAG: %[[C3:.+]] = llvm.mlir.constant(7 : i32) : i32
; CHECK-DAG: %[[ROOT:.+]] = llvm.mlir.undef : !llvm.struct<"simple_agg_type", (i32, i8, i16, i32)>
; CHECK-DAG: %[[CHAIN0:.+]] = llvm.insertvalue %[[C0]], %[[ROOT]][0]
; CHECK-DAG: %[[CHAIN1:.+]] = llvm.insertvalue %[[C1]], %[[CHAIN0]][1]
; CHECK-DAG: %[[CHAIN2:.+]] = llvm.insertvalue %[[C2]], %[[CHAIN1]][2]
; CHECK-DAG: %[[CHAIN3:.+]] = llvm.insertvalue %[[C3]], %[[CHAIN2]][3]
; CHECK-DAG: llvm.return %[[CHAIN3]]
%simple_agg_type = type {i32, i8, i16, i32}
@simple_agg = global %simple_agg_type {i32 9, i8 4, i16 8, i32 7}
; CHECK-DAG: %[[C1:.+]] = llvm.mlir.constant(1 : i32) : i32
; CHECK-DAG: %[[C2:.+]] = llvm.mlir.constant(2 : i8) : i8
; CHECK-DAG: %[[C3:.+]] = llvm.mlir.constant(3 : i16) : i16
; CHECK-DAG: %[[C4:.+]] = llvm.mlir.constant(4 : i32) : i32
; CHECK-DAG: %[[NESTED:.+]] = llvm.mlir.undef : !llvm.struct<"simple_agg_type", (i32, i8, i16, i32)>
; CHECK-DAG: %[[CHAIN0:.+]] = llvm.insertvalue %[[C1]], %[[NESTED]][0]
; CHECK-DAG: %[[CHAIN1:.+]] = llvm.insertvalue %[[C2]], %[[CHAIN0]][1]
; CHECK-DAG: %[[CHAIN2:.+]] = llvm.insertvalue %[[C3]], %[[CHAIN1]][2]
; CHECK-DAG: %[[CHAIN3:.+]] = llvm.insertvalue %[[C4]], %[[CHAIN2]][3]
; CHECK-DAG: %[[NULL:.+]] = llvm.mlir.zero : !llvm.ptr
; CHECK-DAG: %[[ROOT:.+]] = llvm.mlir.undef : !llvm.struct<"nested_agg_type", (struct<"simple_agg_type", (i32, i8, i16, i32)>, ptr)>
; CHECK-DAG: %[[CHAIN4:.+]] = llvm.insertvalue %[[CHAIN3]], %[[ROOT]][0]
; CHECK-DAG: %[[CHAIN5:.+]] = llvm.insertvalue %[[NULL]], %[[CHAIN4]][1]
; CHECK-DAG: llvm.return %[[CHAIN5]]
%nested_agg_type = type {%simple_agg_type, ptr}
@nested_agg = global %nested_agg_type { %simple_agg_type{i32 1, i8 2, i16 3, i32 4}, ptr null }
; CHECK-DAG: %[[NULL:.+]] = llvm.mlir.zero : !llvm.ptr
; CHECK-DAG: %[[ROOT:.+]] = llvm.mlir.undef : !llvm.vec<2 x ptr>
; CHECK-DAG: %[[P0:.+]] = llvm.mlir.constant(0 : i32) : i32
; CHECK-DAG: %[[CHAIN0:.+]] = llvm.insertelement %[[NULL]], %[[ROOT]][%[[P0]] : i32] : !llvm.vec<2 x ptr>
; CHECK-DAG: %[[P1:.+]] = llvm.mlir.constant(1 : i32) : i32
; CHECK-DAG: %[[CHAIN1:.+]] = llvm.insertelement %[[NULL]], %[[CHAIN0]][%[[P1]] : i32] : !llvm.vec<2 x ptr>
; CHECK-DAG: llvm.return %[[CHAIN1]] : !llvm.vec<2 x ptr>
@vector_agg = global <2 x ptr> <ptr null, ptr null>
; // -----
; Verfiy the import of subsequent constant expressions with duplicates.
@global = external global i32, align 8
; CHECK-LABEL: @const_exprs_with_duplicate
define i64 @const_exprs_with_duplicate() {
; CHECK: %[[ADDR:.+]] = llvm.mlir.addressof @global : !llvm.ptr
; CHECK: llvm.getelementptr %[[ADDR]][%{{.*}}] : (!llvm.ptr, i32) -> !llvm.ptr
%1 = add i64 1, ptrtoint (ptr getelementptr (i32, ptr @global, i32 7) to i64)
; Verify the address value is reused.
; CHECK: llvm.getelementptr %[[ADDR]][%{{.*}}] : (!llvm.ptr, i32) -> !llvm.ptr
%2 = add i64 %1, ptrtoint (ptr getelementptr (i32, ptr @global, i32 42) to i64)
ret i64 %2
}
; // -----
; Verify the import of constant expressions with cyclic dependencies.
@cyclic = internal constant i64 add (i64 ptrtoint (ptr @cyclic to i64), i64 ptrtoint (ptr @cyclic to i64))
; CHECK-LABEL: @cyclic
; CHECK: %[[ADDR:.+]] = llvm.mlir.addressof @cyclic
; CHECK: %[[VAL0:.+]] = llvm.ptrtoint %[[ADDR]]
; CHECK: %[[VAL1:.+]] = llvm.add %[[VAL0]], %[[VAL0]]
; CHECK: llvm.return %[[VAL1]]