This revision updates the LLVM IR import to support unreachable basic blocks. An unreachable block may dominate itself and a value defined inside the block may thus be used before its definition. The import does not support such dependencies. We thus delete the unreachable basic blocks before the import. This is possible since MLIR does not have basic block labels that can be reached using an indirect call and unreachable blocks can indeed be deleted safely. Additionally, add a small poison constant import test.
239 lines
9.4 KiB
LLVM
239 lines
9.4 KiB
LLVM
; RUN: mlir-translate -import-llvm -split-input-file %s | FileCheck %s
|
|
|
|
; CHECK-LABEL: @int_constants
|
|
define void @int_constants(i16 %arg0, i32 %arg1, i1 %arg2) {
|
|
; CHECK: %[[C0:.+]] = llvm.mlir.constant(42 : i16) : i16
|
|
; CHECK: %[[C1:.+]] = llvm.mlir.constant(7 : i32) : i32
|
|
; CHECK: %[[C2:.+]] = llvm.mlir.constant(true) : i1
|
|
|
|
; CHECK: llvm.add %[[C0]], %{{.*}} : i16
|
|
%1 = add i16 42, %arg0
|
|
; CHECK: llvm.add %[[C1]], %{{.*}} : i32
|
|
%2 = add i32 7, %arg1
|
|
; CHECK: llvm.or %[[C2]], %{{.*}} : i1
|
|
%3 = or i1 1, %arg2
|
|
ret void
|
|
}
|
|
|
|
; // -----
|
|
|
|
; CHECK-LABEL: @float_constants
|
|
define void @float_constants(half %arg0, bfloat %arg1, fp128 %arg2, x86_fp80 %arg3) {
|
|
; CHECK: %[[C0:.+]] = llvm.mlir.constant(1.000000e+00 : f16) : f16
|
|
; CHECK: %[[C1:.+]] = llvm.mlir.constant(1.000000e+00 : bf16) : bf16
|
|
; CHECK: %[[C2:.+]] = llvm.mlir.constant(0.000000e+00 : f128) : f128
|
|
; CHECK: %[[C3:.+]] = llvm.mlir.constant(7.000000e+00 : f80) : f80
|
|
|
|
; CHECK: llvm.fadd %[[C0]], %{{.*}} : f16
|
|
%1 = fadd half 1.0, %arg0
|
|
; CHECK: llvm.fadd %[[C1]], %{{.*}} : bf16
|
|
%2 = fadd bfloat 1.0, %arg1
|
|
; CHECK: llvm.fadd %[[C2]], %{{.*}} : f128
|
|
%3 = fadd fp128 0xL00000000000000000000000000000000, %arg2
|
|
; CHECK: llvm.fadd %[[C3]], %{{.*}} : f80
|
|
%4 = fadd x86_fp80 0xK4001E000000000000000, %arg3
|
|
ret void
|
|
}
|
|
|
|
; // -----
|
|
|
|
; CHECK-LABEL: @undef_constant
|
|
define void @undef_constant(i32 %arg0) {
|
|
; CHECK: %[[UNDEF:.+]] = llvm.mlir.undef : i32
|
|
; CHECK: llvm.add %[[UNDEF]], %{{.*}} : i32
|
|
%1 = add i32 undef, %arg0
|
|
ret void
|
|
}
|
|
|
|
; // -----
|
|
|
|
; CHECK-LABEL: @poison_constant
|
|
define void @poison_constant(double %arg0) {
|
|
; CHECK: %[[POISON:.+]] = llvm.mlir.poison : f64
|
|
; CHECK: llvm.fadd %[[POISON]], %{{.*}} : f64
|
|
%1 = fadd double poison, %arg0
|
|
ret void
|
|
}
|
|
|
|
; // -----
|
|
|
|
; CHECK-LABEL: @null_constant
|
|
define ptr @null_constant() {
|
|
; CHECK: %[[NULL:[0-9]+]] = llvm.mlir.zero : !llvm.ptr
|
|
; CHECK: llvm.return %[[NULL]] : !llvm.ptr
|
|
ret ptr null
|
|
}
|
|
|
|
; // -----
|
|
|
|
@global = external global i32, align 8
|
|
|
|
; CHECK-LABEL: @gep_const_expr
|
|
define ptr @gep_const_expr() {
|
|
; CHECK-DAG: %[[ADDR:[0-9]+]] = llvm.mlir.addressof @global : !llvm.ptr
|
|
; CHECK-DAG: %[[IDX:[0-9]+]] = llvm.mlir.constant(2 : i32) : i32
|
|
; CHECK-DAG: %[[GEP:[0-9]+]] = llvm.getelementptr %[[ADDR]][%[[IDX]]] : (!llvm.ptr, i32) -> !llvm.ptr
|
|
; CHECK-DAG: llvm.return %[[GEP]] : !llvm.ptr
|
|
ret ptr getelementptr (i32, ptr @global, i32 2)
|
|
}
|
|
|
|
; // -----
|
|
|
|
@global = external global i32, align 8
|
|
|
|
; CHECK-LABEL: @const_expr_with_duplicate
|
|
define i64 @const_expr_with_duplicate() {
|
|
; CHECK-DAG: %[[ADDR:[0-9]+]] = llvm.mlir.addressof @global : !llvm.ptr
|
|
; CHECK-DAG: %[[IDX:[0-9]+]] = llvm.mlir.constant(7 : i32) : i32
|
|
; CHECK-DAG: %[[GEP:[0-9]+]] = llvm.getelementptr %[[ADDR]][%[[IDX]]] : (!llvm.ptr, i32) -> !llvm.ptr
|
|
; CHECK-DAG: %[[DUP:[0-9]+]] = llvm.ptrtoint %[[GEP]] : !llvm.ptr to i64
|
|
|
|
; Verify the duplicate sub expression is converted only once.
|
|
; CHECK-DAG: %[[SUM:[0-9]+]] = llvm.add %[[DUP]], %[[DUP]] : i64
|
|
; CHECK-DAG: llvm.return %[[SUM]] : i64
|
|
ret i64 add (i64 ptrtoint (ptr getelementptr (i32, ptr @global, i32 7) to i64),
|
|
i64 ptrtoint (ptr getelementptr (i32, ptr @global, i32 7) to i64))
|
|
}
|
|
|
|
; // -----
|
|
|
|
@global = external global i32, align 8
|
|
|
|
; CHECK-LABEL: @const_expr_with_aggregate()
|
|
define i64 @const_expr_with_aggregate() {
|
|
; Compute the vector elements.
|
|
; CHECK-DAG: %[[VAL1:[0-9]+]] = llvm.mlir.constant(33 : i64) : i64
|
|
; CHECK-DAG: %[[ADDR:[0-9]+]] = llvm.mlir.addressof @global : !llvm.ptr
|
|
; CHECK-DAG: %[[IDX1:[0-9]+]] = llvm.mlir.constant(7 : i32) : i32
|
|
; CHECK-DAG: %[[GEP1:[0-9]+]] = llvm.getelementptr %[[ADDR]][%[[IDX1]]] : (!llvm.ptr, i32) -> !llvm.ptr
|
|
; CHECK-DAG: %[[VAL2:[0-9]+]] = llvm.ptrtoint %[[GEP1]] : !llvm.ptr to i64
|
|
|
|
; Fill the vector.
|
|
; CHECK-DAG: %[[VEC1:[0-9]+]] = llvm.mlir.undef : vector<2xi64>
|
|
; CHECK-DAG: %[[IDX2:[0-9]+]] = llvm.mlir.constant(0 : i32) : i32
|
|
; CHECK-DAG: %[[VEC2:[0-9]+]] = llvm.insertelement %[[VAL1]], %[[VEC1]][%[[IDX2]] : i32] : vector<2xi64>
|
|
; CHECK-DAG: %[[IDX3:[0-9]+]] = llvm.mlir.constant(1 : i32) : i32
|
|
; CHECK-DAG: %[[VEC3:[0-9]+]] = llvm.insertelement %[[VAL2]], %[[VEC2]][%[[IDX3]] : i32] : vector<2xi64>
|
|
; CHECK-DAG: %[[IDX4:[0-9]+]] = llvm.mlir.constant(42 : i32) : i32
|
|
|
|
; Compute the extract index.
|
|
; CHECK-DAG: %[[GEP2:[0-9]+]] = llvm.getelementptr %[[ADDR]][%[[IDX4]]] : (!llvm.ptr, i32) -> !llvm.ptr
|
|
; CHECK-DAG: %[[IDX5:[0-9]+]] = llvm.ptrtoint %[[GEP2]] : !llvm.ptr to i64
|
|
|
|
; Extract the vector element.
|
|
; CHECK-DAG: %[[ELEM:[0-9]+]] = llvm.extractelement %[[VEC3]][%[[IDX5]] : i64] : vector<2xi64>
|
|
; CHECK-DAG: llvm.return %[[ELEM]] : i64
|
|
ret i64 extractelement (
|
|
<2 x i64> <i64 33, i64 ptrtoint (ptr getelementptr (i32, ptr @global, i32 7) to i64)>,
|
|
i64 ptrtoint (ptr getelementptr (i32, ptr @global, i32 42) to i64))
|
|
}
|
|
|
|
; // -----
|
|
|
|
; Verify the function constant import.
|
|
|
|
; Calling a function that has not been defined yet.
|
|
; CHECK-LABEL: @function_address_before_def
|
|
define i32 @function_address_before_def() {
|
|
%1 = alloca ptr
|
|
; CHECK: %[[FUN:.*]] = llvm.mlir.addressof @callee : !llvm.ptr
|
|
; CHECK: llvm.store %[[FUN]], %[[PTR:.*]] : !llvm.ptr, !llvm.ptr
|
|
store ptr @callee, ptr %1
|
|
; CHECK: %[[INDIR:.*]] = llvm.load %[[PTR]] : !llvm.ptr -> !llvm.ptr
|
|
%2 = load ptr, ptr %1
|
|
; CHECK: llvm.call %[[INDIR]]() : !llvm.ptr, () -> i32
|
|
%3 = call i32 %2()
|
|
ret i32 %3
|
|
}
|
|
|
|
define i32 @callee() {
|
|
ret i32 42
|
|
}
|
|
|
|
; Calling a function that has been defined.
|
|
; CHECK-LABEL: @function_address_after_def
|
|
define i32 @function_address_after_def() {
|
|
%1 = alloca ptr
|
|
; CHECK: %[[FUN:.*]] = llvm.mlir.addressof @callee : !llvm.ptr
|
|
; CHECK: llvm.store %[[FUN]], %[[PTR:.*]] : !llvm.ptr, !llvm.ptr
|
|
store ptr @callee, ptr %1
|
|
; CHECK: %[[INDIR:.*]] = llvm.load %[[PTR]] : !llvm.ptr -> !llvm.ptr
|
|
%2 = load ptr, ptr %1
|
|
; CHECK: llvm.call %[[INDIR]]() : !llvm.ptr, () -> i32
|
|
%3 = call i32 %2()
|
|
ret i32 %3
|
|
}
|
|
|
|
; // -----
|
|
|
|
; Verify the aggregate constant import.
|
|
|
|
; CHECK-DAG: %[[C0:.+]] = llvm.mlir.constant(9 : i32) : i32
|
|
; CHECK-DAG: %[[C1:.+]] = llvm.mlir.constant(4 : i8) : i8
|
|
; CHECK-DAG: %[[C2:.+]] = llvm.mlir.constant(8 : i16) : i16
|
|
; CHECK-DAG: %[[C3:.+]] = llvm.mlir.constant(7 : i32) : i32
|
|
; CHECK-DAG: %[[ROOT:.+]] = llvm.mlir.undef : !llvm.struct<"simple_agg_type", (i32, i8, i16, i32)>
|
|
; CHECK-DAG: %[[CHAIN0:.+]] = llvm.insertvalue %[[C0]], %[[ROOT]][0]
|
|
; CHECK-DAG: %[[CHAIN1:.+]] = llvm.insertvalue %[[C1]], %[[CHAIN0]][1]
|
|
; CHECK-DAG: %[[CHAIN2:.+]] = llvm.insertvalue %[[C2]], %[[CHAIN1]][2]
|
|
; CHECK-DAG: %[[CHAIN3:.+]] = llvm.insertvalue %[[C3]], %[[CHAIN2]][3]
|
|
; CHECK-DAG: llvm.return %[[CHAIN3]]
|
|
%simple_agg_type = type {i32, i8, i16, i32}
|
|
@simple_agg = global %simple_agg_type {i32 9, i8 4, i16 8, i32 7}
|
|
|
|
; CHECK-DAG: %[[C1:.+]] = llvm.mlir.constant(1 : i32) : i32
|
|
; CHECK-DAG: %[[C2:.+]] = llvm.mlir.constant(2 : i8) : i8
|
|
; CHECK-DAG: %[[C3:.+]] = llvm.mlir.constant(3 : i16) : i16
|
|
; CHECK-DAG: %[[C4:.+]] = llvm.mlir.constant(4 : i32) : i32
|
|
; CHECK-DAG: %[[NESTED:.+]] = llvm.mlir.undef : !llvm.struct<"simple_agg_type", (i32, i8, i16, i32)>
|
|
; CHECK-DAG: %[[CHAIN0:.+]] = llvm.insertvalue %[[C1]], %[[NESTED]][0]
|
|
; CHECK-DAG: %[[CHAIN1:.+]] = llvm.insertvalue %[[C2]], %[[CHAIN0]][1]
|
|
; CHECK-DAG: %[[CHAIN2:.+]] = llvm.insertvalue %[[C3]], %[[CHAIN1]][2]
|
|
; CHECK-DAG: %[[CHAIN3:.+]] = llvm.insertvalue %[[C4]], %[[CHAIN2]][3]
|
|
; CHECK-DAG: %[[NULL:.+]] = llvm.mlir.zero : !llvm.ptr
|
|
; CHECK-DAG: %[[ROOT:.+]] = llvm.mlir.undef : !llvm.struct<"nested_agg_type", (struct<"simple_agg_type", (i32, i8, i16, i32)>, ptr)>
|
|
; CHECK-DAG: %[[CHAIN4:.+]] = llvm.insertvalue %[[CHAIN3]], %[[ROOT]][0]
|
|
; CHECK-DAG: %[[CHAIN5:.+]] = llvm.insertvalue %[[NULL]], %[[CHAIN4]][1]
|
|
; CHECK-DAG: llvm.return %[[CHAIN5]]
|
|
%nested_agg_type = type {%simple_agg_type, ptr}
|
|
@nested_agg = global %nested_agg_type { %simple_agg_type{i32 1, i8 2, i16 3, i32 4}, ptr null }
|
|
|
|
; CHECK-DAG: %[[NULL:.+]] = llvm.mlir.zero : !llvm.ptr
|
|
; CHECK-DAG: %[[ROOT:.+]] = llvm.mlir.undef : !llvm.vec<2 x ptr>
|
|
; CHECK-DAG: %[[P0:.+]] = llvm.mlir.constant(0 : i32) : i32
|
|
; CHECK-DAG: %[[CHAIN0:.+]] = llvm.insertelement %[[NULL]], %[[ROOT]][%[[P0]] : i32] : !llvm.vec<2 x ptr>
|
|
; CHECK-DAG: %[[P1:.+]] = llvm.mlir.constant(1 : i32) : i32
|
|
; CHECK-DAG: %[[CHAIN1:.+]] = llvm.insertelement %[[NULL]], %[[CHAIN0]][%[[P1]] : i32] : !llvm.vec<2 x ptr>
|
|
; CHECK-DAG: llvm.return %[[CHAIN1]] : !llvm.vec<2 x ptr>
|
|
@vector_agg = global <2 x ptr> <ptr null, ptr null>
|
|
|
|
; // -----
|
|
|
|
; Verfiy the import of subsequent constant expressions with duplicates.
|
|
|
|
@global = external global i32, align 8
|
|
|
|
; CHECK-LABEL: @const_exprs_with_duplicate
|
|
define i64 @const_exprs_with_duplicate() {
|
|
; CHECK: %[[ADDR:.+]] = llvm.mlir.addressof @global : !llvm.ptr
|
|
; CHECK: llvm.getelementptr %[[ADDR]][%{{.*}}] : (!llvm.ptr, i32) -> !llvm.ptr
|
|
%1 = add i64 1, ptrtoint (ptr getelementptr (i32, ptr @global, i32 7) to i64)
|
|
|
|
; Verify the address value is reused.
|
|
; CHECK: llvm.getelementptr %[[ADDR]][%{{.*}}] : (!llvm.ptr, i32) -> !llvm.ptr
|
|
%2 = add i64 %1, ptrtoint (ptr getelementptr (i32, ptr @global, i32 42) to i64)
|
|
ret i64 %2
|
|
}
|
|
|
|
; // -----
|
|
|
|
; Verify the import of constant expressions with cyclic dependencies.
|
|
|
|
@cyclic = internal constant i64 add (i64 ptrtoint (ptr @cyclic to i64), i64 ptrtoint (ptr @cyclic to i64))
|
|
|
|
; CHECK-LABEL: @cyclic
|
|
; CHECK: %[[ADDR:.+]] = llvm.mlir.addressof @cyclic
|
|
; CHECK: %[[VAL0:.+]] = llvm.ptrtoint %[[ADDR]]
|
|
; CHECK: %[[VAL1:.+]] = llvm.add %[[VAL0]], %[[VAL0]]
|
|
; CHECK: llvm.return %[[VAL1]]
|