The primary motivation is to fix an assertion failure in
isl_basic_map_alloc_equality:
isl_assert(ctx, room_for_con(bmap, 1), return -1);
Although the assertion does not occur anymore, I could not identify
which of ISL's commits fixed it.
Compared to the previous ISL version, Polly requires some changes for this update
* Since ISL commit
20d3574 "perform parameter alignment by modifying both arguments to function"
isl_*_gist_* and similar functions do not always align the paramter
list anymore. This caused the parameter lists in JScop files to
become out-of-sync. Since many regression tests use JScop files with
a fixed parameter list and order, we explicitly call align_params to
ensure a predictable parameter list.
* ISL changed some return types to isl_size, a typedef of (signed) int.
This caused some issues where the return type was unsigned int before:
- No overload for std::max(unsigned,isl_size)
- It cause additional 'mixed signed/unsigned comparison' warnings.
Since they do not break compilation, and sizes larger than 2^31
were never supported, I am going to fix it separately.
* With the change to isl_size, commit
57d547 "isl_*_list_size: return isl_size"
also changed the return value in case of an error from 0 to -1. This
caused undefined looping over isl_iterator since the 'end iterator'
got index -1, never reached from the 'begin iterator' with index 0.
* Some internal changes in ISL caused the number of operations to
increase when determining access ranges to determine aliasing
overlaps. In one test, this caused exceeding the default limit of
800000. The operations-limit was disabled for this test.
375 lines
10 KiB
C++
375 lines
10 KiB
C++
/* Copyright 2016-2017 Tobias Grosser
|
|
*
|
|
* Use of this software is governed by the MIT license
|
|
*
|
|
* Written by Tobias Grosser, Weststrasse 47, CH-8003, Zurich
|
|
*/
|
|
|
|
#ifndef IS_TRUE
|
|
#define IS_TRUE(b) (b)
|
|
#endif
|
|
#ifndef SIZE_VAL
|
|
#define SIZE_VAL(s) (s)
|
|
#endif
|
|
|
|
/* Test the pointer interface for interaction between isl C and C++ types.
|
|
*
|
|
* This tests:
|
|
* - construction from an isl C object
|
|
* - check that constructed objects are non-null
|
|
* - get a non-owned C pointer from an isl C++ object usable in __isl_keep
|
|
* methods
|
|
* - use copy to get an owned C pointer from an isl C++ object which is usable
|
|
* in __isl_take methods. Verify that the original C++ object retains a valid
|
|
* pointer.
|
|
* - use release to get an owned C pointer from an isl C++ object which is
|
|
* usable in __isl_take methods. Verify that the original C++ object gave up
|
|
* its pointer and now is null.
|
|
*/
|
|
void test_pointer(isl::ctx ctx)
|
|
{
|
|
isl_set *c_empty = isl_set_read_from_str(ctx.get(), "{ : false }");
|
|
isl::set empty = isl::manage(c_empty);
|
|
assert(IS_TRUE(empty.is_empty()));
|
|
assert(isl_set_is_empty(empty.get()));
|
|
|
|
assert(!empty.is_null());
|
|
isl_set_free(empty.copy());
|
|
assert(!empty.is_null());
|
|
isl_set_free(empty.release());
|
|
assert(empty.is_null());
|
|
}
|
|
|
|
/* Test that isl objects can be constructed.
|
|
*
|
|
* This tests:
|
|
* - construction of a null object
|
|
* - construction from a string
|
|
* - construction from an integer
|
|
* - static constructor without a parameter
|
|
* - conversion construction (implicit)
|
|
* - conversion construction (explicit)
|
|
* - construction of empty union set
|
|
*
|
|
* The tests to construct from integers and strings cover functionality that
|
|
* is also tested in the parameter type tests, but here we verify that
|
|
* multiple overloaded constructors are available and that overload resolution
|
|
* works as expected.
|
|
*
|
|
* Construction from an isl C pointer is tested in test_pointer.
|
|
*/
|
|
void test_constructors(isl::ctx ctx)
|
|
{
|
|
isl::val null;
|
|
assert(null.is_null());
|
|
|
|
isl::val zero_from_str = isl::val(ctx, "0");
|
|
assert(IS_TRUE(zero_from_str.is_zero()));
|
|
|
|
isl::val zero_int_con = isl::val(ctx, 0);
|
|
assert(IS_TRUE(zero_int_con.is_zero()));
|
|
|
|
isl::val zero_static_con = isl::val::zero(ctx);
|
|
assert(IS_TRUE(zero_static_con.is_zero()));
|
|
|
|
isl::basic_set bs(ctx, "{ [1] }");
|
|
isl::set result(ctx, "{ [1] }");
|
|
isl::set s = bs;
|
|
assert(IS_TRUE(s.is_equal(result)));
|
|
isl::set s2(bs);
|
|
assert(IS_TRUE(s.unite(s2).is_equal(result)));
|
|
|
|
isl::union_set us(ctx, "{ A[1]; B[2, 3] }");
|
|
isl::union_set empty = isl::union_set::empty(ctx);
|
|
assert(IS_TRUE(us.is_equal(us.unite(empty))));
|
|
}
|
|
|
|
/* Test integer function parameters.
|
|
*
|
|
* Verify that extreme values and zero work.
|
|
*/
|
|
void test_parameters_int(isl::ctx ctx)
|
|
{
|
|
isl::val long_max_str(ctx, std::to_string(LONG_MAX));
|
|
isl::val long_max_int(ctx, LONG_MAX);
|
|
assert(IS_TRUE(long_max_str.eq(long_max_int)));
|
|
|
|
isl::val long_min_str(ctx, std::to_string(LONG_MIN));
|
|
isl::val long_min_int(ctx, LONG_MIN);
|
|
assert(IS_TRUE(long_min_str.eq(long_min_int)));
|
|
|
|
isl::val long_zero_str = isl::val(ctx, std::to_string(0));
|
|
isl::val long_zero_int = isl::val(ctx, 0);
|
|
assert(IS_TRUE(long_zero_str.eq(long_zero_int)));
|
|
}
|
|
|
|
/* Test isl objects parameters.
|
|
*
|
|
* Verify that isl objects can be passed as lvalue and rvalue parameters.
|
|
* Also verify that isl object parameters are automatically type converted if
|
|
* there is an inheritance relation. Finally, test function calls without
|
|
* any additional parameters, apart from the isl object on which
|
|
* the method is called.
|
|
*/
|
|
void test_parameters_obj(isl::ctx ctx)
|
|
{
|
|
isl::set a(ctx, "{ [0] }");
|
|
isl::set b(ctx, "{ [1] }");
|
|
isl::set c(ctx, "{ [2] }");
|
|
isl::set expected(ctx, "{ [i] : 0 <= i <= 2 }");
|
|
|
|
isl::set tmp = a.unite(b);
|
|
isl::set res_lvalue_param = tmp.unite(c);
|
|
assert(IS_TRUE(res_lvalue_param.is_equal(expected)));
|
|
|
|
isl::set res_rvalue_param = a.unite(b).unite(c);
|
|
assert(IS_TRUE(res_rvalue_param.is_equal(expected)));
|
|
|
|
isl::basic_set a2(ctx, "{ [0] }");
|
|
assert(IS_TRUE(a.is_equal(a2)));
|
|
|
|
isl::val two(ctx, 2);
|
|
isl::val half(ctx, "1/2");
|
|
isl::val res_only_this_param = two.inv();
|
|
assert(IS_TRUE(res_only_this_param.eq(half)));
|
|
}
|
|
|
|
/* Test different kinds of parameters to be passed to functions.
|
|
*
|
|
* This includes integer and isl C++ object parameters.
|
|
*/
|
|
void test_parameters(isl::ctx ctx)
|
|
{
|
|
test_parameters_int(ctx);
|
|
test_parameters_obj(ctx);
|
|
}
|
|
|
|
/* Test that isl objects are returned correctly.
|
|
*
|
|
* This only tests that after combining two objects, the result is successfully
|
|
* returned.
|
|
*/
|
|
void test_return_obj(isl::ctx ctx)
|
|
{
|
|
isl::val one(ctx, "1");
|
|
isl::val two(ctx, "2");
|
|
isl::val three(ctx, "3");
|
|
|
|
isl::val res = one.add(two);
|
|
|
|
assert(IS_TRUE(res.eq(three)));
|
|
}
|
|
|
|
/* Test that integer values are returned correctly.
|
|
*/
|
|
void test_return_int(isl::ctx ctx)
|
|
{
|
|
isl::val one(ctx, "1");
|
|
isl::val neg_one(ctx, "-1");
|
|
isl::val zero(ctx, "0");
|
|
|
|
assert(one.sgn() > 0);
|
|
assert(neg_one.sgn() < 0);
|
|
assert(zero.sgn() == 0);
|
|
}
|
|
|
|
/* Test that strings are returned correctly.
|
|
* Do so by calling overloaded isl::ast_build::from_expr methods.
|
|
*/
|
|
void test_return_string(isl::ctx ctx)
|
|
{
|
|
isl::set context(ctx, "[n] -> { : }");
|
|
isl::ast_build build = isl::ast_build::from_context(context);
|
|
isl::pw_aff pw_aff(ctx, "[n] -> { [n] }");
|
|
isl::set set(ctx, "[n] -> { : n >= 0 }");
|
|
|
|
isl::ast_expr expr = build.expr_from(pw_aff);
|
|
const char *expected_string = "n";
|
|
assert(expected_string == expr.to_C_str());
|
|
|
|
expr = build.expr_from(set);
|
|
expected_string = "n >= 0";
|
|
assert(expected_string == expr.to_C_str());
|
|
}
|
|
|
|
/* Test the functionality of "every" functions
|
|
* that does not depend on the type of C++ bindings.
|
|
*/
|
|
static void test_every_generic(isl::ctx ctx)
|
|
{
|
|
isl::union_set us(ctx, "{ A[i]; B[j] }");
|
|
|
|
auto is_empty = [] (isl::set s) {
|
|
return s.is_empty();
|
|
};
|
|
assert(!IS_TRUE(us.every_set(is_empty)));
|
|
|
|
auto is_non_empty = [] (isl::set s) {
|
|
return !s.is_empty();
|
|
};
|
|
assert(IS_TRUE(us.every_set(is_non_empty)));
|
|
|
|
auto in_A = [] (isl::set s) {
|
|
return s.is_subset(isl::set(s.ctx(), "{ A[x] }"));
|
|
};
|
|
assert(!IS_TRUE(us.every_set(in_A)));
|
|
|
|
auto not_in_A = [] (isl::set s) {
|
|
return !s.is_subset(isl::set(s.ctx(), "{ A[x] }"));
|
|
};
|
|
assert(!IS_TRUE(us.every_set(not_in_A)));
|
|
}
|
|
|
|
/* Check basic construction of spaces.
|
|
*/
|
|
static void test_space(isl::ctx ctx)
|
|
{
|
|
isl::space unit = isl::space::unit(ctx);
|
|
isl::space set_space = unit.add_named_tuple("A", 3);
|
|
isl::space map_space = set_space.add_named_tuple("B", 2);
|
|
|
|
isl::set set = isl::set::universe(set_space);
|
|
isl::map map = isl::map::universe(map_space);
|
|
assert(IS_TRUE(set.is_equal(isl::set(ctx, "{ A[*,*,*] }"))));
|
|
assert(IS_TRUE(map.is_equal(isl::map(ctx, "{ A[*,*,*] -> B[*,*] }"))));
|
|
}
|
|
|
|
/* Construct a simple schedule tree with an outer sequence node and
|
|
* a single-dimensional band node in each branch, with one of them
|
|
* marked coincident.
|
|
*/
|
|
static isl::schedule construct_schedule_tree(isl::ctx ctx)
|
|
{
|
|
isl::union_set A(ctx, "{ A[i] : 0 <= i < 10 }");
|
|
isl::union_set B(ctx, "{ B[i] : 0 <= i < 20 }");
|
|
|
|
auto node = isl::schedule_node::from_domain(A.unite(B));
|
|
node = node.child(0);
|
|
|
|
isl::union_set_list filters(ctx, 0);
|
|
filters = filters.add(A).add(B);
|
|
node = node.insert_sequence(filters);
|
|
|
|
isl::multi_union_pw_aff f_A(ctx, "[ { A[i] -> [i] } ]");
|
|
node = node.child(0);
|
|
node = node.child(0);
|
|
node = node.insert_partial_schedule(f_A);
|
|
auto band = node.as<isl::schedule_node_band>();
|
|
band = band.member_set_coincident(0, true);
|
|
node = band.ancestor(2);
|
|
|
|
isl::multi_union_pw_aff f_B(ctx, "[ { B[i] -> [i] } ]");
|
|
node = node.child(1);
|
|
node = node.child(0);
|
|
node = node.insert_partial_schedule(f_B);
|
|
node = node.ancestor(2);
|
|
|
|
return node.schedule();
|
|
}
|
|
|
|
/* Test basic schedule tree functionality that is independent
|
|
* of the type of bindings.
|
|
*
|
|
* In particular, create a simple schedule tree and
|
|
* - check that the root node is a domain node
|
|
* - check that an object of a subclass can be used as one of the superclass
|
|
* - test map_descendant_bottom_up in the successful case
|
|
*/
|
|
static isl::schedule_node test_schedule_tree_generic(isl::ctx ctx)
|
|
{
|
|
auto schedule = construct_schedule_tree(ctx);
|
|
auto root = schedule.root();
|
|
|
|
assert(IS_TRUE(root.isa<isl::schedule_node_domain>()));
|
|
root = root.as<isl::schedule_node_domain>().child(0).parent();
|
|
|
|
int count = 0;
|
|
auto inc_count = [&count](isl::schedule_node node) {
|
|
count++;
|
|
return node;
|
|
};
|
|
root = root.map_descendant_bottom_up(inc_count);
|
|
assert(count == 8);
|
|
|
|
return root;
|
|
}
|
|
|
|
/* Test marking band members for unrolling.
|
|
* "schedule" is the schedule created by construct_schedule_tree.
|
|
* It schedules two statements, with 10 and 20 instances, respectively.
|
|
* Unrolling all band members therefore results in 30 at-domain calls
|
|
* by the AST generator.
|
|
*/
|
|
static void test_ast_build_unroll(isl::schedule schedule)
|
|
{
|
|
auto root = schedule.root();
|
|
auto mark_unroll = [](isl::schedule_node node) {
|
|
if (IS_TRUE(node.isa<isl::schedule_node_band>())) {
|
|
auto band = node.as<isl::schedule_node_band>();
|
|
node = band.member_set_ast_loop_unroll(0);
|
|
}
|
|
return node;
|
|
};
|
|
root = root.map_descendant_bottom_up(mark_unroll);
|
|
schedule = root.schedule();
|
|
|
|
int count_ast = 0;
|
|
auto inc_count_ast =
|
|
[&count_ast](isl::ast_node node, isl::ast_build build) {
|
|
count_ast++;
|
|
return node;
|
|
};
|
|
auto build = isl::ast_build(schedule.ctx());
|
|
build = build.set_at_each_domain(inc_count_ast);
|
|
auto ast = build.node_from(schedule);
|
|
assert(count_ast == 30);
|
|
}
|
|
|
|
/* Test basic AST generation from a schedule tree that is independent
|
|
* of the type of bindings.
|
|
*
|
|
* In particular, create a simple schedule tree and
|
|
* - generate an AST from the schedule tree
|
|
* - test at_each_domain in the successful case
|
|
* - test unrolling
|
|
*/
|
|
static isl::schedule test_ast_build_generic(isl::ctx ctx)
|
|
{
|
|
auto schedule = construct_schedule_tree(ctx);
|
|
|
|
int count_ast = 0;
|
|
auto inc_count_ast =
|
|
[&count_ast](isl::ast_node node, isl::ast_build build) {
|
|
count_ast++;
|
|
return node;
|
|
};
|
|
auto build = isl::ast_build(ctx);
|
|
auto build_copy = build.set_at_each_domain(inc_count_ast);
|
|
auto ast = build.node_from(schedule);
|
|
assert(count_ast == 0);
|
|
count_ast = 0;
|
|
ast = build_copy.node_from(schedule);
|
|
assert(count_ast == 2);
|
|
build = build_copy;
|
|
count_ast = 0;
|
|
ast = build.node_from(schedule);
|
|
assert(count_ast == 2);
|
|
|
|
test_ast_build_unroll(schedule);
|
|
|
|
return schedule;
|
|
}
|
|
|
|
/* Test basic AST expression generation from an affine expression.
|
|
*/
|
|
static void test_ast_build_expr(isl::ctx ctx)
|
|
{
|
|
isl::pw_aff pa(ctx, "[n] -> { [n + 1] }");
|
|
isl::ast_build build = isl::ast_build::from_context(pa.domain());
|
|
|
|
auto expr = build.expr_from(pa);
|
|
auto op = expr.as<isl::ast_expr_op>();
|
|
assert(IS_TRUE(op.isa<isl::ast_expr_op_add>()));
|
|
assert(SIZE_VAL(op.n_arg()) == 2);
|
|
}
|