Files
clang-p2996/mlir/lib/Dialect/Bufferization/Transforms/OneShotModuleBufferize.cpp
Matthias Springer e07a7fd5c0 [mlir][bufferization] Move ModuleBufferization to bufferization dialect
* Move Module Bufferization to the bufferization dialect. The implementation is split into `OneShotModuleBufferize.cpp` and `FuncBufferizableOpInterfaceImpl.cpp`, so that the external model implementation can be easily moved to the func dialect in the future.
* Split and clean up test cases. A few test cases are still remaining in Linalg and will be updated separately.
* `linalg.inplaceable` is renamed to `bufferization.writable` to accurately reflect its current usage.
* Attributes and their verifiers are moved from the Linalg dialect to the Bufferization dialect.
* Expand documentation.
* Add a new flag to One-Shot Bufferize to allow for function boundary bufferization.

Differential Revision: https://reviews.llvm.org/D122229
2022-04-22 19:37:28 +09:00

498 lines
20 KiB
C++

//===- ModuleBufferization.cpp - Bufferization across Func. Boundaries ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Module Bufferization is an extension of One-Shot Bufferize that
// bufferizes function boundaries. It provides `BufferizableOpInterface`
// implementations for FuncOp, CallOp and ReturnOp.
//
// Module Bufferization is run via `runOneShotModuleBufferize(ModuleOp, ...)`.
// This function analyzes the given module and determines the order of analysis
// and bufferization: Functions that are called are processed before their
// respective callers.
//
// After analyzing a FuncOp, additional information about its bbArgs is
// gathered through PostAnalysisStepFns and stored in `FuncAnalysisState`.
//
// * `aliasingFuncOpBBArgsAnalysis` determines the equivalent/aliasing bbArgs
// for
// each tensor return value (if any).
// * `funcOpBbArgReadWriteAnalysis` determines whether or not a tensor bbArg is
// read/written.
//
// Only tensors that are equivalent to some FuncOp bbArg may be returned.
// Bufferization currently fails if other tensors (in particular tensors that
// bufferize out-of-place and result in a new buffer allocation) are returned.
// In the future, such allocations could be hoisted to the caller.
//
// Example: `foo` fails bufferization because %0 is not equivalent to any bbArg.
// ```
// func @foo() -> tensor<?xf32> {
// %0 = linalg.init_tensor [...] : tensor<?xf32>
// return %0 : tensor<?xf32>
// }
// ```
//
// Module Bufferization implements the following calling convention.
//
// * In the absence of conflicts within a FuncOp, the FuncOp's bbArgs may always
// be written to in-place.
// * If a tensor operand of a CallOp is read after the CallOp, the operand of
// the CallOp must bufferize out-of-place.
//
// Example: The tensor.insert op bufferizes in-place because it is allowed to
// modify the buffer of `%t1` directly. The CallOp in `caller` must bufferize
// out-of-place because `%t0` is modified by the callee but read by the
// tensor.extract op. The analysis of CallOps decides whether an OpOperand must
// bufferize out-of-place based on results of `funcOpBbArgReadWriteAnalysis`.
// ```
// func @callee(%t1 : tensor<?xf32>) -> tensor<?xf32> {
// %f = ... : f32
// %0 = tensor.insert %f into %t1[...] : tensor<?xf32>
// return %0 : tensor<?xf32>
// }
//
// func @caller() -> () {
// %t0 = ... : tensor<?xf32>
// %1 = call @callee(%t0) : (tensor<?xf32>) -> (tensor<?xf32>)
// %2 = tensor.extract %1[...] : tensor<?xf32>
// }
// ```
//
// Note: If a function is external, `funcOpBbArgReadWriteAnalysis` cannot
// analyze the function body. In such a case, the CallOp analysis conservatively
// assumes that each tensor OpOperand is both read and written.
//
// TODO: Add FuncOp attributes so that bbArgs of external FuncOps can be marked
// as "not reading" and/or "not writing".
#include "mlir/Dialect/Bufferization/Transforms/OneShotModuleBufferize.h"
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Bufferization/Transforms/Bufferize.h"
#include "mlir/Dialect/Bufferization/Transforms/FuncBufferizableOpInterfaceImpl.h"
#include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/IR/Operation.h"
using namespace mlir;
using namespace mlir::bufferization;
using namespace mlir::bufferization::func_ext;
/// A mapping of FuncOps to their callers.
using FuncCallerMap = DenseMap<func::FuncOp, DenseSet<Operation *>>;
/// Get FuncAnalysisState.
static const FuncAnalysisState &
getFuncAnalysisState(const AnalysisState &state) {
Optional<const FuncAnalysisState *> maybeState =
state.getDialectState<FuncAnalysisState>(
func::FuncDialect::getDialectNamespace());
assert(maybeState.hasValue() && "FuncAnalysisState does not exist");
return **maybeState;
}
/// Get or create FuncAnalysisState.
static FuncAnalysisState &getFuncAnalysisState(AnalysisState &state) {
return state.getOrCreateDialectState<FuncAnalysisState>(
func::FuncDialect::getDialectNamespace());
}
/// Return the state (phase) of analysis of the FuncOp.
static FuncOpAnalysisState getFuncOpAnalysisState(const AnalysisState &state,
func::FuncOp funcOp) {
const FuncAnalysisState &funcState = getFuncAnalysisState(state);
auto it = funcState.analyzedFuncOps.find(funcOp);
if (it == funcState.analyzedFuncOps.end())
return FuncOpAnalysisState::NotAnalyzed;
return it->second;
}
/// Return the unique ReturnOp that terminates `funcOp`.
/// Return nullptr if there is no such unique ReturnOp.
static func::ReturnOp getAssumedUniqueReturnOp(func::FuncOp funcOp) {
func::ReturnOp returnOp;
for (Block &b : funcOp.getBody()) {
if (auto candidateOp = dyn_cast<func::ReturnOp>(b.getTerminator())) {
if (returnOp)
return nullptr;
returnOp = candidateOp;
}
}
return returnOp;
}
namespace {
/// Annotate IR with the results of the analysis. For testing purposes only.
static void annotateEquivalentReturnBbArg(OpOperand &returnVal,
BlockArgument bbArg) {
const char *kEquivalentArgsAttr = "__equivalent_func_args__";
Operation *op = returnVal.getOwner();
SmallVector<int64_t> equivBbArgs;
if (op->hasAttr(kEquivalentArgsAttr)) {
auto attr = op->getAttr(kEquivalentArgsAttr).cast<ArrayAttr>();
equivBbArgs = llvm::to_vector<4>(llvm::map_range(attr, [](Attribute a) {
return a.cast<IntegerAttr>().getValue().getSExtValue();
}));
} else {
equivBbArgs.append(op->getNumOperands(), -1);
}
equivBbArgs[returnVal.getOperandNumber()] = bbArg.getArgNumber();
OpBuilder b(op->getContext());
op->setAttr(kEquivalentArgsAttr, b.getI64ArrayAttr(equivBbArgs));
}
/// Store function BlockArguments that are equivalent to/aliasing a returned
/// value in FuncAnalysisState.
static LogicalResult
aliasingFuncOpBBArgsAnalysis(Operation *op, AnalysisState &state,
BufferizationAliasInfo &aliasInfo,
SmallVector<Operation *> &newOps) {
FuncAnalysisState &funcState = getFuncAnalysisState(state);
// Support only single return-terminated block in the function.
auto funcOp = cast<func::FuncOp>(op);
func::ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp);
assert(returnOp && "expected func with single return op");
for (OpOperand &returnVal : returnOp->getOpOperands())
if (returnVal.get().getType().isa<RankedTensorType>())
for (BlockArgument bbArg : funcOp.getArguments())
if (bbArg.getType().isa<RankedTensorType>()) {
int64_t returnIdx = returnVal.getOperandNumber();
int64_t bbArgIdx = bbArg.getArgNumber();
if (aliasInfo.areEquivalentBufferizedValues(returnVal.get(), bbArg)) {
funcState.equivalentFuncArgs[funcOp][returnIdx] = bbArgIdx;
if (state.getOptions().testAnalysisOnly)
annotateEquivalentReturnBbArg(returnVal, bbArg);
}
if (aliasInfo.areAliasingBufferizedValues(returnVal.get(), bbArg)) {
funcState.aliasingFuncArgs[funcOp][returnIdx].push_back(bbArgIdx);
funcState.aliasingReturnVals[funcOp][bbArgIdx].push_back(returnIdx);
}
}
return success();
}
/// Return true if the buffer of the given tensor value is written to. Must not
/// be called for values inside not yet analyzed functions. (Post-analysis
/// steps do not have to be run yet, i.e., "in progress" is also OK.)
static bool isValueWritten(Value value, const AnalysisState &state,
const BufferizationAliasInfo &aliasInfo) {
#ifndef NDEBUG
assert(value.getType().isa<TensorType>() && "expected TensorType");
func::FuncOp funcOp;
if (auto bbArg = value.dyn_cast<BlockArgument>()) {
Operation *owner = bbArg.getOwner()->getParentOp();
funcOp = isa<func::FuncOp>(owner) ? cast<func::FuncOp>(owner)
: owner->getParentOfType<func::FuncOp>();
} else {
funcOp = value.getDefiningOp()->getParentOfType<func::FuncOp>();
}
assert(getFuncOpAnalysisState(state, funcOp) !=
FuncOpAnalysisState::NotAnalyzed &&
"FuncOp must be fully analyzed or analysis in progress");
#endif // NDEBUG
bool isWritten = false;
aliasInfo.applyOnAliases(value, [&](Value val) {
for (OpOperand &use : val.getUses())
if (state.isInPlace(use) && state.bufferizesToMemoryWrite(use))
isWritten = true;
});
return isWritten;
}
static void annotateFuncArgAccess(func::FuncOp funcOp, BlockArgument bbArg,
bool isRead, bool isWritten) {
OpBuilder b(funcOp.getContext());
Attribute accessType;
if (isRead && isWritten) {
accessType = b.getStringAttr("read-write");
} else if (isRead) {
accessType = b.getStringAttr("read");
} else if (isWritten) {
accessType = b.getStringAttr("write");
} else {
accessType = b.getStringAttr("none");
}
funcOp.setArgAttr(bbArg.getArgNumber(), "bufferization.access", accessType);
}
/// Determine which FuncOp bbArgs are read and which are written. If this
/// PostAnalysisStepFn is run on a function with unknown ops, it will
/// conservatively assume that such ops bufferize to a read + write.
static LogicalResult
funcOpBbArgReadWriteAnalysis(Operation *op, AnalysisState &state,
BufferizationAliasInfo &aliasInfo,
SmallVector<Operation *> &newOps) {
FuncAnalysisState &funcState = getFuncAnalysisState(state);
auto funcOp = cast<func::FuncOp>(op);
// If the function has no body, conservatively assume that all args are
// read + written.
if (funcOp.getBody().empty()) {
for (BlockArgument bbArg : funcOp.getArguments()) {
funcState.readBbArgs[funcOp].insert(bbArg.getArgNumber());
funcState.writtenBbArgs[funcOp].insert(bbArg.getArgNumber());
}
return success();
}
for (BlockArgument bbArg : funcOp.getArguments()) {
if (!bbArg.getType().isa<TensorType>())
continue;
bool isRead = state.isValueRead(bbArg);
bool isWritten = isValueWritten(bbArg, state, aliasInfo);
if (state.getOptions().testAnalysisOnly)
annotateFuncArgAccess(funcOp, bbArg, isRead, isWritten);
if (isRead)
funcState.readBbArgs[funcOp].insert(bbArg.getArgNumber());
if (isWritten)
funcState.writtenBbArgs[funcOp].insert(bbArg.getArgNumber());
}
return success();
}
} // namespace
/// Remove bufferization attributes on FuncOp arguments.
static void removeBufferizationAttributes(BlockArgument bbArg) {
auto funcOp = cast<func::FuncOp>(bbArg.getOwner()->getParentOp());
funcOp.removeArgAttr(bbArg.getArgNumber(),
BufferizationDialect::kBufferLayoutAttrName);
funcOp.removeArgAttr(bbArg.getArgNumber(),
BufferizationDialect::kWritableAttrName);
}
/// Return the func::FuncOp called by `callOp`.
static func::FuncOp getCalledFunction(CallOpInterface callOp) {
SymbolRefAttr sym = callOp.getCallableForCallee().dyn_cast<SymbolRefAttr>();
if (!sym)
return nullptr;
return dyn_cast_or_null<func::FuncOp>(
SymbolTable::lookupNearestSymbolFrom(callOp, sym));
}
/// Gather equivalence info of CallOps.
/// Note: This only adds new equivalence info if the called function was already
/// analyzed.
// TODO: This does not handle cyclic function call graphs etc.
static void equivalenceAnalysis(func::FuncOp funcOp,
BufferizationAliasInfo &aliasInfo,
FuncAnalysisState &funcState) {
funcOp->walk([&](func::CallOp callOp) {
func::FuncOp calledFunction = getCalledFunction(callOp);
assert(calledFunction && "could not retrieved called func::FuncOp");
// No equivalence info available for the called function.
if (!funcState.equivalentFuncArgs.count(calledFunction))
return WalkResult::skip();
for (auto it : funcState.equivalentFuncArgs[calledFunction]) {
int64_t returnIdx = it.first;
int64_t bbargIdx = it.second;
Value returnVal = callOp.getResult(returnIdx);
Value argVal = callOp->getOperand(bbargIdx);
aliasInfo.unionEquivalenceClasses(returnVal, argVal);
}
return WalkResult::advance();
});
}
/// Store all functions of the `moduleOp` in `orderedFuncOps`, sorted by
/// callee-caller order (i.e. callees without callers first).
/// Store the map of FuncOp to all its callers in `callerMap`.
/// Return `failure()` if a cycle of calls is detected or if we are unable to
/// retrieve the called FuncOp from any CallOpInterface.
static LogicalResult
getFuncOpsOrderedByCalls(ModuleOp moduleOp,
SmallVectorImpl<func::FuncOp> &orderedFuncOps,
FuncCallerMap &callerMap) {
// For each FuncOp, the set of functions called by it (i.e. the union of
// symbols of all nested CallOpInterfaceOp).
DenseMap<func::FuncOp, DenseSet<func::FuncOp>> calledBy;
// For each FuncOp, the number of CallOpInterface it contains.
DenseMap<func::FuncOp, unsigned> numberCallOpsContainedInFuncOp;
WalkResult res = moduleOp.walk([&](func::FuncOp funcOp) -> WalkResult {
if (!funcOp.getBody().empty()) {
func::ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp);
if (!returnOp)
return funcOp->emitError()
<< "cannot bufferize a FuncOp with tensors and "
"without a unique ReturnOp";
}
numberCallOpsContainedInFuncOp[funcOp] = 0;
return funcOp.walk([&](CallOpInterface callOp) -> WalkResult {
// Only support CallOp for now.
if (!isa<func::CallOp>(callOp.getOperation()))
return callOp->emitError() << "expected a CallOp";
func::FuncOp calledFunction = getCalledFunction(callOp);
assert(calledFunction && "could not retrieved called func::FuncOp");
auto it = callerMap.try_emplace(calledFunction, DenseSet<Operation *>{});
it.first->getSecond().insert(callOp);
if (calledBy[calledFunction].count(funcOp) == 0) {
calledBy[calledFunction].insert(funcOp);
numberCallOpsContainedInFuncOp[funcOp]++;
}
return WalkResult::advance();
});
});
if (res.wasInterrupted())
return failure();
// Iteratively remove function operation that do not call any of the
// functions remaining in the callCounter map and add them to the worklist.
while (!numberCallOpsContainedInFuncOp.empty()) {
auto it = llvm::find_if(numberCallOpsContainedInFuncOp,
[](auto entry) { return entry.getSecond() == 0; });
if (it == numberCallOpsContainedInFuncOp.end())
return moduleOp.emitOpError(
"expected callgraph to be free of circular dependencies.");
orderedFuncOps.push_back(it->getFirst());
for (auto callee : calledBy[it->getFirst()])
numberCallOpsContainedInFuncOp[callee]--;
numberCallOpsContainedInFuncOp.erase(it);
}
return success();
}
/// Set the attribute that triggers inplace bufferization on a FuncOp argument
/// `bbArg`.
static void setInPlaceFuncArgument(BlockArgument bbArg, bool inPlace) {
auto funcOp = cast<func::FuncOp>(bbArg.getOwner()->getParentOp());
funcOp.setArgAttr(bbArg.getArgNumber(),
BufferizableOpInterface::kInplaceableAttrName,
BoolAttr::get(bbArg.getContext(), inPlace));
}
/// Annotate the IR with the result of the analysis. For testing/debugging only.
static void annotateOpsWithBufferizationMarkers(func::FuncOp funcOp,
const AnalysisState &state) {
auto bufferizableOp = cast<BufferizableOpInterface>(funcOp.getOperation());
for (BlockArgument bbArg : funcOp.getArguments())
if (bbArg.getType().isa<TensorType>())
setInPlaceFuncArgument(bbArg, bufferizableOp.isWritable(bbArg, state));
}
/// Fold return values that are memref casts and update function return types.
///
/// During FuncOp bufferization, the exact type of the returned memrefs (if any)
/// is not known yet. Therefore, the bufferization uses memref types with the
/// most generic layout map as function return types. After bufferizing the
/// entire function body, a more concise memref type can potentially be used for
/// the return type of the function.
static void foldMemRefCasts(func::FuncOp funcOp) {
if (funcOp.getBody().empty())
return;
func::ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp);
SmallVector<Type> resultTypes;
for (OpOperand &operand : returnOp->getOpOperands()) {
if (auto castOp = operand.get().getDefiningOp<memref::CastOp>()) {
operand.set(castOp.source());
resultTypes.push_back(castOp.source().getType());
} else {
resultTypes.push_back(operand.get().getType());
}
}
auto newFuncType = FunctionType::get(
funcOp.getContext(), funcOp.getFunctionType().getInputs(), resultTypes);
funcOp.setType(newFuncType);
}
LogicalResult mlir::bufferization::runOneShotModuleBufferize(
ModuleOp moduleOp, OneShotBufferizationOptions options) {
IRRewriter rewriter(moduleOp.getContext());
OneShotAnalysisState analysisState(moduleOp, options);
BufferizationState bufferizationState(analysisState);
FuncAnalysisState &funcState = getFuncAnalysisState(analysisState);
BufferizationAliasInfo &aliasInfo = analysisState.getAliasInfo();
// A list of functions in the order in which they are analyzed + bufferized.
SmallVector<func::FuncOp> orderedFuncOps;
// A mapping of FuncOps to their callers.
FuncCallerMap callerMap;
if (failed(getFuncOpsOrderedByCalls(moduleOp, orderedFuncOps, callerMap)))
return failure();
// Collect bbArg/return value information after the analysis.
options.addPostAnalysisStep(aliasingFuncOpBBArgsAnalysis);
options.addPostAnalysisStep(funcOpBbArgReadWriteAnalysis);
// Analyze ops.
for (func::FuncOp funcOp : orderedFuncOps) {
// No body => no analysis.
if (funcOp.getBody().empty())
continue;
// Now analyzing function.
funcState.startFunctionAnalysis(funcOp);
// Gather equivalence info for CallOps.
equivalenceAnalysis(funcOp, aliasInfo, funcState);
// Analyze funcOp.
if (failed(analyzeOp(funcOp, analysisState)))
return failure();
// Mark op as fully analyzed.
funcState.analyzedFuncOps[funcOp] = FuncOpAnalysisState::Analyzed;
// Add annotations to function arguments.
if (options.testAnalysisOnly)
annotateOpsWithBufferizationMarkers(funcOp, analysisState);
}
if (options.testAnalysisOnly)
return success();
// Bufferize functions.
for (func::FuncOp funcOp : orderedFuncOps) {
// Note: It would be good to apply cleanups here but we cannot as aliasInfo
// would be invalidated.
if (failed(bufferizeOp(funcOp, bufferizationState)))
return failure();
foldMemRefCasts(funcOp);
}
// Check result.
for (func::FuncOp funcOp : orderedFuncOps) {
if (!options.allowReturnAllocs &&
llvm::any_of(funcOp.getFunctionType().getResults(), [](Type t) {
return t.isa<MemRefType, UnrankedMemRefType>();
})) {
funcOp->emitError("memref return type is unsupported");
return failure();
}
}
// Finalize all buffers.
if (failed(finalizeBuffers(moduleOp, options)))
return failure();
// Post-pass cleanup of function argument attributes.
moduleOp.walk([&](func::FuncOp op) {
for (BlockArgument bbArg : op.getArguments())
removeBufferizationAttributes(bbArg);
});
return success();
}