Increase fp16 support to allow clspv to continue to be OpenCL compliant following the update of the OpenCL-CTS adding more testing on math functions and conversions with half. Math functions are implemented by upscaling to fp32 and using the fp32 implementation. It garantees the accuracy required for half-precision float-point by the CTS.
82 lines
2.4 KiB
Common Lisp
82 lines
2.4 KiB
Common Lisp
/*
|
|
* Copyright (c) 2014 Advanced Micro Devices, Inc.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include <clc/clc.h>
|
|
|
|
#include "math.h"
|
|
#include "sincos_helpers.h"
|
|
#include "../clcmacro.h"
|
|
|
|
_CLC_OVERLOAD _CLC_DEF float sin(float x)
|
|
{
|
|
int ix = as_int(x);
|
|
int ax = ix & 0x7fffffff;
|
|
float dx = as_float(ax);
|
|
|
|
float r0, r1;
|
|
int regn = __clc_argReductionS(&r0, &r1, dx);
|
|
|
|
float ss = __clc_sinf_piby4(r0, r1);
|
|
float cc = __clc_cosf_piby4(r0, r1);
|
|
|
|
float s = (regn & 1) != 0 ? cc : ss;
|
|
s = as_float(as_int(s) ^ ((regn > 1) << 31) ^ (ix ^ ax));
|
|
|
|
s = ax >= PINFBITPATT_SP32 ? as_float(QNANBITPATT_SP32) : s;
|
|
|
|
//Subnormals
|
|
s = x == 0.0f ? x : s;
|
|
|
|
return s;
|
|
}
|
|
|
|
_CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, float, sin, float);
|
|
|
|
#ifdef cl_khr_fp64
|
|
|
|
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
|
|
|
|
_CLC_OVERLOAD _CLC_DEF double sin(double x) {
|
|
double y = fabs(x);
|
|
|
|
double r, rr;
|
|
int regn;
|
|
|
|
if (y < 0x1.0p+47)
|
|
__clc_remainder_piby2_medium(y, &r, &rr, ®n);
|
|
else
|
|
__clc_remainder_piby2_large(y, &r, &rr, ®n);
|
|
|
|
double2 sc = __clc_sincos_piby4(r, rr);
|
|
|
|
int2 s = as_int2(regn & 1 ? sc.hi : sc.lo);
|
|
s.hi ^= ((regn > 1) << 31) ^ ((x < 0.0) << 31);
|
|
|
|
return isinf(x) | isnan(x) ? as_double(QNANBITPATT_DP64) : as_double(s);
|
|
}
|
|
|
|
_CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, double, sin, double);
|
|
|
|
#endif
|
|
|
|
_CLC_DEFINE_UNARY_BUILTIN_FP16(sin)
|