Walks over the MCExpr and uses KnownBits to deduce whether an expression is known and if so, prints said known value. Should support the most common MCExpr cases for AMDGPU metadata.
680 lines
22 KiB
C++
680 lines
22 KiB
C++
//===- AMDGPUMCExpr.cpp - AMDGPU specific MC expression classes -----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AMDGPUMCExpr.h"
|
|
#include "GCNSubtarget.h"
|
|
#include "Utils/AMDGPUBaseInfo.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCAssembler.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCStreamer.h"
|
|
#include "llvm/MC/MCSymbol.h"
|
|
#include "llvm/MC/MCValue.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/KnownBits.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <optional>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::AMDGPU;
|
|
|
|
AMDGPUMCExpr::AMDGPUMCExpr(VariantKind Kind, ArrayRef<const MCExpr *> Args,
|
|
MCContext &Ctx)
|
|
: Kind(Kind), Ctx(Ctx) {
|
|
assert(Args.size() >= 1 && "Needs a minimum of one expression.");
|
|
assert(Kind != AGVK_None && "Cannot construct AMDGPUMCExpr of kind none.");
|
|
|
|
// Allocating the variadic arguments through the same allocation mechanism
|
|
// that the object itself is allocated with so they end up in the same memory.
|
|
//
|
|
// Will result in an asan failure if allocated on the heap through standard
|
|
// allocation (e.g., through SmallVector's grow).
|
|
RawArgs = static_cast<const MCExpr **>(
|
|
Ctx.allocate(sizeof(const MCExpr *) * Args.size()));
|
|
std::uninitialized_copy(Args.begin(), Args.end(), RawArgs);
|
|
this->Args = ArrayRef<const MCExpr *>(RawArgs, Args.size());
|
|
}
|
|
|
|
AMDGPUMCExpr::~AMDGPUMCExpr() { Ctx.deallocate(RawArgs); }
|
|
|
|
const AMDGPUMCExpr *AMDGPUMCExpr::create(VariantKind Kind,
|
|
ArrayRef<const MCExpr *> Args,
|
|
MCContext &Ctx) {
|
|
return new (Ctx) AMDGPUMCExpr(Kind, Args, Ctx);
|
|
}
|
|
|
|
const MCExpr *AMDGPUMCExpr::getSubExpr(size_t Index) const {
|
|
assert(Index < Args.size() && "Indexing out of bounds AMDGPUMCExpr sub-expr");
|
|
return Args[Index];
|
|
}
|
|
|
|
void AMDGPUMCExpr::printImpl(raw_ostream &OS, const MCAsmInfo *MAI) const {
|
|
switch (Kind) {
|
|
default:
|
|
llvm_unreachable("Unknown AMDGPUMCExpr kind.");
|
|
case AGVK_Or:
|
|
OS << "or(";
|
|
break;
|
|
case AGVK_Max:
|
|
OS << "max(";
|
|
break;
|
|
case AGVK_ExtraSGPRs:
|
|
OS << "extrasgprs(";
|
|
break;
|
|
case AGVK_TotalNumVGPRs:
|
|
OS << "totalnumvgprs(";
|
|
break;
|
|
case AGVK_AlignTo:
|
|
OS << "alignto(";
|
|
break;
|
|
case AGVK_Occupancy:
|
|
OS << "occupancy(";
|
|
break;
|
|
}
|
|
for (auto It = Args.begin(); It != Args.end(); ++It) {
|
|
(*It)->print(OS, MAI, /*InParens=*/false);
|
|
if ((It + 1) != Args.end())
|
|
OS << ", ";
|
|
}
|
|
OS << ')';
|
|
}
|
|
|
|
static int64_t op(AMDGPUMCExpr::VariantKind Kind, int64_t Arg1, int64_t Arg2) {
|
|
switch (Kind) {
|
|
default:
|
|
llvm_unreachable("Unknown AMDGPUMCExpr kind.");
|
|
case AMDGPUMCExpr::AGVK_Max:
|
|
return std::max(Arg1, Arg2);
|
|
case AMDGPUMCExpr::AGVK_Or:
|
|
return Arg1 | Arg2;
|
|
}
|
|
}
|
|
|
|
bool AMDGPUMCExpr::evaluateExtraSGPRs(MCValue &Res, const MCAssembler *Asm,
|
|
const MCFixup *Fixup) const {
|
|
auto TryGetMCExprValue = [&](const MCExpr *Arg, uint64_t &ConstantValue) {
|
|
MCValue MCVal;
|
|
if (!Arg->evaluateAsRelocatable(MCVal, Asm, Fixup) || !MCVal.isAbsolute())
|
|
return false;
|
|
|
|
ConstantValue = MCVal.getConstant();
|
|
return true;
|
|
};
|
|
|
|
assert(Args.size() == 3 &&
|
|
"AMDGPUMCExpr Argument count incorrect for ExtraSGPRs");
|
|
const MCSubtargetInfo *STI = Ctx.getSubtargetInfo();
|
|
uint64_t VCCUsed = 0, FlatScrUsed = 0, XNACKUsed = 0;
|
|
|
|
bool Success = TryGetMCExprValue(Args[2], XNACKUsed);
|
|
|
|
assert(Success && "Arguments 3 for ExtraSGPRs should be a known constant");
|
|
if (!Success || !TryGetMCExprValue(Args[0], VCCUsed) ||
|
|
!TryGetMCExprValue(Args[1], FlatScrUsed))
|
|
return false;
|
|
|
|
uint64_t ExtraSGPRs = IsaInfo::getNumExtraSGPRs(
|
|
STI, (bool)VCCUsed, (bool)FlatScrUsed, (bool)XNACKUsed);
|
|
Res = MCValue::get(ExtraSGPRs);
|
|
return true;
|
|
}
|
|
|
|
bool AMDGPUMCExpr::evaluateTotalNumVGPR(MCValue &Res, const MCAssembler *Asm,
|
|
const MCFixup *Fixup) const {
|
|
auto TryGetMCExprValue = [&](const MCExpr *Arg, uint64_t &ConstantValue) {
|
|
MCValue MCVal;
|
|
if (!Arg->evaluateAsRelocatable(MCVal, Asm, Fixup) || !MCVal.isAbsolute())
|
|
return false;
|
|
|
|
ConstantValue = MCVal.getConstant();
|
|
return true;
|
|
};
|
|
assert(Args.size() == 2 &&
|
|
"AMDGPUMCExpr Argument count incorrect for TotalNumVGPRs");
|
|
const MCSubtargetInfo *STI = Ctx.getSubtargetInfo();
|
|
uint64_t NumAGPR = 0, NumVGPR = 0;
|
|
|
|
bool Has90AInsts = AMDGPU::isGFX90A(*STI);
|
|
|
|
if (!TryGetMCExprValue(Args[0], NumAGPR) ||
|
|
!TryGetMCExprValue(Args[1], NumVGPR))
|
|
return false;
|
|
|
|
uint64_t TotalNum = Has90AInsts && NumAGPR ? alignTo(NumVGPR, 4) + NumAGPR
|
|
: std::max(NumVGPR, NumAGPR);
|
|
Res = MCValue::get(TotalNum);
|
|
return true;
|
|
}
|
|
|
|
bool AMDGPUMCExpr::evaluateAlignTo(MCValue &Res, const MCAssembler *Asm,
|
|
const MCFixup *Fixup) const {
|
|
auto TryGetMCExprValue = [&](const MCExpr *Arg, uint64_t &ConstantValue) {
|
|
MCValue MCVal;
|
|
if (!Arg->evaluateAsRelocatable(MCVal, Asm, Fixup) || !MCVal.isAbsolute())
|
|
return false;
|
|
|
|
ConstantValue = MCVal.getConstant();
|
|
return true;
|
|
};
|
|
|
|
assert(Args.size() == 2 &&
|
|
"AMDGPUMCExpr Argument count incorrect for AlignTo");
|
|
uint64_t Value = 0, Align = 0;
|
|
if (!TryGetMCExprValue(Args[0], Value) || !TryGetMCExprValue(Args[1], Align))
|
|
return false;
|
|
|
|
Res = MCValue::get(alignTo(Value, Align));
|
|
return true;
|
|
}
|
|
|
|
bool AMDGPUMCExpr::evaluateOccupancy(MCValue &Res, const MCAssembler *Asm,
|
|
const MCFixup *Fixup) const {
|
|
auto TryGetMCExprValue = [&](const MCExpr *Arg, uint64_t &ConstantValue) {
|
|
MCValue MCVal;
|
|
if (!Arg->evaluateAsRelocatable(MCVal, Asm, Fixup) || !MCVal.isAbsolute())
|
|
return false;
|
|
|
|
ConstantValue = MCVal.getConstant();
|
|
return true;
|
|
};
|
|
assert(Args.size() == 7 &&
|
|
"AMDGPUMCExpr Argument count incorrect for Occupancy");
|
|
uint64_t InitOccupancy, MaxWaves, Granule, TargetTotalNumVGPRs, Generation,
|
|
NumSGPRs, NumVGPRs;
|
|
|
|
bool Success = true;
|
|
Success &= TryGetMCExprValue(Args[0], MaxWaves);
|
|
Success &= TryGetMCExprValue(Args[1], Granule);
|
|
Success &= TryGetMCExprValue(Args[2], TargetTotalNumVGPRs);
|
|
Success &= TryGetMCExprValue(Args[3], Generation);
|
|
Success &= TryGetMCExprValue(Args[4], InitOccupancy);
|
|
|
|
assert(Success && "Arguments 1 to 5 for Occupancy should be known constants");
|
|
|
|
if (!Success || !TryGetMCExprValue(Args[5], NumSGPRs) ||
|
|
!TryGetMCExprValue(Args[6], NumVGPRs))
|
|
return false;
|
|
|
|
unsigned Occupancy = InitOccupancy;
|
|
if (NumSGPRs)
|
|
Occupancy = std::min(
|
|
Occupancy, IsaInfo::getOccupancyWithNumSGPRs(
|
|
NumSGPRs, MaxWaves,
|
|
static_cast<AMDGPUSubtarget::Generation>(Generation)));
|
|
if (NumVGPRs)
|
|
Occupancy = std::min(Occupancy,
|
|
IsaInfo::getNumWavesPerEUWithNumVGPRs(
|
|
NumVGPRs, Granule, MaxWaves, TargetTotalNumVGPRs));
|
|
|
|
Res = MCValue::get(Occupancy);
|
|
return true;
|
|
}
|
|
|
|
bool AMDGPUMCExpr::evaluateAsRelocatableImpl(MCValue &Res,
|
|
const MCAssembler *Asm,
|
|
const MCFixup *Fixup) const {
|
|
std::optional<int64_t> Total;
|
|
switch (Kind) {
|
|
default:
|
|
break;
|
|
case AGVK_ExtraSGPRs:
|
|
return evaluateExtraSGPRs(Res, Asm, Fixup);
|
|
case AGVK_AlignTo:
|
|
return evaluateAlignTo(Res, Asm, Fixup);
|
|
case AGVK_TotalNumVGPRs:
|
|
return evaluateTotalNumVGPR(Res, Asm, Fixup);
|
|
case AGVK_Occupancy:
|
|
return evaluateOccupancy(Res, Asm, Fixup);
|
|
}
|
|
|
|
for (const MCExpr *Arg : Args) {
|
|
MCValue ArgRes;
|
|
if (!Arg->evaluateAsRelocatable(ArgRes, Asm, Fixup) || !ArgRes.isAbsolute())
|
|
return false;
|
|
|
|
if (!Total.has_value())
|
|
Total = ArgRes.getConstant();
|
|
Total = op(Kind, *Total, ArgRes.getConstant());
|
|
}
|
|
|
|
Res = MCValue::get(*Total);
|
|
return true;
|
|
}
|
|
|
|
void AMDGPUMCExpr::visitUsedExpr(MCStreamer &Streamer) const {
|
|
for (const MCExpr *Arg : Args)
|
|
Streamer.visitUsedExpr(*Arg);
|
|
}
|
|
|
|
MCFragment *AMDGPUMCExpr::findAssociatedFragment() const {
|
|
for (const MCExpr *Arg : Args) {
|
|
if (Arg->findAssociatedFragment())
|
|
return Arg->findAssociatedFragment();
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// Allow delayed MCExpr resolve of ExtraSGPRs (in case VCCUsed or FlatScrUsed
|
|
/// are unresolvable but needed for further MCExprs). Derived from
|
|
/// implementation of IsaInfo::getNumExtraSGPRs in AMDGPUBaseInfo.cpp.
|
|
///
|
|
const AMDGPUMCExpr *AMDGPUMCExpr::createExtraSGPRs(const MCExpr *VCCUsed,
|
|
const MCExpr *FlatScrUsed,
|
|
bool XNACKUsed,
|
|
MCContext &Ctx) {
|
|
|
|
return create(AGVK_ExtraSGPRs,
|
|
{VCCUsed, FlatScrUsed, MCConstantExpr::create(XNACKUsed, Ctx)},
|
|
Ctx);
|
|
}
|
|
|
|
const AMDGPUMCExpr *AMDGPUMCExpr::createTotalNumVGPR(const MCExpr *NumAGPR,
|
|
const MCExpr *NumVGPR,
|
|
MCContext &Ctx) {
|
|
return create(AGVK_TotalNumVGPRs, {NumAGPR, NumVGPR}, Ctx);
|
|
}
|
|
|
|
/// Mimics GCNSubtarget::computeOccupancy for MCExpr.
|
|
///
|
|
/// Remove dependency on GCNSubtarget and depend only only the necessary values
|
|
/// for said occupancy computation. Should match computeOccupancy implementation
|
|
/// without passing \p STM on.
|
|
const AMDGPUMCExpr *AMDGPUMCExpr::createOccupancy(unsigned InitOcc,
|
|
const MCExpr *NumSGPRs,
|
|
const MCExpr *NumVGPRs,
|
|
const GCNSubtarget &STM,
|
|
MCContext &Ctx) {
|
|
unsigned MaxWaves = IsaInfo::getMaxWavesPerEU(&STM);
|
|
unsigned Granule = IsaInfo::getVGPRAllocGranule(&STM);
|
|
unsigned TargetTotalNumVGPRs = IsaInfo::getTotalNumVGPRs(&STM);
|
|
unsigned Generation = STM.getGeneration();
|
|
|
|
auto CreateExpr = [&Ctx](unsigned Value) {
|
|
return MCConstantExpr::create(Value, Ctx);
|
|
};
|
|
|
|
return create(AGVK_Occupancy,
|
|
{CreateExpr(MaxWaves), CreateExpr(Granule),
|
|
CreateExpr(TargetTotalNumVGPRs), CreateExpr(Generation),
|
|
CreateExpr(InitOcc), NumSGPRs, NumVGPRs},
|
|
Ctx);
|
|
}
|
|
|
|
static KnownBits fromOptionalToKnownBits(std::optional<bool> CompareResult) {
|
|
static constexpr unsigned BitWidth = 64;
|
|
const APInt True(BitWidth, 1);
|
|
const APInt False(BitWidth, 0);
|
|
if (CompareResult) {
|
|
return *CompareResult ? KnownBits::makeConstant(True)
|
|
: KnownBits::makeConstant(False);
|
|
}
|
|
|
|
KnownBits UnknownBool(/*BitWidth=*/1);
|
|
return UnknownBool.zext(BitWidth);
|
|
}
|
|
|
|
using KnownBitsMap = DenseMap<const MCExpr *, KnownBits>;
|
|
static void knownBitsMapHelper(const MCExpr *Expr, KnownBitsMap &KBM,
|
|
unsigned Depth = 0);
|
|
|
|
static void binaryOpKnownBitsMapHelper(const MCExpr *Expr, KnownBitsMap &KBM,
|
|
unsigned Depth) {
|
|
static constexpr unsigned BitWidth = 64;
|
|
const MCBinaryExpr *BExpr = cast<MCBinaryExpr>(Expr);
|
|
const MCExpr *LHS = BExpr->getLHS();
|
|
const MCExpr *RHS = BExpr->getRHS();
|
|
|
|
knownBitsMapHelper(LHS, KBM, Depth + 1);
|
|
knownBitsMapHelper(RHS, KBM, Depth + 1);
|
|
KnownBits LHSKnown = KBM[LHS];
|
|
KnownBits RHSKnown = KBM[RHS];
|
|
|
|
switch (BExpr->getOpcode()) {
|
|
default:
|
|
KBM[Expr] = KnownBits(BitWidth);
|
|
return;
|
|
case MCBinaryExpr::Opcode::Add:
|
|
KBM[Expr] = KnownBits::add(LHSKnown, RHSKnown);
|
|
return;
|
|
case MCBinaryExpr::Opcode::And:
|
|
KBM[Expr] = LHSKnown & RHSKnown;
|
|
return;
|
|
case MCBinaryExpr::Opcode::Div:
|
|
KBM[Expr] = KnownBits::sdiv(LHSKnown, RHSKnown);
|
|
return;
|
|
case MCBinaryExpr::Opcode::EQ: {
|
|
std::optional<bool> CompareRes = KnownBits::eq(LHSKnown, RHSKnown);
|
|
KBM[Expr] = fromOptionalToKnownBits(CompareRes);
|
|
return;
|
|
}
|
|
case MCBinaryExpr::Opcode::NE: {
|
|
std::optional<bool> CompareRes = KnownBits::ne(LHSKnown, RHSKnown);
|
|
KBM[Expr] = fromOptionalToKnownBits(CompareRes);
|
|
return;
|
|
}
|
|
case MCBinaryExpr::Opcode::GT: {
|
|
std::optional<bool> CompareRes = KnownBits::sgt(LHSKnown, RHSKnown);
|
|
KBM[Expr] = fromOptionalToKnownBits(CompareRes);
|
|
return;
|
|
}
|
|
case MCBinaryExpr::Opcode::GTE: {
|
|
std::optional<bool> CompareRes = KnownBits::sge(LHSKnown, RHSKnown);
|
|
KBM[Expr] = fromOptionalToKnownBits(CompareRes);
|
|
return;
|
|
}
|
|
case MCBinaryExpr::Opcode::LAnd: {
|
|
std::optional<bool> CompareRes;
|
|
const APInt False(BitWidth, 0);
|
|
std::optional<bool> LHSBool =
|
|
KnownBits::ne(LHSKnown, KnownBits::makeConstant(False));
|
|
std::optional<bool> RHSBool =
|
|
KnownBits::ne(RHSKnown, KnownBits::makeConstant(False));
|
|
if (LHSBool && RHSBool)
|
|
CompareRes = *LHSBool && *RHSBool;
|
|
KBM[Expr] = fromOptionalToKnownBits(CompareRes);
|
|
return;
|
|
}
|
|
case MCBinaryExpr::Opcode::LOr: {
|
|
const APInt False(BitWidth, 0);
|
|
KnownBits Bits = LHSKnown | RHSKnown;
|
|
std::optional<bool> CompareRes =
|
|
KnownBits::ne(Bits, KnownBits::makeConstant(False));
|
|
KBM[Expr] = fromOptionalToKnownBits(CompareRes);
|
|
return;
|
|
}
|
|
case MCBinaryExpr::Opcode::LT: {
|
|
std::optional<bool> CompareRes = KnownBits::slt(LHSKnown, RHSKnown);
|
|
KBM[Expr] = fromOptionalToKnownBits(CompareRes);
|
|
return;
|
|
}
|
|
case MCBinaryExpr::Opcode::LTE: {
|
|
std::optional<bool> CompareRes = KnownBits::sle(LHSKnown, RHSKnown);
|
|
KBM[Expr] = fromOptionalToKnownBits(CompareRes);
|
|
return;
|
|
}
|
|
case MCBinaryExpr::Opcode::Mod:
|
|
KBM[Expr] = KnownBits::srem(LHSKnown, RHSKnown);
|
|
return;
|
|
case MCBinaryExpr::Opcode::Mul:
|
|
KBM[Expr] = KnownBits::mul(LHSKnown, RHSKnown);
|
|
return;
|
|
case MCBinaryExpr::Opcode::Or:
|
|
KBM[Expr] = LHSKnown | RHSKnown;
|
|
return;
|
|
case MCBinaryExpr::Opcode::Shl:
|
|
KBM[Expr] = KnownBits::shl(LHSKnown, RHSKnown);
|
|
return;
|
|
case MCBinaryExpr::Opcode::AShr:
|
|
KBM[Expr] = KnownBits::ashr(LHSKnown, RHSKnown);
|
|
return;
|
|
case MCBinaryExpr::Opcode::LShr:
|
|
KBM[Expr] = KnownBits::lshr(LHSKnown, RHSKnown);
|
|
return;
|
|
case MCBinaryExpr::Opcode::Sub:
|
|
KBM[Expr] = KnownBits::sub(LHSKnown, RHSKnown);
|
|
return;
|
|
case MCBinaryExpr::Opcode::Xor:
|
|
KBM[Expr] = LHSKnown ^ RHSKnown;
|
|
return;
|
|
}
|
|
}
|
|
|
|
static void unaryOpKnownBitsMapHelper(const MCExpr *Expr, KnownBitsMap &KBM,
|
|
unsigned Depth) {
|
|
static constexpr unsigned BitWidth = 64;
|
|
const MCUnaryExpr *UExpr = cast<MCUnaryExpr>(Expr);
|
|
knownBitsMapHelper(UExpr->getSubExpr(), KBM, Depth + 1);
|
|
KnownBits KB = KBM[UExpr->getSubExpr()];
|
|
|
|
switch (UExpr->getOpcode()) {
|
|
default:
|
|
KBM[Expr] = KnownBits(BitWidth);
|
|
return;
|
|
case MCUnaryExpr::Opcode::Minus: {
|
|
KB.makeNegative();
|
|
KBM[Expr] = KB;
|
|
return;
|
|
}
|
|
case MCUnaryExpr::Opcode::Not: {
|
|
KnownBits AllOnes(BitWidth);
|
|
AllOnes.setAllOnes();
|
|
KBM[Expr] = KB ^ AllOnes;
|
|
return;
|
|
}
|
|
case MCUnaryExpr::Opcode::Plus: {
|
|
KB.makeNonNegative();
|
|
KBM[Expr] = KB;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void targetOpKnownBitsMapHelper(const MCExpr *Expr, KnownBitsMap &KBM,
|
|
unsigned Depth) {
|
|
static constexpr unsigned BitWidth = 64;
|
|
const AMDGPUMCExpr *AGVK = cast<AMDGPUMCExpr>(Expr);
|
|
|
|
switch (AGVK->getKind()) {
|
|
default:
|
|
KBM[Expr] = KnownBits(BitWidth);
|
|
return;
|
|
case AMDGPUMCExpr::VariantKind::AGVK_Or: {
|
|
knownBitsMapHelper(AGVK->getSubExpr(0), KBM, Depth + 1);
|
|
KnownBits KB = KBM[AGVK->getSubExpr(0)];
|
|
for (const MCExpr *Arg : AGVK->getArgs()) {
|
|
knownBitsMapHelper(Arg, KBM, Depth + 1);
|
|
KB |= KBM[Arg];
|
|
}
|
|
KBM[Expr] = KB;
|
|
return;
|
|
}
|
|
case AMDGPUMCExpr::VariantKind::AGVK_Max: {
|
|
knownBitsMapHelper(AGVK->getSubExpr(0), KBM, Depth + 1);
|
|
KnownBits KB = KBM[AGVK->getSubExpr(0)];
|
|
for (const MCExpr *Arg : AGVK->getArgs()) {
|
|
knownBitsMapHelper(Arg, KBM, Depth + 1);
|
|
KB = KnownBits::umax(KB, KBM[Arg]);
|
|
}
|
|
KBM[Expr] = KB;
|
|
return;
|
|
}
|
|
case AMDGPUMCExpr::VariantKind::AGVK_ExtraSGPRs:
|
|
case AMDGPUMCExpr::VariantKind::AGVK_TotalNumVGPRs:
|
|
case AMDGPUMCExpr::VariantKind::AGVK_AlignTo:
|
|
case AMDGPUMCExpr::VariantKind::AGVK_Occupancy: {
|
|
int64_t Val;
|
|
if (AGVK->evaluateAsAbsolute(Val)) {
|
|
APInt APValue(BitWidth, Val);
|
|
KBM[Expr] = KnownBits::makeConstant(APValue);
|
|
return;
|
|
}
|
|
KBM[Expr] = KnownBits(BitWidth);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void knownBitsMapHelper(const MCExpr *Expr, KnownBitsMap &KBM,
|
|
unsigned Depth) {
|
|
static constexpr unsigned BitWidth = 64;
|
|
|
|
int64_t Val;
|
|
if (Expr->evaluateAsAbsolute(Val)) {
|
|
APInt APValue(BitWidth, Val, /*isSigned=*/true);
|
|
KBM[Expr] = KnownBits::makeConstant(APValue);
|
|
return;
|
|
}
|
|
|
|
if (Depth == 16) {
|
|
KBM[Expr] = KnownBits(BitWidth);
|
|
return;
|
|
}
|
|
|
|
switch (Expr->getKind()) {
|
|
case MCExpr::ExprKind::Binary: {
|
|
binaryOpKnownBitsMapHelper(Expr, KBM, Depth);
|
|
return;
|
|
}
|
|
case MCExpr::ExprKind::Constant: {
|
|
const MCConstantExpr *CE = cast<MCConstantExpr>(Expr);
|
|
APInt APValue(BitWidth, CE->getValue(), /*isSigned=*/true);
|
|
KBM[Expr] = KnownBits::makeConstant(APValue);
|
|
return;
|
|
}
|
|
case MCExpr::ExprKind::SymbolRef: {
|
|
const MCSymbolRefExpr *RExpr = cast<MCSymbolRefExpr>(Expr);
|
|
const MCSymbol &Sym = RExpr->getSymbol();
|
|
if (!Sym.isVariable()) {
|
|
KBM[Expr] = KnownBits(BitWidth);
|
|
return;
|
|
}
|
|
|
|
// Variable value retrieval is not for actual use but only for knownbits
|
|
// analysis.
|
|
knownBitsMapHelper(Sym.getVariableValue(/*SetUsed=*/false), KBM, Depth + 1);
|
|
KBM[Expr] = KBM[Sym.getVariableValue(/*SetUsed=*/false)];
|
|
return;
|
|
}
|
|
case MCExpr::ExprKind::Unary: {
|
|
unaryOpKnownBitsMapHelper(Expr, KBM, Depth);
|
|
return;
|
|
}
|
|
case MCExpr::ExprKind::Target: {
|
|
targetOpKnownBitsMapHelper(Expr, KBM, Depth);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static const MCExpr *tryFoldHelper(const MCExpr *Expr, KnownBitsMap &KBM,
|
|
MCContext &Ctx) {
|
|
if (!KBM.count(Expr))
|
|
return Expr;
|
|
|
|
auto ValueCheckKnownBits = [](KnownBits &KB, unsigned Value) -> bool {
|
|
if (!KB.isConstant())
|
|
return false;
|
|
|
|
return Value == KB.getConstant();
|
|
};
|
|
|
|
if (Expr->getKind() == MCExpr::ExprKind::Constant)
|
|
return Expr;
|
|
|
|
// Resolving unary operations to constants may make the value more ambiguous.
|
|
// For example, `~62` becomes `-63`; however, to me it's more ambiguous if a
|
|
// bit mask value is represented through a negative number.
|
|
if (Expr->getKind() != MCExpr::ExprKind::Unary) {
|
|
if (KBM[Expr].isConstant()) {
|
|
APInt ConstVal = KBM[Expr].getConstant();
|
|
return MCConstantExpr::create(ConstVal.getSExtValue(), Ctx);
|
|
}
|
|
|
|
int64_t EvalValue;
|
|
if (Expr->evaluateAsAbsolute(EvalValue))
|
|
return MCConstantExpr::create(EvalValue, Ctx);
|
|
}
|
|
|
|
switch (Expr->getKind()) {
|
|
default:
|
|
return Expr;
|
|
case MCExpr::ExprKind::Binary: {
|
|
const MCBinaryExpr *BExpr = cast<MCBinaryExpr>(Expr);
|
|
const MCExpr *LHS = BExpr->getLHS();
|
|
const MCExpr *RHS = BExpr->getRHS();
|
|
|
|
switch (BExpr->getOpcode()) {
|
|
default:
|
|
return Expr;
|
|
case MCBinaryExpr::Opcode::Sub: {
|
|
if (ValueCheckKnownBits(KBM[RHS], 0))
|
|
return tryFoldHelper(LHS, KBM, Ctx);
|
|
break;
|
|
}
|
|
case MCBinaryExpr::Opcode::Add:
|
|
case MCBinaryExpr::Opcode::Or: {
|
|
if (ValueCheckKnownBits(KBM[LHS], 0))
|
|
return tryFoldHelper(RHS, KBM, Ctx);
|
|
if (ValueCheckKnownBits(KBM[RHS], 0))
|
|
return tryFoldHelper(LHS, KBM, Ctx);
|
|
break;
|
|
}
|
|
case MCBinaryExpr::Opcode::Mul: {
|
|
if (ValueCheckKnownBits(KBM[LHS], 1))
|
|
return tryFoldHelper(RHS, KBM, Ctx);
|
|
if (ValueCheckKnownBits(KBM[RHS], 1))
|
|
return tryFoldHelper(LHS, KBM, Ctx);
|
|
break;
|
|
}
|
|
case MCBinaryExpr::Opcode::Shl:
|
|
case MCBinaryExpr::Opcode::AShr:
|
|
case MCBinaryExpr::Opcode::LShr: {
|
|
if (ValueCheckKnownBits(KBM[RHS], 0))
|
|
return tryFoldHelper(LHS, KBM, Ctx);
|
|
if (ValueCheckKnownBits(KBM[LHS], 0))
|
|
return MCConstantExpr::create(0, Ctx);
|
|
break;
|
|
}
|
|
case MCBinaryExpr::Opcode::And: {
|
|
if (ValueCheckKnownBits(KBM[LHS], 0) || ValueCheckKnownBits(KBM[RHS], 0))
|
|
return MCConstantExpr::create(0, Ctx);
|
|
break;
|
|
}
|
|
}
|
|
const MCExpr *NewLHS = tryFoldHelper(LHS, KBM, Ctx);
|
|
const MCExpr *NewRHS = tryFoldHelper(RHS, KBM, Ctx);
|
|
if (NewLHS != LHS || NewRHS != RHS)
|
|
return MCBinaryExpr::create(BExpr->getOpcode(), NewLHS, NewRHS, Ctx,
|
|
BExpr->getLoc());
|
|
return Expr;
|
|
}
|
|
case MCExpr::ExprKind::Unary: {
|
|
const MCUnaryExpr *UExpr = cast<MCUnaryExpr>(Expr);
|
|
const MCExpr *SubExpr = UExpr->getSubExpr();
|
|
const MCExpr *NewSubExpr = tryFoldHelper(SubExpr, KBM, Ctx);
|
|
if (SubExpr != NewSubExpr)
|
|
return MCUnaryExpr::create(UExpr->getOpcode(), NewSubExpr, Ctx,
|
|
UExpr->getLoc());
|
|
return Expr;
|
|
}
|
|
case MCExpr::ExprKind::Target: {
|
|
const AMDGPUMCExpr *AGVK = cast<AMDGPUMCExpr>(Expr);
|
|
SmallVector<const MCExpr *, 8> NewArgs;
|
|
bool Changed = false;
|
|
for (const MCExpr *Arg : AGVK->getArgs()) {
|
|
const MCExpr *NewArg = tryFoldHelper(Arg, KBM, Ctx);
|
|
NewArgs.push_back(NewArg);
|
|
Changed |= Arg != NewArg;
|
|
}
|
|
return Changed ? AMDGPUMCExpr::create(AGVK->getKind(), NewArgs, Ctx) : Expr;
|
|
}
|
|
}
|
|
return Expr;
|
|
}
|
|
|
|
const MCExpr *llvm::AMDGPU::foldAMDGPUMCExpr(const MCExpr *Expr,
|
|
MCContext &Ctx) {
|
|
KnownBitsMap KBM;
|
|
knownBitsMapHelper(Expr, KBM);
|
|
const MCExpr *NewExpr = tryFoldHelper(Expr, KBM, Ctx);
|
|
|
|
return Expr != NewExpr ? NewExpr : Expr;
|
|
}
|
|
|
|
void llvm::AMDGPU::printAMDGPUMCExpr(const MCExpr *Expr, raw_ostream &OS,
|
|
const MCAsmInfo *MAI) {
|
|
int64_t Val;
|
|
if (Expr->evaluateAsAbsolute(Val)) {
|
|
OS << Val;
|
|
return;
|
|
}
|
|
|
|
Expr->print(OS, MAI);
|
|
}
|