Files
clang-p2996/lldb/source/Expression/IRInterpreter.cpp
Sean Callanan 3fa3e65d3b Since the IR interpreter does not (currently)
support operands with vector types, it now reports
that it cannot interpret expressions that use
vector types.  They get sent to the JIT instead.

<rdar://problem/13733651>

llvm-svn: 180899
2013-05-02 00:33:44 +00:00

1318 lines
48 KiB
C++

//===-- IRInterpreter.cpp ---------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Core/DataExtractor.h"
#include "lldb/Core/Error.h"
#include "lldb/Core/Log.h"
#include "lldb/Core/Scalar.h"
#include "lldb/Core/StreamString.h"
#include "lldb/Expression/IRMemoryMap.h"
#include "lldb/Expression/IRInterpreter.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/raw_ostream.h"
#include <map>
using namespace llvm;
static std::string
PrintValue(const Value *value, bool truncate = false)
{
std::string s;
raw_string_ostream rso(s);
value->print(rso);
rso.flush();
if (truncate)
s.resize(s.length() - 1);
size_t offset;
while ((offset = s.find('\n')) != s.npos)
s.erase(offset, 1);
while (s[0] == ' ' || s[0] == '\t')
s.erase(0, 1);
return s;
}
static std::string
PrintType(const Type *type, bool truncate = false)
{
std::string s;
raw_string_ostream rso(s);
type->print(rso);
rso.flush();
if (truncate)
s.resize(s.length() - 1);
return s;
}
class InterpreterStackFrame
{
public:
typedef std::map <const Value*, lldb::addr_t> ValueMap;
ValueMap m_values;
DataLayout &m_target_data;
lldb_private::IRMemoryMap &m_memory_map;
const BasicBlock *m_bb;
BasicBlock::const_iterator m_ii;
BasicBlock::const_iterator m_ie;
lldb::addr_t m_frame_process_address;
size_t m_frame_size;
lldb::addr_t m_stack_pointer;
lldb::ByteOrder m_byte_order;
size_t m_addr_byte_size;
InterpreterStackFrame (DataLayout &target_data,
lldb_private::IRMemoryMap &memory_map,
lldb::addr_t stack_frame_bottom,
lldb::addr_t stack_frame_top) :
m_target_data (target_data),
m_memory_map (memory_map)
{
m_byte_order = (target_data.isLittleEndian() ? lldb::eByteOrderLittle : lldb::eByteOrderBig);
m_addr_byte_size = (target_data.getPointerSize(0));
m_frame_process_address = stack_frame_bottom;
m_frame_size = stack_frame_top - stack_frame_bottom;
m_stack_pointer = stack_frame_top;
}
~InterpreterStackFrame ()
{
}
void Jump (const BasicBlock *bb)
{
m_bb = bb;
m_ii = m_bb->begin();
m_ie = m_bb->end();
}
std::string SummarizeValue (const Value *value)
{
lldb_private::StreamString ss;
ss.Printf("%s", PrintValue(value).c_str());
ValueMap::iterator i = m_values.find(value);
if (i != m_values.end())
{
lldb::addr_t addr = i->second;
ss.Printf(" 0x%llx", (unsigned long long)addr);
}
return ss.GetString();
}
bool AssignToMatchType (lldb_private::Scalar &scalar, uint64_t u64value, Type *type)
{
size_t type_size = m_target_data.getTypeStoreSize(type);
switch (type_size)
{
case 1:
scalar = (uint8_t)u64value;
break;
case 2:
scalar = (uint16_t)u64value;
break;
case 4:
scalar = (uint32_t)u64value;
break;
case 8:
scalar = (uint64_t)u64value;
break;
default:
return false;
}
return true;
}
bool EvaluateValue (lldb_private::Scalar &scalar, const Value *value, Module &module)
{
const Constant *constant = dyn_cast<Constant>(value);
if (constant)
{
if (const ConstantInt *constant_int = dyn_cast<ConstantInt>(constant))
{
return AssignToMatchType(scalar, constant_int->getLimitedValue(), value->getType());
}
}
else
{
lldb::addr_t process_address = ResolveValue(value, module);
size_t value_size = m_target_data.getTypeStoreSize(value->getType());
lldb_private::DataExtractor value_extractor;
lldb_private::Error extract_error;
m_memory_map.GetMemoryData(value_extractor, process_address, value_size, extract_error);
if (!extract_error.Success())
return false;
lldb::offset_t offset = 0;
if (value_size <= 8)
{
uint64_t u64value = value_extractor.GetMaxU64(&offset, value_size);
return AssignToMatchType(scalar, u64value, value->getType());
}
}
return false;
}
bool AssignValue (const Value *value, lldb_private::Scalar &scalar, Module &module)
{
lldb::addr_t process_address = ResolveValue (value, module);
if (process_address == LLDB_INVALID_ADDRESS)
return false;
lldb_private::Scalar cast_scalar;
if (!AssignToMatchType(cast_scalar, scalar.GetRawBits64(0), value->getType()))
return false;
size_t value_byte_size = m_target_data.getTypeStoreSize(value->getType());
lldb_private::DataBufferHeap buf(value_byte_size, 0);
lldb_private::Error get_data_error;
if (!cast_scalar.GetAsMemoryData(buf.GetBytes(), buf.GetByteSize(), m_byte_order, get_data_error))
return false;
lldb_private::Error write_error;
m_memory_map.WriteMemory(process_address, buf.GetBytes(), buf.GetByteSize(), write_error);
return write_error.Success();
}
bool ResolveConstantValue (APInt &value, const Constant *constant)
{
switch (constant->getValueID())
{
default:
break;
case Value::ConstantIntVal:
if (const ConstantInt *constant_int = dyn_cast<ConstantInt>(constant))
{
value = constant_int->getValue();
return true;
}
break;
case Value::ConstantFPVal:
if (const ConstantFP *constant_fp = dyn_cast<ConstantFP>(constant))
{
value = constant_fp->getValueAPF().bitcastToAPInt();
return true;
}
break;
case Value::ConstantExprVal:
if (const ConstantExpr *constant_expr = dyn_cast<ConstantExpr>(constant))
{
switch (constant_expr->getOpcode())
{
default:
return false;
case Instruction::IntToPtr:
case Instruction::PtrToInt:
case Instruction::BitCast:
return ResolveConstantValue(value, constant_expr->getOperand(0));
case Instruction::GetElementPtr:
{
ConstantExpr::const_op_iterator op_cursor = constant_expr->op_begin();
ConstantExpr::const_op_iterator op_end = constant_expr->op_end();
Constant *base = dyn_cast<Constant>(*op_cursor);
if (!base)
return false;
if (!ResolveConstantValue(value, base))
return false;
op_cursor++;
if (op_cursor == op_end)
return true; // no offset to apply!
SmallVector <Value *, 8> indices (op_cursor, op_end);
uint64_t offset = m_target_data.getIndexedOffset(base->getType(), indices);
const bool is_signed = true;
value += APInt(value.getBitWidth(), offset, is_signed);
return true;
}
}
}
break;
case Value::ConstantPointerNullVal:
if (isa<ConstantPointerNull>(constant))
{
value = APInt(m_target_data.getPointerSizeInBits(), 0);
return true;
}
break;
}
return false;
}
bool MakeArgument(const Argument *value, uint64_t address)
{
lldb::addr_t data_address = Malloc(value->getType());
if (data_address == LLDB_INVALID_ADDRESS)
return false;
lldb_private::Error write_error;
m_memory_map.WritePointerToMemory(data_address, address, write_error);
if (!write_error.Success())
{
lldb_private::Error free_error;
m_memory_map.Free(data_address, free_error);
return false;
}
m_values[value] = data_address;
lldb_private::Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
if (log)
{
log->Printf("Made an allocation for argument %s", PrintValue(value).c_str());
log->Printf(" Data region : %llx", (unsigned long long)address);
log->Printf(" Ref region : %llx", (unsigned long long)data_address);
}
return true;
}
bool ResolveConstant (lldb::addr_t process_address, const Constant *constant)
{
APInt resolved_value;
if (!ResolveConstantValue(resolved_value, constant))
return false;
const uint64_t *raw_data = resolved_value.getRawData();
size_t constant_size = m_target_data.getTypeStoreSize(constant->getType());
lldb_private::Error write_error;
m_memory_map.WriteMemory(process_address, (uint8_t*)raw_data, constant_size, write_error);
return write_error.Success();
}
lldb::addr_t Malloc (size_t size, uint8_t byte_alignment)
{
lldb::addr_t ret = m_stack_pointer;
ret -= size;
ret -= (ret % byte_alignment);
if (ret < m_frame_process_address)
return LLDB_INVALID_ADDRESS;
m_stack_pointer = ret;
return ret;
}
lldb::addr_t MallocPointer ()
{
return Malloc(m_target_data.getPointerSize(), m_target_data.getPointerPrefAlignment());
}
lldb::addr_t Malloc (llvm::Type *type)
{
lldb_private::Error alloc_error;
return Malloc(m_target_data.getTypeAllocSize(type), m_target_data.getPrefTypeAlignment(type));
}
std::string PrintData (lldb::addr_t addr, llvm::Type *type)
{
size_t length = m_target_data.getTypeStoreSize(type);
lldb_private::DataBufferHeap buf(length, 0);
lldb_private::Error read_error;
m_memory_map.ReadMemory(buf.GetBytes(), addr, length, read_error);
if (!read_error.Success())
return std::string("<couldn't read data>");
lldb_private::StreamString ss;
for (size_t i = 0; i < length; i++)
{
if ((!(i & 0xf)) && i)
ss.Printf("%02hhx - ", buf.GetBytes()[i]);
else
ss.Printf("%02hhx ", buf.GetBytes()[i]);
}
return ss.GetString();
}
lldb::addr_t ResolveValue (const Value *value, Module &module)
{
ValueMap::iterator i = m_values.find(value);
if (i != m_values.end())
return i->second;
// Fall back and allocate space [allocation type Alloca]
lldb::addr_t data_address = Malloc(value->getType());
if (const Constant *constant = dyn_cast<Constant>(value))
{
if (!ResolveConstant (data_address, constant))
{
lldb_private::Error free_error;
m_memory_map.Free(data_address, free_error);
return LLDB_INVALID_ADDRESS;
}
}
m_values[value] = data_address;
return data_address;
}
};
static const char *unsupported_opcode_error = "Interpreter doesn't handle one of the expression's opcodes";
static const char *unsupported_operand_error = "Interpreter doesn't handle one of the expression's operands";
//static const char *interpreter_initialization_error = "Interpreter couldn't be initialized";
static const char *interpreter_internal_error = "Interpreter encountered an internal error";
static const char *bad_value_error = "Interpreter couldn't resolve a value during execution";
static const char *memory_allocation_error = "Interpreter couldn't allocate memory";
static const char *memory_write_error = "Interpreter couldn't write to memory";
static const char *memory_read_error = "Interpreter couldn't read from memory";
static const char *infinite_loop_error = "Interpreter ran for too many cycles";
//static const char *bad_result_error = "Result of expression is in bad memory";
bool
IRInterpreter::CanInterpret (llvm::Module &module,
llvm::Function &function,
lldb_private::Error &error)
{
lldb_private::Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
for (Function::iterator bbi = function.begin(), bbe = function.end();
bbi != bbe;
++bbi)
{
for (BasicBlock::iterator ii = bbi->begin(), ie = bbi->end();
ii != ie;
++ii)
{
switch (ii->getOpcode())
{
default:
{
if (log)
log->Printf("Unsupported instruction: %s", PrintValue(ii).c_str());
error.SetErrorToGenericError();
error.SetErrorString(unsupported_opcode_error);
return false;
}
case Instruction::Add:
case Instruction::Alloca:
case Instruction::BitCast:
case Instruction::Br:
case Instruction::GetElementPtr:
break;
case Instruction::ICmp:
{
ICmpInst *icmp_inst = dyn_cast<ICmpInst>(ii);
if (!icmp_inst)
{
error.SetErrorToGenericError();
error.SetErrorString(interpreter_internal_error);
return false;
}
switch (icmp_inst->getPredicate())
{
default:
{
if (log)
log->Printf("Unsupported ICmp predicate: %s", PrintValue(ii).c_str());
error.SetErrorToGenericError();
error.SetErrorString(unsupported_opcode_error);
return false;
}
case CmpInst::ICMP_EQ:
case CmpInst::ICMP_NE:
case CmpInst::ICMP_UGT:
case CmpInst::ICMP_UGE:
case CmpInst::ICMP_ULT:
case CmpInst::ICMP_ULE:
case CmpInst::ICMP_SGT:
case CmpInst::ICMP_SGE:
case CmpInst::ICMP_SLT:
case CmpInst::ICMP_SLE:
break;
}
}
break;
case Instruction::And:
case Instruction::AShr:
case Instruction::IntToPtr:
case Instruction::PtrToInt:
case Instruction::Load:
case Instruction::LShr:
case Instruction::Mul:
case Instruction::Or:
case Instruction::Ret:
case Instruction::SDiv:
case Instruction::Shl:
case Instruction::SRem:
case Instruction::Store:
case Instruction::Sub:
case Instruction::UDiv:
case Instruction::URem:
case Instruction::Xor:
case Instruction::ZExt:
break;
}
for (int oi = 0, oe = ii->getNumOperands();
oi != oe;
++oi)
{
Value *operand = ii->getOperand(oi);
Type *operand_type = operand->getType();
switch (operand_type->getTypeID())
{
default:
break;
case Type::VectorTyID:
{
if (log)
log->Printf("Unsupported operand type: %s", PrintType(operand_type).c_str());
error.SetErrorString(unsupported_operand_error);
return false;
}
}
}
}
}
return true;}
bool
IRInterpreter::Interpret (llvm::Module &module,
llvm::Function &function,
llvm::ArrayRef<lldb::addr_t> args,
lldb_private::IRMemoryMap &memory_map,
lldb_private::Error &error,
lldb::addr_t stack_frame_bottom,
lldb::addr_t stack_frame_top)
{
lldb_private::Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
if (log)
{
std::string s;
raw_string_ostream oss(s);
module.print(oss, NULL);
oss.flush();
log->Printf("Module as passed in to IRInterpreter::Interpret: \n\"%s\"", s.c_str());
}
DataLayout data_layout(&module);
InterpreterStackFrame frame(data_layout, memory_map, stack_frame_bottom, stack_frame_top);
if (frame.m_frame_process_address == LLDB_INVALID_ADDRESS)
{
error.SetErrorString("Couldn't allocate stack frame");
}
int arg_index = 0;
for (llvm::Function::arg_iterator ai = function.arg_begin(), ae = function.arg_end();
ai != ae;
++ai, ++arg_index)
{
if (args.size() < arg_index)
{
error.SetErrorString ("Not enough arguments passed in to function");
return false;
}
lldb::addr_t ptr = args[arg_index];
frame.MakeArgument(ai, ptr);
}
uint32_t num_insts = 0;
frame.Jump(function.begin());
while (frame.m_ii != frame.m_ie && (++num_insts < 4096))
{
const Instruction *inst = frame.m_ii;
if (log)
log->Printf("Interpreting %s", PrintValue(inst).c_str());
switch (inst->getOpcode())
{
default:
break;
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::SDiv:
case Instruction::UDiv:
case Instruction::SRem:
case Instruction::URem:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
{
const BinaryOperator *bin_op = dyn_cast<BinaryOperator>(inst);
if (!bin_op)
{
if (log)
log->Printf("getOpcode() returns %s, but instruction is not a BinaryOperator", inst->getOpcodeName());
error.SetErrorToGenericError();
error.SetErrorString(interpreter_internal_error);
return false;
}
Value *lhs = inst->getOperand(0);
Value *rhs = inst->getOperand(1);
lldb_private::Scalar L;
lldb_private::Scalar R;
if (!frame.EvaluateValue(L, lhs, module))
{
if (log)
log->Printf("Couldn't evaluate %s", PrintValue(lhs).c_str());
error.SetErrorToGenericError();
error.SetErrorString(bad_value_error);
return false;
}
if (!frame.EvaluateValue(R, rhs, module))
{
if (log)
log->Printf("Couldn't evaluate %s", PrintValue(rhs).c_str());
error.SetErrorToGenericError();
error.SetErrorString(bad_value_error);
return false;
}
lldb_private::Scalar result;
switch (inst->getOpcode())
{
default:
break;
case Instruction::Add:
result = L + R;
break;
case Instruction::Mul:
result = L * R;
break;
case Instruction::Sub:
result = L - R;
break;
case Instruction::SDiv:
result = L / R;
break;
case Instruction::UDiv:
result = L.GetRawBits64(0) / R.GetRawBits64(1);
break;
case Instruction::SRem:
result = L % R;
break;
case Instruction::URem:
result = L.GetRawBits64(0) % R.GetRawBits64(1);
break;
case Instruction::Shl:
result = L << R;
break;
case Instruction::AShr:
result = L >> R;
break;
case Instruction::LShr:
result = L;
result.ShiftRightLogical(R);
break;
case Instruction::And:
result = L & R;
break;
case Instruction::Or:
result = L | R;
break;
case Instruction::Xor:
result = L ^ R;
break;
}
frame.AssignValue(inst, result, module);
if (log)
{
log->Printf("Interpreted a %s", inst->getOpcodeName());
log->Printf(" L : %s", frame.SummarizeValue(lhs).c_str());
log->Printf(" R : %s", frame.SummarizeValue(rhs).c_str());
log->Printf(" = : %s", frame.SummarizeValue(inst).c_str());
}
}
break;
case Instruction::Alloca:
{
const AllocaInst *alloca_inst = dyn_cast<AllocaInst>(inst);
if (!alloca_inst)
{
if (log)
log->Printf("getOpcode() returns Alloca, but instruction is not an AllocaInst");
error.SetErrorToGenericError();
error.SetErrorString(interpreter_internal_error);
return false;
}
if (alloca_inst->isArrayAllocation())
{
if (log)
log->Printf("AllocaInsts are not handled if isArrayAllocation() is true");
error.SetErrorToGenericError();
error.SetErrorString(unsupported_opcode_error);
return false;
}
// The semantics of Alloca are:
// Create a region R of virtual memory of type T, backed by a data buffer
// Create a region P of virtual memory of type T*, backed by a data buffer
// Write the virtual address of R into P
Type *T = alloca_inst->getAllocatedType();
Type *Tptr = alloca_inst->getType();
lldb::addr_t R = frame.Malloc(T);
if (R == LLDB_INVALID_ADDRESS)
{
if (log)
log->Printf("Couldn't allocate memory for an AllocaInst");
error.SetErrorToGenericError();
error.SetErrorString(memory_allocation_error);
return false;
}
lldb::addr_t P = frame.Malloc(Tptr);
if (P == LLDB_INVALID_ADDRESS)
{
if (log)
log->Printf("Couldn't allocate the result pointer for an AllocaInst");
error.SetErrorToGenericError();
error.SetErrorString(memory_allocation_error);
return false;
}
lldb_private::Error write_error;
memory_map.WritePointerToMemory(P, R, write_error);
if (!write_error.Success())
{
if (log)
log->Printf("Couldn't write the result pointer for an AllocaInst");
error.SetErrorToGenericError();
error.SetErrorString(memory_write_error);
lldb_private::Error free_error;
memory_map.Free(P, free_error);
memory_map.Free(R, free_error);
return false;
}
frame.m_values[alloca_inst] = P;
if (log)
{
log->Printf("Interpreted an AllocaInst");
log->Printf(" R : 0x%llx", R);
log->Printf(" P : 0x%llx", P);
}
}
break;
case Instruction::BitCast:
case Instruction::ZExt:
{
const CastInst *cast_inst = dyn_cast<CastInst>(inst);
if (!cast_inst)
{
if (log)
log->Printf("getOpcode() returns %s, but instruction is not a BitCastInst", cast_inst->getOpcodeName());
error.SetErrorToGenericError();
error.SetErrorString(interpreter_internal_error);
return false;
}
Value *source = cast_inst->getOperand(0);
lldb_private::Scalar S;
if (!frame.EvaluateValue(S, source, module))
{
if (log)
log->Printf("Couldn't evaluate %s", PrintValue(source).c_str());
error.SetErrorToGenericError();
error.SetErrorString(bad_value_error);
return false;
}
frame.AssignValue(inst, S, module);
}
break;
case Instruction::Br:
{
const BranchInst *br_inst = dyn_cast<BranchInst>(inst);
if (!br_inst)
{
if (log)
log->Printf("getOpcode() returns Br, but instruction is not a BranchInst");
error.SetErrorToGenericError();
error.SetErrorString(interpreter_internal_error);
return false;
}
if (br_inst->isConditional())
{
Value *condition = br_inst->getCondition();
lldb_private::Scalar C;
if (!frame.EvaluateValue(C, condition, module))
{
if (log)
log->Printf("Couldn't evaluate %s", PrintValue(condition).c_str());
error.SetErrorToGenericError();
error.SetErrorString(bad_value_error);
return false;
}
if (C.GetRawBits64(0))
frame.Jump(br_inst->getSuccessor(0));
else
frame.Jump(br_inst->getSuccessor(1));
if (log)
{
log->Printf("Interpreted a BrInst with a condition");
log->Printf(" cond : %s", frame.SummarizeValue(condition).c_str());
}
}
else
{
frame.Jump(br_inst->getSuccessor(0));
if (log)
{
log->Printf("Interpreted a BrInst with no condition");
}
}
}
continue;
case Instruction::GetElementPtr:
{
const GetElementPtrInst *gep_inst = dyn_cast<GetElementPtrInst>(inst);
if (!gep_inst)
{
if (log)
log->Printf("getOpcode() returns GetElementPtr, but instruction is not a GetElementPtrInst");
error.SetErrorToGenericError();
error.SetErrorString(interpreter_internal_error);
return false;
}
const Value *pointer_operand = gep_inst->getPointerOperand();
Type *pointer_type = pointer_operand->getType();
lldb_private::Scalar P;
if (!frame.EvaluateValue(P, pointer_operand, module))
{
if (log)
log->Printf("Couldn't evaluate %s", PrintValue(pointer_operand).c_str());
error.SetErrorToGenericError();
error.SetErrorString(bad_value_error);
return false;
}
typedef SmallVector <Value *, 8> IndexVector;
typedef IndexVector::iterator IndexIterator;
SmallVector <Value *, 8> indices (gep_inst->idx_begin(),
gep_inst->idx_end());
SmallVector <Value *, 8> const_indices;
for (IndexIterator ii = indices.begin(), ie = indices.end();
ii != ie;
++ii)
{
ConstantInt *constant_index = dyn_cast<ConstantInt>(*ii);
if (!constant_index)
{
lldb_private::Scalar I;
if (!frame.EvaluateValue(I, *ii, module))
{
if (log)
log->Printf("Couldn't evaluate %s", PrintValue(*ii).c_str());
error.SetErrorToGenericError();
error.SetErrorString(bad_value_error);
return false;
}
if (log)
log->Printf("Evaluated constant index %s as %llu", PrintValue(*ii).c_str(), I.ULongLong(LLDB_INVALID_ADDRESS));
constant_index = cast<ConstantInt>(ConstantInt::get((*ii)->getType(), I.ULongLong(LLDB_INVALID_ADDRESS)));
}
const_indices.push_back(constant_index);
}
uint64_t offset = data_layout.getIndexedOffset(pointer_type, const_indices);
lldb_private::Scalar Poffset = P + offset;
frame.AssignValue(inst, Poffset, module);
if (log)
{
log->Printf("Interpreted a GetElementPtrInst");
log->Printf(" P : %s", frame.SummarizeValue(pointer_operand).c_str());
log->Printf(" Poffset : %s", frame.SummarizeValue(inst).c_str());
}
}
break;
case Instruction::ICmp:
{
const ICmpInst *icmp_inst = dyn_cast<ICmpInst>(inst);
if (!icmp_inst)
{
if (log)
log->Printf("getOpcode() returns ICmp, but instruction is not an ICmpInst");
error.SetErrorToGenericError();
error.SetErrorString(interpreter_internal_error);
return false;
}
CmpInst::Predicate predicate = icmp_inst->getPredicate();
Value *lhs = inst->getOperand(0);
Value *rhs = inst->getOperand(1);
lldb_private::Scalar L;
lldb_private::Scalar R;
if (!frame.EvaluateValue(L, lhs, module))
{
if (log)
log->Printf("Couldn't evaluate %s", PrintValue(lhs).c_str());
error.SetErrorToGenericError();
error.SetErrorString(bad_value_error);
return false;
}
if (!frame.EvaluateValue(R, rhs, module))
{
if (log)
log->Printf("Couldn't evaluate %s", PrintValue(rhs).c_str());
error.SetErrorToGenericError();
error.SetErrorString(bad_value_error);
return false;
}
lldb_private::Scalar result;
switch (predicate)
{
default:
return false;
case CmpInst::ICMP_EQ:
result = (L == R);
break;
case CmpInst::ICMP_NE:
result = (L != R);
break;
case CmpInst::ICMP_UGT:
result = (L.GetRawBits64(0) > R.GetRawBits64(0));
break;
case CmpInst::ICMP_UGE:
result = (L.GetRawBits64(0) >= R.GetRawBits64(0));
break;
case CmpInst::ICMP_ULT:
result = (L.GetRawBits64(0) < R.GetRawBits64(0));
break;
case CmpInst::ICMP_ULE:
result = (L.GetRawBits64(0) <= R.GetRawBits64(0));
break;
case CmpInst::ICMP_SGT:
result = (L > R);
break;
case CmpInst::ICMP_SGE:
result = (L >= R);
break;
case CmpInst::ICMP_SLT:
result = (L < R);
break;
case CmpInst::ICMP_SLE:
result = (L <= R);
break;
}
frame.AssignValue(inst, result, module);
if (log)
{
log->Printf("Interpreted an ICmpInst");
log->Printf(" L : %s", frame.SummarizeValue(lhs).c_str());
log->Printf(" R : %s", frame.SummarizeValue(rhs).c_str());
log->Printf(" = : %s", frame.SummarizeValue(inst).c_str());
}
}
break;
case Instruction::IntToPtr:
{
const IntToPtrInst *int_to_ptr_inst = dyn_cast<IntToPtrInst>(inst);
if (!int_to_ptr_inst)
{
if (log)
log->Printf("getOpcode() returns IntToPtr, but instruction is not an IntToPtrInst");
error.SetErrorToGenericError();
error.SetErrorString(interpreter_internal_error);
return false;
}
Value *src_operand = int_to_ptr_inst->getOperand(0);
lldb_private::Scalar I;
if (!frame.EvaluateValue(I, src_operand, module))
{
if (log)
log->Printf("Couldn't evaluate %s", PrintValue(src_operand).c_str());
error.SetErrorToGenericError();
error.SetErrorString(bad_value_error);
return false;
}
frame.AssignValue(inst, I, module);
if (log)
{
log->Printf("Interpreted an IntToPtr");
log->Printf(" Src : %s", frame.SummarizeValue(src_operand).c_str());
log->Printf(" = : %s", frame.SummarizeValue(inst).c_str());
}
}
break;
case Instruction::PtrToInt:
{
const PtrToIntInst *ptr_to_int_inst = dyn_cast<PtrToIntInst>(inst);
if (!ptr_to_int_inst)
{
if (log)
log->Printf("getOpcode() returns PtrToInt, but instruction is not an PtrToIntInst");
error.SetErrorToGenericError();
error.SetErrorString(interpreter_internal_error);
return false;
}
Value *src_operand = ptr_to_int_inst->getOperand(0);
lldb_private::Scalar I;
if (!frame.EvaluateValue(I, src_operand, module))
{
if (log)
log->Printf("Couldn't evaluate %s", PrintValue(src_operand).c_str());
error.SetErrorToGenericError();
error.SetErrorString(bad_value_error);
return false;
}
frame.AssignValue(inst, I, module);
if (log)
{
log->Printf("Interpreted a PtrToInt");
log->Printf(" Src : %s", frame.SummarizeValue(src_operand).c_str());
log->Printf(" = : %s", frame.SummarizeValue(inst).c_str());
}
}
break;
case Instruction::Load:
{
const LoadInst *load_inst = dyn_cast<LoadInst>(inst);
if (!load_inst)
{
if (log)
log->Printf("getOpcode() returns Load, but instruction is not a LoadInst");
error.SetErrorToGenericError();
error.SetErrorString(interpreter_internal_error);
return false;
}
// The semantics of Load are:
// Create a region D that will contain the loaded data
// Resolve the region P containing a pointer
// Dereference P to get the region R that the data should be loaded from
// Transfer a unit of type type(D) from R to D
const Value *pointer_operand = load_inst->getPointerOperand();
Type *pointer_ty = pointer_operand->getType();
PointerType *pointer_ptr_ty = dyn_cast<PointerType>(pointer_ty);
if (!pointer_ptr_ty)
{
if (log)
log->Printf("getPointerOperand()->getType() is not a PointerType");
error.SetErrorToGenericError();
error.SetErrorString(interpreter_internal_error);
return false;
}
Type *target_ty = pointer_ptr_ty->getElementType();
lldb::addr_t D = frame.ResolveValue(load_inst, module);
lldb::addr_t P = frame.ResolveValue(pointer_operand, module);
if (D == LLDB_INVALID_ADDRESS)
{
if (log)
log->Printf("LoadInst's value doesn't resolve to anything");
error.SetErrorToGenericError();
error.SetErrorString(bad_value_error);
return false;
}
if (P == LLDB_INVALID_ADDRESS)
{
if (log)
log->Printf("LoadInst's pointer doesn't resolve to anything");
error.SetErrorToGenericError();
error.SetErrorString(bad_value_error);
return false;
}
lldb::addr_t R;
lldb_private::Error read_error;
memory_map.ReadPointerFromMemory(&R, P, read_error);
if (!read_error.Success())
{
if (log)
log->Printf("Couldn't read the address to be loaded for a LoadInst");
error.SetErrorToGenericError();
error.SetErrorString(memory_read_error);
return false;
}
size_t target_size = data_layout.getTypeStoreSize(target_ty);
lldb_private::DataBufferHeap buffer(target_size, 0);
read_error.Clear();
memory_map.ReadMemory(buffer.GetBytes(), R, buffer.GetByteSize(), read_error);
if (!read_error.Success())
{
if (log)
log->Printf("Couldn't read from a region on behalf of a LoadInst");
error.SetErrorToGenericError();
error.SetErrorString(memory_read_error);
return false;
}
lldb_private::Error write_error;
memory_map.WriteMemory(D, buffer.GetBytes(), buffer.GetByteSize(), write_error);
if (!write_error.Success())
{
if (log)
log->Printf("Couldn't write to a region on behalf of a LoadInst");
error.SetErrorToGenericError();
error.SetErrorString(memory_read_error);
return false;
}
if (log)
{
log->Printf("Interpreted a LoadInst");
log->Printf(" P : 0x%llx", P);
log->Printf(" R : 0x%llx", R);
log->Printf(" D : 0x%llx", D);
}
}
break;
case Instruction::Ret:
{
return true;
}
case Instruction::Store:
{
const StoreInst *store_inst = dyn_cast<StoreInst>(inst);
if (!store_inst)
{
if (log)
log->Printf("getOpcode() returns Store, but instruction is not a StoreInst");
error.SetErrorToGenericError();
error.SetErrorString(interpreter_internal_error);
return false;
}
// The semantics of Store are:
// Resolve the region D containing the data to be stored
// Resolve the region P containing a pointer
// Dereference P to get the region R that the data should be stored in
// Transfer a unit of type type(D) from D to R
const Value *value_operand = store_inst->getValueOperand();
const Value *pointer_operand = store_inst->getPointerOperand();
Type *pointer_ty = pointer_operand->getType();
PointerType *pointer_ptr_ty = dyn_cast<PointerType>(pointer_ty);
if (!pointer_ptr_ty)
return false;
Type *target_ty = pointer_ptr_ty->getElementType();
lldb::addr_t D = frame.ResolveValue(value_operand, module);
lldb::addr_t P = frame.ResolveValue(pointer_operand, module);
if (D == LLDB_INVALID_ADDRESS)
{
if (log)
log->Printf("StoreInst's value doesn't resolve to anything");
error.SetErrorToGenericError();
error.SetErrorString(bad_value_error);
return false;
}
if (P == LLDB_INVALID_ADDRESS)
{
if (log)
log->Printf("StoreInst's pointer doesn't resolve to anything");
error.SetErrorToGenericError();
error.SetErrorString(bad_value_error);
return false;
}
lldb::addr_t R;
lldb_private::Error read_error;
memory_map.ReadPointerFromMemory(&R, P, read_error);
if (!read_error.Success())
{
if (log)
log->Printf("Couldn't read the address to be loaded for a LoadInst");
error.SetErrorToGenericError();
error.SetErrorString(memory_read_error);
return false;
}
size_t target_size = data_layout.getTypeStoreSize(target_ty);
lldb_private::DataBufferHeap buffer(target_size, 0);
read_error.Clear();
memory_map.ReadMemory(buffer.GetBytes(), D, buffer.GetByteSize(), read_error);
if (!read_error.Success())
{
if (log)
log->Printf("Couldn't read from a region on behalf of a StoreInst");
error.SetErrorToGenericError();
error.SetErrorString(memory_read_error);
return false;
}
lldb_private::Error write_error;
memory_map.WriteMemory(R, buffer.GetBytes(), buffer.GetByteSize(), write_error);
if (!write_error.Success())
{
if (log)
log->Printf("Couldn't write to a region on behalf of a StoreInst");
error.SetErrorToGenericError();
error.SetErrorString(memory_write_error);
return false;
}
if (log)
{
log->Printf("Interpreted a StoreInst");
log->Printf(" D : 0x%llx", D);
log->Printf(" P : 0x%llx", P);
log->Printf(" R : 0x%llx", R);
}
}
break;
}
++frame.m_ii;
}
if (num_insts >= 4096)
{
error.SetErrorToGenericError();
error.SetErrorString(infinite_loop_error);
return false;
}
return false;
}