The semantics of the ops that implement the `OffsetSizeAndStrideOpInterface` is that if the number of offsets, sizes or strides are less than the rank of the source, then some default values are filled along the trailing dimensions (0 for offset, source dimension of sizes, and 1 for strides). This is confusing, especially with rank-reducing semantics. Immediate issue here is that the methods of `OffsetSizeAndStridesOpInterface` assumes that the number of values is same as the source rank. This cause out-of-bounds errors. So simplifying the specification of `OffsetSizeAndStridesOpInterface` to make it invalid to specify number of offsets/sizes/strides not equal to the source rank. Differential Revision: https://reviews.llvm.org/D115677
496 lines
21 KiB
C++
496 lines
21 KiB
C++
//===- VectorTransferOpTransforms.cpp - transfer op transforms ------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements functions concerned with optimizing transfer_read and
|
|
// transfer_write ops.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/Dialect/StandardOps/IR/Ops.h"
|
|
#include "mlir/Dialect/Vector/VectorOps.h"
|
|
#include "mlir/Dialect/Vector/VectorTransforms.h"
|
|
#include "mlir/Dialect/Vector/VectorUtils.h"
|
|
#include "mlir/IR/BuiltinOps.h"
|
|
#include "mlir/IR/Dominance.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
#define DEBUG_TYPE "vector-transfer-opt"
|
|
|
|
#define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ")
|
|
|
|
using namespace mlir;
|
|
|
|
/// Return the ancestor op in the region or nullptr if the region is not
|
|
/// an ancestor of the op.
|
|
static Operation *findAncestorOpInRegion(Region *region, Operation *op) {
|
|
for (; op != nullptr && op->getParentRegion() != region;
|
|
op = op->getParentOp())
|
|
;
|
|
return op;
|
|
}
|
|
|
|
namespace {
|
|
|
|
class TransferOptimization {
|
|
public:
|
|
TransferOptimization(FuncOp func) : dominators(func), postDominators(func) {}
|
|
void deadStoreOp(vector::TransferWriteOp);
|
|
void storeToLoadForwarding(vector::TransferReadOp);
|
|
void removeDeadOp() {
|
|
for (Operation *op : opToErase)
|
|
op->erase();
|
|
opToErase.clear();
|
|
}
|
|
|
|
private:
|
|
bool isReachable(Operation *start, Operation *dest);
|
|
DominanceInfo dominators;
|
|
PostDominanceInfo postDominators;
|
|
std::vector<Operation *> opToErase;
|
|
};
|
|
|
|
/// Return true if there is a path from start operation to dest operation,
|
|
/// otherwise return false. The operations have to be in the same region.
|
|
bool TransferOptimization::isReachable(Operation *start, Operation *dest) {
|
|
assert(start->getParentRegion() == dest->getParentRegion() &&
|
|
"This function only works for ops i the same region");
|
|
// Simple case where the start op dominate the destination.
|
|
if (dominators.dominates(start, dest))
|
|
return true;
|
|
Block *startBlock = start->getBlock();
|
|
Block *destBlock = dest->getBlock();
|
|
SmallVector<Block *, 32> worklist(startBlock->succ_begin(),
|
|
startBlock->succ_end());
|
|
SmallPtrSet<Block *, 32> visited;
|
|
while (!worklist.empty()) {
|
|
Block *bb = worklist.pop_back_val();
|
|
if (!visited.insert(bb).second)
|
|
continue;
|
|
if (dominators.dominates(bb, destBlock))
|
|
return true;
|
|
worklist.append(bb->succ_begin(), bb->succ_end());
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// For transfer_write to overwrite fully another transfer_write must:
|
|
/// 1. Access the same memref with the same indices and vector type.
|
|
/// 2. Post-dominate the other transfer_write operation.
|
|
/// If several candidates are available, one must be post-dominated by all the
|
|
/// others since they are all post-dominating the same transfer_write. We only
|
|
/// consider the transfer_write post-dominated by all the other candidates as
|
|
/// this will be the first transfer_write executed after the potentially dead
|
|
/// transfer_write.
|
|
/// If we found such an overwriting transfer_write we know that the original
|
|
/// transfer_write is dead if all reads that can be reached from the potentially
|
|
/// dead transfer_write are dominated by the overwriting transfer_write.
|
|
void TransferOptimization::deadStoreOp(vector::TransferWriteOp write) {
|
|
LLVM_DEBUG(DBGS() << "Candidate for dead store: " << *write.getOperation()
|
|
<< "\n");
|
|
llvm::SmallVector<Operation *, 8> reads;
|
|
Operation *firstOverwriteCandidate = nullptr;
|
|
for (auto *user : write.source().getUsers()) {
|
|
if (user == write.getOperation())
|
|
continue;
|
|
if (auto nextWrite = dyn_cast<vector::TransferWriteOp>(user)) {
|
|
// Check candidate that can override the store.
|
|
if (checkSameValueWAW(nextWrite, write) &&
|
|
postDominators.postDominates(nextWrite, write)) {
|
|
if (firstOverwriteCandidate == nullptr ||
|
|
postDominators.postDominates(firstOverwriteCandidate, nextWrite))
|
|
firstOverwriteCandidate = nextWrite;
|
|
else
|
|
assert(
|
|
postDominators.postDominates(nextWrite, firstOverwriteCandidate));
|
|
}
|
|
} else {
|
|
if (auto read = dyn_cast<vector::TransferReadOp>(user)) {
|
|
// Don't need to consider disjoint reads.
|
|
if (isDisjointTransferSet(
|
|
cast<VectorTransferOpInterface>(write.getOperation()),
|
|
cast<VectorTransferOpInterface>(read.getOperation())))
|
|
continue;
|
|
}
|
|
reads.push_back(user);
|
|
}
|
|
}
|
|
if (firstOverwriteCandidate == nullptr)
|
|
return;
|
|
Region *topRegion = firstOverwriteCandidate->getParentRegion();
|
|
Operation *writeAncestor = findAncestorOpInRegion(topRegion, write);
|
|
assert(writeAncestor &&
|
|
"write op should be recursively part of the top region");
|
|
|
|
for (Operation *read : reads) {
|
|
Operation *readAncestor = findAncestorOpInRegion(topRegion, read);
|
|
// TODO: if the read and write have the same ancestor we could recurse in
|
|
// the region to know if the read is reachable with more precision.
|
|
if (readAncestor == nullptr || !isReachable(writeAncestor, readAncestor))
|
|
continue;
|
|
if (!dominators.dominates(firstOverwriteCandidate, read)) {
|
|
LLVM_DEBUG(DBGS() << "Store may not be dead due to op: " << *read
|
|
<< "\n");
|
|
return;
|
|
}
|
|
}
|
|
LLVM_DEBUG(DBGS() << "Found dead store: " << *write.getOperation()
|
|
<< " overwritten by: " << *firstOverwriteCandidate << "\n");
|
|
opToErase.push_back(write.getOperation());
|
|
}
|
|
|
|
/// A transfer_write candidate to storeToLoad forwarding must:
|
|
/// 1. Access the same memref with the same indices and vector type as the
|
|
/// transfer_read.
|
|
/// 2. Dominate the transfer_read operation.
|
|
/// If several candidates are available, one must be dominated by all the others
|
|
/// since they are all dominating the same transfer_read. We only consider the
|
|
/// transfer_write dominated by all the other candidates as this will be the
|
|
/// last transfer_write executed before the transfer_read.
|
|
/// If we found such a candidate we can do the forwarding if all the other
|
|
/// potentially aliasing ops that may reach the transfer_read are post-dominated
|
|
/// by the transfer_write.
|
|
void TransferOptimization::storeToLoadForwarding(vector::TransferReadOp read) {
|
|
if (read.hasOutOfBoundsDim())
|
|
return;
|
|
LLVM_DEBUG(DBGS() << "Candidate for Forwarding: " << *read.getOperation()
|
|
<< "\n");
|
|
SmallVector<Operation *, 8> blockingWrites;
|
|
vector::TransferWriteOp lastwrite = nullptr;
|
|
for (Operation *user : read.source().getUsers()) {
|
|
if (isa<vector::TransferReadOp>(user))
|
|
continue;
|
|
if (auto write = dyn_cast<vector::TransferWriteOp>(user)) {
|
|
// If there is a write, but we can prove that it is disjoint we can ignore
|
|
// the write.
|
|
if (isDisjointTransferSet(
|
|
cast<VectorTransferOpInterface>(write.getOperation()),
|
|
cast<VectorTransferOpInterface>(read.getOperation())))
|
|
continue;
|
|
if (dominators.dominates(write, read) && checkSameValueRAW(write, read)) {
|
|
if (lastwrite == nullptr || dominators.dominates(lastwrite, write))
|
|
lastwrite = write;
|
|
else
|
|
assert(dominators.dominates(write, lastwrite));
|
|
continue;
|
|
}
|
|
}
|
|
blockingWrites.push_back(user);
|
|
}
|
|
|
|
if (lastwrite == nullptr)
|
|
return;
|
|
|
|
Region *topRegion = lastwrite->getParentRegion();
|
|
Operation *readAncestor = findAncestorOpInRegion(topRegion, read);
|
|
assert(readAncestor &&
|
|
"read op should be recursively part of the top region");
|
|
|
|
for (Operation *write : blockingWrites) {
|
|
Operation *writeAncestor = findAncestorOpInRegion(topRegion, write);
|
|
// TODO: if the store and read have the same ancestor we could recurse in
|
|
// the region to know if the read is reachable with more precision.
|
|
if (writeAncestor == nullptr || !isReachable(writeAncestor, readAncestor))
|
|
continue;
|
|
if (!postDominators.postDominates(lastwrite, write)) {
|
|
LLVM_DEBUG(DBGS() << "Fail to do write to read forwarding due to op: "
|
|
<< *write << "\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(DBGS() << "Forward value from " << *lastwrite.getOperation()
|
|
<< " to: " << *read.getOperation() << "\n");
|
|
read.replaceAllUsesWith(lastwrite.vector());
|
|
opToErase.push_back(read.getOperation());
|
|
}
|
|
|
|
/// Drops unit dimensions from the input MemRefType.
|
|
static MemRefType dropUnitDims(MemRefType inputType, ArrayRef<int64_t> offsets,
|
|
ArrayRef<int64_t> sizes,
|
|
ArrayRef<int64_t> strides) {
|
|
Type rankReducedType = memref::SubViewOp::inferRankReducedResultType(
|
|
0, inputType, offsets, sizes, strides);
|
|
return canonicalizeStridedLayout(rankReducedType.cast<MemRefType>());
|
|
}
|
|
|
|
/// Creates a rank-reducing memref.subview op that drops unit dims from its
|
|
/// input. Or just returns the input if it was already without unit dims.
|
|
static Value rankReducingSubviewDroppingUnitDims(PatternRewriter &rewriter,
|
|
mlir::Location loc,
|
|
Value input) {
|
|
MemRefType inputType = input.getType().cast<MemRefType>();
|
|
assert(inputType.hasStaticShape());
|
|
SmallVector<int64_t> subViewOffsets(inputType.getRank(), 0);
|
|
SmallVector<int64_t> subViewStrides(inputType.getRank(), 1);
|
|
ArrayRef<int64_t> subViewSizes = inputType.getShape();
|
|
MemRefType resultType =
|
|
dropUnitDims(inputType, subViewOffsets, subViewSizes, subViewStrides);
|
|
if (canonicalizeStridedLayout(resultType) ==
|
|
canonicalizeStridedLayout(inputType))
|
|
return input;
|
|
return rewriter.create<memref::SubViewOp>(
|
|
loc, resultType, input, subViewOffsets, subViewSizes, subViewStrides);
|
|
}
|
|
|
|
/// Returns the number of dims that aren't unit dims.
|
|
static int getReducedRank(ArrayRef<int64_t> shape) {
|
|
return llvm::count_if(shape, [](int64_t dimSize) { return dimSize != 1; });
|
|
}
|
|
|
|
/// Returns true if all values are `arith.constant 0 : index`
|
|
static bool isZero(Value v) {
|
|
auto cst = v.getDefiningOp<arith::ConstantIndexOp>();
|
|
return cst && cst.value() == 0;
|
|
}
|
|
|
|
/// Rewrites vector.transfer_read ops where the source has unit dims, by
|
|
/// inserting a memref.subview dropping those unit dims.
|
|
class TransferReadDropUnitDimsPattern
|
|
: public OpRewritePattern<vector::TransferReadOp> {
|
|
using OpRewritePattern<vector::TransferReadOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(vector::TransferReadOp transferReadOp,
|
|
PatternRewriter &rewriter) const override {
|
|
auto loc = transferReadOp.getLoc();
|
|
Value vector = transferReadOp.vector();
|
|
VectorType vectorType = vector.getType().cast<VectorType>();
|
|
Value source = transferReadOp.source();
|
|
MemRefType sourceType = source.getType().dyn_cast<MemRefType>();
|
|
// TODO: support tensor types.
|
|
if (!sourceType || !sourceType.hasStaticShape())
|
|
return failure();
|
|
if (sourceType.getNumElements() != vectorType.getNumElements())
|
|
return failure();
|
|
// TODO: generalize this pattern, relax the requirements here.
|
|
if (transferReadOp.hasOutOfBoundsDim())
|
|
return failure();
|
|
if (!transferReadOp.permutation_map().isMinorIdentity())
|
|
return failure();
|
|
int reducedRank = getReducedRank(sourceType.getShape());
|
|
if (reducedRank == sourceType.getRank())
|
|
return failure(); // The source shape can't be further reduced.
|
|
if (reducedRank != vectorType.getRank())
|
|
return failure(); // This pattern requires the vector shape to match the
|
|
// reduced source shape.
|
|
if (llvm::any_of(transferReadOp.indices(),
|
|
[](Value v) { return !isZero(v); }))
|
|
return failure();
|
|
Value reducedShapeSource =
|
|
rankReducingSubviewDroppingUnitDims(rewriter, loc, source);
|
|
Value c0 = rewriter.create<arith::ConstantIndexOp>(loc, 0);
|
|
SmallVector<Value> zeros(reducedRank, c0);
|
|
auto identityMap = rewriter.getMultiDimIdentityMap(reducedRank);
|
|
rewriter.replaceOpWithNewOp<vector::TransferReadOp>(
|
|
transferReadOp, vectorType, reducedShapeSource, zeros, identityMap);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Rewrites vector.transfer_write ops where the "source" (i.e. destination) has
|
|
/// unit dims, by inserting a memref.subview dropping those unit dims.
|
|
class TransferWriteDropUnitDimsPattern
|
|
: public OpRewritePattern<vector::TransferWriteOp> {
|
|
using OpRewritePattern<vector::TransferWriteOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(vector::TransferWriteOp transferWriteOp,
|
|
PatternRewriter &rewriter) const override {
|
|
auto loc = transferWriteOp.getLoc();
|
|
Value vector = transferWriteOp.vector();
|
|
VectorType vectorType = vector.getType().cast<VectorType>();
|
|
Value source = transferWriteOp.source();
|
|
MemRefType sourceType = source.getType().dyn_cast<MemRefType>();
|
|
// TODO: support tensor type.
|
|
if (!sourceType || !sourceType.hasStaticShape())
|
|
return failure();
|
|
if (sourceType.getNumElements() != vectorType.getNumElements())
|
|
return failure();
|
|
// TODO: generalize this pattern, relax the requirements here.
|
|
if (transferWriteOp.hasOutOfBoundsDim())
|
|
return failure();
|
|
if (!transferWriteOp.permutation_map().isMinorIdentity())
|
|
return failure();
|
|
int reducedRank = getReducedRank(sourceType.getShape());
|
|
if (reducedRank == sourceType.getRank())
|
|
return failure(); // The source shape can't be further reduced.
|
|
if (reducedRank != vectorType.getRank())
|
|
return failure(); // This pattern requires the vector shape to match the
|
|
// reduced source shape.
|
|
if (llvm::any_of(transferWriteOp.indices(),
|
|
[](Value v) { return !isZero(v); }))
|
|
return failure();
|
|
Value reducedShapeSource =
|
|
rankReducingSubviewDroppingUnitDims(rewriter, loc, source);
|
|
Value c0 = rewriter.create<arith::ConstantIndexOp>(loc, 0);
|
|
SmallVector<Value> zeros(reducedRank, c0);
|
|
auto identityMap = rewriter.getMultiDimIdentityMap(reducedRank);
|
|
rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
|
|
transferWriteOp, vector, reducedShapeSource, zeros, identityMap);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Creates a memref.collapse_shape collapsing all of the dimensions of the
|
|
/// input into a 1D shape.
|
|
// TODO: move helper function
|
|
static Value collapseContiguousRowMajorMemRefTo1D(PatternRewriter &rewriter,
|
|
mlir::Location loc,
|
|
Value input) {
|
|
Value rankReducedInput =
|
|
rankReducingSubviewDroppingUnitDims(rewriter, loc, input);
|
|
ShapedType rankReducedInputType =
|
|
rankReducedInput.getType().cast<ShapedType>();
|
|
if (rankReducedInputType.getRank() == 1)
|
|
return rankReducedInput;
|
|
ReassociationIndices indices;
|
|
for (int i = 0; i < rankReducedInputType.getRank(); ++i)
|
|
indices.push_back(i);
|
|
return rewriter.create<memref::CollapseShapeOp>(
|
|
loc, rankReducedInput, std::array<ReassociationIndices, 1>{indices});
|
|
}
|
|
|
|
/// Rewrites contiguous row-major vector.transfer_read ops by inserting
|
|
/// memref.collapse_shape on the source so that the resulting
|
|
/// vector.transfer_read has a 1D source. Requires the source shape to be
|
|
/// already reduced i.e. without unit dims.
|
|
class FlattenContiguousRowMajorTransferReadPattern
|
|
: public OpRewritePattern<vector::TransferReadOp> {
|
|
using OpRewritePattern<vector::TransferReadOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(vector::TransferReadOp transferReadOp,
|
|
PatternRewriter &rewriter) const override {
|
|
auto loc = transferReadOp.getLoc();
|
|
Value vector = transferReadOp.vector();
|
|
VectorType vectorType = vector.getType().cast<VectorType>();
|
|
Value source = transferReadOp.source();
|
|
MemRefType sourceType = source.getType().dyn_cast<MemRefType>();
|
|
// Contiguity check is valid on tensors only.
|
|
if (!sourceType)
|
|
return failure();
|
|
if (vectorType.getRank() == 1 && sourceType.getRank() == 1)
|
|
// Already 1D, nothing to do.
|
|
return failure();
|
|
if (!isStaticShapeAndContiguousRowMajor(sourceType))
|
|
return failure();
|
|
if (getReducedRank(sourceType.getShape()) != sourceType.getRank())
|
|
// This pattern requires the source to already be rank-reduced.
|
|
return failure();
|
|
if (sourceType.getNumElements() != vectorType.getNumElements())
|
|
return failure();
|
|
// TODO: generalize this pattern, relax the requirements here.
|
|
if (transferReadOp.hasOutOfBoundsDim())
|
|
return failure();
|
|
if (!transferReadOp.permutation_map().isMinorIdentity())
|
|
return failure();
|
|
if (transferReadOp.mask())
|
|
return failure();
|
|
if (llvm::any_of(transferReadOp.indices(),
|
|
[](Value v) { return !isZero(v); }))
|
|
return failure();
|
|
Value c0 = rewriter.create<arith::ConstantIndexOp>(loc, 0);
|
|
auto identityMap1D = rewriter.getMultiDimIdentityMap(1);
|
|
VectorType vectorType1d = VectorType::get({sourceType.getNumElements()},
|
|
sourceType.getElementType());
|
|
Value source1d =
|
|
collapseContiguousRowMajorMemRefTo1D(rewriter, loc, source);
|
|
Value read1d = rewriter.create<vector::TransferReadOp>(
|
|
loc, vectorType1d, source1d, ValueRange{c0}, identityMap1D);
|
|
rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(
|
|
transferReadOp, vector.getType().cast<VectorType>(), read1d);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Rewrites contiguous row-major vector.transfer_write ops by inserting
|
|
/// memref.collapse_shape on the source so that the resulting
|
|
/// vector.transfer_write has a 1D source. Requires the source shape to be
|
|
/// already reduced i.e. without unit dims.
|
|
class FlattenContiguousRowMajorTransferWritePattern
|
|
: public OpRewritePattern<vector::TransferWriteOp> {
|
|
using OpRewritePattern<vector::TransferWriteOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(vector::TransferWriteOp transferWriteOp,
|
|
PatternRewriter &rewriter) const override {
|
|
auto loc = transferWriteOp.getLoc();
|
|
Value vector = transferWriteOp.vector();
|
|
VectorType vectorType = vector.getType().cast<VectorType>();
|
|
Value source = transferWriteOp.source();
|
|
MemRefType sourceType = source.getType().dyn_cast<MemRefType>();
|
|
// Contiguity check is valid on tensors only.
|
|
if (!sourceType)
|
|
return failure();
|
|
if (vectorType.getRank() == 1 && sourceType.getRank() == 1)
|
|
// Already 1D, nothing to do.
|
|
return failure();
|
|
if (!isStaticShapeAndContiguousRowMajor(sourceType))
|
|
return failure();
|
|
if (getReducedRank(sourceType.getShape()) != sourceType.getRank())
|
|
// This pattern requires the source to already be rank-reduced.
|
|
return failure();
|
|
if (sourceType.getNumElements() != vectorType.getNumElements())
|
|
return failure();
|
|
// TODO: generalize this pattern, relax the requirements here.
|
|
if (transferWriteOp.hasOutOfBoundsDim())
|
|
return failure();
|
|
if (!transferWriteOp.permutation_map().isMinorIdentity())
|
|
return failure();
|
|
if (transferWriteOp.mask())
|
|
return failure();
|
|
if (llvm::any_of(transferWriteOp.indices(),
|
|
[](Value v) { return !isZero(v); }))
|
|
return failure();
|
|
Value c0 = rewriter.create<arith::ConstantIndexOp>(loc, 0);
|
|
auto identityMap1D = rewriter.getMultiDimIdentityMap(1);
|
|
VectorType vectorType1d = VectorType::get({sourceType.getNumElements()},
|
|
sourceType.getElementType());
|
|
Value source1d =
|
|
collapseContiguousRowMajorMemRefTo1D(rewriter, loc, source);
|
|
Value vector1d =
|
|
rewriter.create<vector::ShapeCastOp>(loc, vectorType1d, vector);
|
|
rewriter.create<vector::TransferWriteOp>(loc, vector1d, source1d,
|
|
ValueRange{c0}, identityMap1D);
|
|
rewriter.eraseOp(transferWriteOp);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
void mlir::vector::transferOpflowOpt(FuncOp func) {
|
|
TransferOptimization opt(func);
|
|
// Run store to load forwarding first since it can expose more dead store
|
|
// opportunity.
|
|
func.walk([&](vector::TransferReadOp read) {
|
|
if (read.getShapedType().isa<MemRefType>())
|
|
opt.storeToLoadForwarding(read);
|
|
});
|
|
opt.removeDeadOp();
|
|
func.walk([&](vector::TransferWriteOp write) {
|
|
if (write.getShapedType().isa<MemRefType>())
|
|
opt.deadStoreOp(write);
|
|
});
|
|
opt.removeDeadOp();
|
|
}
|
|
|
|
void mlir::vector::populateVectorTransferDropUnitDimsPatterns(
|
|
RewritePatternSet &patterns) {
|
|
patterns
|
|
.add<TransferReadDropUnitDimsPattern, TransferWriteDropUnitDimsPattern>(
|
|
patterns.getContext());
|
|
populateShapeCastFoldingPatterns(patterns);
|
|
}
|
|
|
|
void mlir::vector::populateFlattenVectorTransferPatterns(
|
|
RewritePatternSet &patterns) {
|
|
patterns.add<FlattenContiguousRowMajorTransferReadPattern,
|
|
FlattenContiguousRowMajorTransferWritePattern>(
|
|
patterns.getContext());
|
|
populateShapeCastFoldingPatterns(patterns);
|
|
}
|